=

PERCEPTION AND COMPUTATION

Bruce M. Bennett!

! Mathematics, UC Irvine 92717 USA

Abstract

We suggest that computation I8 an inadequate for-
mal foundation for the field of perception, and propose a
new formal foundation - the observer. We propose the
observer thesis: For each act of perception, regardless
of modality, there is an observer to perform that act of
perception. We describe formally the relationship between
Turing machines and observers. We discuss conditions in
which observers may be simulated by Turing machines.

1. Introduction

The investigation of specific problems in a scientific
field is aided by a general theory, one that captures the for-
mal structure underlying each specific problem, but that
discards the inessential details of each problem. For in-
stance, in the field of computer science, the theory of Tur-
ing machines and automata provides a general theory of
computation. The Turing machine gives the formal struec-
ture common to all specific computations; this formalism
allows one to study computation without distraction by the
inesgential details of specific computations. Nevertheless,
this general formalism also facilitates the study of specific
computations; for example, it provides general theorems on
decidability and tools for the study of computational com-
plexity. Another instance of a general theory is the Hilbert
space formulation of quantum theory, which abstracts the
formal structure common to various specific physical sys-
tems. One then uses the general quantum formalism to
study a particular system, for example by specifying its
hamiltonian.

The field of perception has as yet no comparable for-
mal foundation. Many general principles have emerged
from the detailed study of specific perceptual problems,
but these principles have heretofore not been formulated
into a single coherent formalism. Such a formalism would
capture the structure common to all specific acts of percep-
tion, but would abstract away from the inessential details
of particular perceptual problems. It would play the same
role for the field of perception that the Turing machine
plays for the field of computer science,
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We propose such a structure, a formalism we call an
observer. We further propose the following observer the-

‘sis: For each act of perception, regardless of modality,

there is an observer to perform that act of perception. We
suggest that this thesis plays a role in the field of percep-
tion analogous to the role of the Church-Turing thesis in
the field of computation. We note that the class of ob-
servers properly contains the class of Turing machines: we
describe a natiral embedding of the class of Turing ma-
chines into the class of observers, and call this subclass of
observers “Turing observers”. We suspect that most psy-
chologically plausible observers are not Turing observers;
we produce an example non-Turing observer in the case
of recovering the 3-D structure of moving points from dy-
namic images. This leads us to ask to what extent non-
Turing observers can at least be simulated by Turing ma-
chines at a given scale. We examine one obvious discretiza-
tion procedure, by means of which this question may be
addressed. We find that there are non-Turing observers
which, even after being discretized by this procedure, can-
not be simulated by Turing machines. However, many cb-
servers of interest in computer vision have discretizations
that are indeed Turing-simulable.

The deeper questions about the relationship of per-
ception and computation are concerned not with a single
discretization {at some given scale) but with the collec-
tion of all discretizations; indeed it is the single observer
of which these are the discretizations which gives mathe-
matical unity to the collection. Moreover it appears that
there is a perceptual unity to this collection (for example,
in the case of the perception of structure from motion by
human observers). It seems unreasonable {o assume that
this unity is grounded in the computational algorithms, ej-
ther associated to the individual discretizations or to their
comparison. This is true in the same sense that it is un-
reasonable to equate the concept of an integral with the
totality of numerical algorithms for its approximation at
various scales, We suggest in this spirit that the funda-
mental character of perception is not computational.
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2. Definition of observer

The following definition of observer is illustrated in
Figure 2.2. The mathematical notation and terminolog
used here are collected in the appendix. :

Definition 2.1. An observer is a six-tuple, ((X,X, ux),
(Y:y): E: S, T, ﬂ), where:

1. {X,X) and (Y,Y) are measurable spaces. pux is a
measure classon X. E€ Y and S€ Y.

2. 7: X — Y is a measurable surjective function with
7(E) = 8.

3. px(r=YSY—-E})=0.

4. Let (E, £} and (S, §) denote the measurable spaces
on E and S respectively induced from those of X and
Y. Then 5 is a2 markovian kernel on § x & such that,

for each 8, n{s, -) is a probability measure supported
in v 1(s) N E.

By an abuse of notation, we sometimes will use px to
denote a representative measure of the measure class. Also
we will often write X for (X, X) and ¥ for (Y, Y) when the
meaning is clear from the context.
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FIGURE 2.2. An illustration of the definition of observer.

Intuitive discussion of the definition of observer
An observer is an inferencing system, one whose con-

clusions are not, in general, logically implied by its premises.

Roughly, the possible premises for an observer are modeled
by its space ¥, and the possible conclusions by its measures
n(s, -} supported on E.
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E is called the configuration event of the observer or,
for brevity, the event of the observer. The space X is called
the configuration space of the observer. X isa formal rep-
resentation of those possible states of affairs over which the
configuration event of the observer is defined. The possi-
ble perceptual conclusions of an observer are probability
measures supported in the configuration event E.

The space Y is called the observation space of the ob-
server. It is a formal representation of the premises avail-
able to the observer for making inferences about occur-
rences of E.

The measurable function # is called the perspective
map of the observer.

The set § is called the observation event of the ob-
server. All and only points in S are premises of observer
inferences which conclude that an instance of the configu-
ration event E has occurred.

The kernel n is called the conclusion kernel of the ob-
server. For each s € 8, i.e. for each point in the observation
event, n(s, -} is a probability measure on (E, £) supported
on 774 (s) N E. Intuitively, this measure gives the relative
likelihood assigned by the observer to various subsets of
its event E, in consequence of the observer being given
the “proximal stimulus® s. One can think of the kernel
n as a convenient way of assigning to every point of 5§ a
probability measure on E. Thus # associates a perceptual
conclusion to each set of premises, such that the conclu-
sion lies in that set of points of E that can give rise to the
proximal stimulus s, given the perspective map m. In this
sense, 1 is the “rule of inference” used by the observer.

Intuitively, here is how the obsgerver structure works
in practice. When the observer is presented with an ap-
propriate state of affairs in the world, there is some point
xz € X that represents that state of affairs. Then w maps
z to some point y of the observation space Y. Informally,
we say that the point y “lights up” for the observer. If z
was a point of B, then the y that subsequently lights up is
some point of S. I z was not in E and not in #7}(S) - E,
then the associated y will not be in §. All the observer has
direct access to is which point of ¥ lit up, not to x. The
observer wants to guess 2. If the point of ¥ that lights up
is not in §, then the observer decides that x was not in E.
The observer indicates this decision by doing nothing. If
the point of ¥ that lights up is in S, then the observer de-
cides that z was in E, but the observer does not in general
know precisely which point of E it was. In consequence,
the observer couches its guess in the forimn of a probability
distribution n(s, -} supporied on E. If there is no arnbigu-
ity as to which point of £ z must have been (given that
it must be in E), then this probability distribution sim-
ply becomes Dirac measure supported on the appropriate
point of E.

More discussion of the definition of observer

We discuss the four conditions listed in the definition
of observer. '

Condition 1: (X, X}, (Y,¥) are measurable spaces.



ix, is a measure classon X. Ee X and S€ Y. Xisa
mathematical representation of those possible states of af-
fairs over which the configuration event E of the observer
is defined. X itself is not the real world, but a mathemat-
ical representation of some possible states of affairs in the
real world. Y is that “projection” of X from which the
observer can make inferences about occurrences of E. X
and ¥ are specified to be measurable spaces because this
is the least restrictive assumption that always allows us
to discuss the probabilities (more generally, measures) of
events on these spaces. It would be unnecessarily restric-
tive to specify that X must be, say, a Euclidean space or
a manifold.

ix i3 a seb of measures on X that we intuitively think
of as being “unbiased”. This means that their definition
makes no reference to properties of E or m. We may think
of px as expressing an abstract uniformity of X which
exists prior to the notion of the configuration event set E
of interest to the particular observer. For example, px
might be an invariant measure class for some group action
on X. Again infuitively, the role of uy is to provide an
unbiased background “probability” in terms of which the
observer ¢an be represented as an ideal decision maker (in
a sense which we will discuss below), and to which the
probabilities of observation of configuration events actually
occurring in some concrete universe can be compared.

Condition 2: m: X — Y is a measurable surjective
function with w{E) = §. n must be surjective for other-
wise there would be points in the observation space, Y,
that did not arise from the configuration space, X. That
is, the observer would have observation points that were
gratuitous, and then we could simply discard them while
preserving all the other hypotheses. r must be measur-
able, for in this theory the statistical information available
at the sensorium Y must at the very least be semantically
compatible with information about probabilities of states
of affairs in the world as represented in configuration space

X.

Condition 3: px(#~*{S) — E} = 0. This condition
means that the probability of “false targets” is zero. In-
tuitively, a false target is a distal stimulus that leads an
observer to an iilusory perception. More precisely, a false
target for an observer is an element of 7~(8) ~ E.

Because of condition 3 an observer is an ideal decision
maker in the following sense: Given that the state of affain
in X is not in F, the observer almost surely recognizes
that the state of affairs is not in E. Put another way, the
measure of false targets is zero for an unbiased measure
px on the configuration space X. This is because points
in X that are not in E almost surely do not project via m
to S and are therefore not given an interpretation by the
observer.

It iz also true that Given that some event in F has
occurred, the observer always recognizes this. Occurrences
of events in E always lead the observer to select as its
conclusion a probability measure supported on E, simply
because 7(E) = §.
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FIGURE 2.3. Decision diagram for observers.

The sense in which an observer is an ideal decision
maker can also be represented in a decision diagram, as
shown in Figure 2.3. The diagram represents two pos-
sible states of affairs across the top: E, which indicates
that some instance of the observer’s configuration event
has occurred, and -E, which indicates that an event other
than the configuration event has occurred. The diagram
represents the two possible decisions of the observer along
the side. Inside each box in the right column is a number
which is a conditional probability, namely the unbiased
conditional probability that the observer arrives at the de-
cision indicated to the left side of the diagram given that
E does not occur. Inside each box in the left column is a
number; in this left column the number 1 is a shorthand
for “certainly” and 0 for “certainly not”. The numbers in

this left column hold simply by the definition of observer;
if a configuration in E occurs, then since S = n{F} and the
observer always decides that E occurred given a premise in
S, the observer always decides correctly. Also inside each
box is a label in quotes which describes the type of decision
represented by that box. So, for instance, the box labelled
“false alarm” has the number 0 in it. This means that, for
an observer as specified in Definition 2.1, the conditional
probability is zero that the observer will decide that an
event in F occurred given that in fact an event outside of
E occurred. (The one in the box labelled “correct reject”
is the complementary conditional probability).

An obsgerver is an ideal decision maker in this sense re-
gardless of the relationship between the observer and the
world it is in. However, for most observers, without the
proper relationship between the observer and the world,
the observer’s decision that E occurred will often be in-
correct.. This is because for most observers there will be
points in 7 ~{S§) — E, and the unbiased measure ux may,
in assigning zero measure to this set, be contradicting ac-
tual states of affairs in the world. Note that the order of
the probabilistic conditioning is crucial to a clear under-



standing of this situation.

That aspect of the observer inference presented in the
decision diagram of Figure 2.3 is not the only one of inter-
est. The observer does not merely decide whether or not
an event in E has occurred; it selects a probability mea-
gure supported on E which is the observer’s best guess as to
which events in E are likely to have occurred, together with
their likelihoods. One would like to know if the particular
probability measure selected by the observer is accurate.
This question involves establishing a formal framework in
which observer and observed can be discussed (we do this
in Bennett et al. (1987)). The question of perceptual ac-
curacy can then be understood in terms of stabilities of
dynamics of participators on these frameworks. In partic-
ular, we can ask whether the conclusion kernel  of the

observer is compatible with these stabilities; this leads to .

“nerception=teality” equations.

Condition 4: » is 2 markovian kernel on § X £ such
that, for each s, n(s,-) is a probability measure supported
on 7~ *(s) 11 E. 5 captures formally the conclusions made
by an observer for premises in §. A conditional probabil-
ity distribution is a natural formal object for this purpose
because for each s € § it assigns a probability measure
whose support is a subset of the fibre over s under the
map 7, That is, the only points ¢ € E that are involved
in the perceptual conclusion for the premises a are those
such that n(e) = a.

A remark on noise

Observer theory replaces noise with perceptual uncer-
tainty. By perceptdal uncertainty we mean firstly that the
map 7|z is, in general, many to one, and in particular the
conclusion measures 7(s, -} of an observer are supported, in
general, on sets of more than one element in the fibres of 7.
Thus there is fundamental uncertainty about which con-
figuration event corresponds to a given observation event.
Secondly, in general E intersects the fibres of # in proper
subsets. Thus there is fundamental uncertainty here as

to whether a particular observation in S resulied from a .

configuration event in E.

The notion of noise entails the idea of an indepen-
dent objective reality grounded in a fixed framework: an
object exists in spacetime in some precise state but the
measurement of that state is “interfered with” by impre-
cision of measurement. Even in quantum mechanics one
can maintain this objectivist view of noise; the imprecision
is there ordained by principle (Heisenberg's), We take a
completely different tack. Perception is the primary phe-
nomenon, and it has a fundamentally probabilistic charac-
ter which expresses itself in distributions on the spaces of
premises and conclusions, We assume, moreover, that each
premise may be viewed (possibly in a nonunique way) as
a set of conclusions of a system of “lower level observers”,
which we call an instantiation of the given observer. It
follows that the distributions of conclusions at the level of
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the instantiation become the premises at the next level. In
this manner, we view perceptual uncertainty as propagat-
ing up a lattice of observers, and so it is not grounded in
the imprecision of measurement of some objectively exist-
ing system in some fixed spacetime.

3. An example

We present an example of an observer, one which in-
fers the three-dimensional structure of rigid objects that
spin rigidly about a fixed axis. We construct this “struc.
ture from motion” observer based on the following result
{(Hoffman and Bennett, 1986):

s (i) Given three distinct orthographic projections of
three points in R® that are spinning rigidly about =
fixed axis, the 3-D structure and motion of the points
is almost surely determined uniquely (up to a reflec-
tion about a plane paralle] to the image plane). More-
over (ii} the Lebesgue measure is zero of the set of
those image data that permit such a determination.

Because of this result we can construct an observer
that infers the three-dimensional structure of three points
in rigid fixed-axis motion from three orthographic views.
By “three-dimensional structure” of the three points we
mean their positions relative to each other. The observer
takes one of the points to be the origin O and represents
the positions of the other two points A; and A, relative
to that origin. In this case the configuration space X is
the space of all three-tuples of pairs of points, where each
point lies in R3. That is,

X = {(at',f)lai:' = (zijsyij)zij);i S 1!2;]. = 1i2a3} = Rls-

The observation space Y is the set of all triples of
pairs of points in R?, i.e.

Y= {(bi.?')lbt'i = (Eif’ y.-,');a' = 1,254 = }-:2’3} = R'2,

The perspective map is then m: R'® — R'? induced by
(215, w45, #15) — (%45, yi;). The unbiased measures uy and
py can be taken to be Lebesgue measure. The o-algebras
X and Y are the appropriate Borel algebras,
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FIGURE 3.1. Rigid fixed-axis motion: Three views of
three points

To define the configuration event £ we use notation as
illustrated in Figure 3.1. The three points are O, 4;, and
Az. As above, let a;; denote the vector in three dimensions
between points O and A; in view j (j = 1,2,3). E &
that subset of X consisting of three pairs of points, each
point of the pair lying in R®, such that there is a rigid
translation and rigid rotation about a single axis relating
each pair plus the origin point to the others. It happens
in this case that E is an algebraic variety {the solution
set of polynomial equations) defined by the following eight
vector equations:

ajcan —ap-a12=0, (3.2)
ai1-a11 ~813-213=0, (3.3)
ag; -ag; ~agz-azp =0, (3.4)
ag1 - 41 — ags - 823 = 0, (3.5)
a1 -ag —az-az =0, (3.6)
ai1-ap —Aazs-az =0, (3.7)
(a11 —aiz) - (211 ~ a1s) X (az; — agg)] =0, (3.8)
(a11 —212) - [{a11 — 213} X {agz; — azs)] =0. (3.9)

In these equations the operation - indicates scalar (dot)
product and X indicates vector {cross) product. The first
six equations specify that the three points move rigidly.
The last two specify that the points rotate about a fixed
axis. E so defined has positive codimension in X (i.e.
the dimension of E is less than that of X) and so E has
Lebesgue measure zero in X, The cobservation event is
§ = #(E), and has Lebesgue measure zero in Y. There-
fore the Lebesgue measure of false targets is zero (i.e.
pux{r~*(S) — E) = 0). With effort it can be shown that
generically on S the fibre of 7 over a point s € 8, i.e. the
set of points z € X such that x{z} = s, contains two points
of E (Hoffman and Bennett, 1986). We can chose  to be
the conditional -probability distribution on E relative to
7 which gives weight, say, of one half to each of the two
points. Abstractly, this observer structure is as follows:
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X=R® 5 E (=rigid fixed-axis motions)
lr ir (3.10)
Y=R? > §

4. Turing observers

All Turing machines have sufficient structure to be
viewed as observers. The set of nontrivial Turing machines
is a small proper subset of the set of observers; intuitively,
it is a subset of observers whose inferences are deductively
valid. Observers more generally perform inferences that
are not deductively valid, but that have some degree of in-
ductive strength. Moreover, most observers are not Turing
observers if only because the sets E and 5 need not be, in
general, recursively enumerable. {Recursively enumerable
sets are precisely those that can be recognized by Turing
machines.)

The theory of automata considers several characteri-
zations of Turing machines. All characterizations are equiv-
alent to defining a Turing machine as a language recog-
nizer, For exaraple, one can characterize a Turing machine
as computing a partial recursive function f; in this case
the graph of f is a recursively enumerable set, and com-
puting f is equivalent fo recognizing its graph. Therefore
we will view Turing machines as recognizers of recursively
enumerzble languages. Let £ be the terminal alphabet of
a Turing machine T, T* be the set of all strings of finite
length over the alphabet I, and L C £* be the language
recognized by T'. We take for the o-algebra of £* simply
its power set. We then define an embedding of the set of
Turing machines into the set of observers by the map

T — (2*,2*, L, L,identity, €)

where, if | € L, and ¢; denotes Dirac measure concentrated
at {, then ¢ is given by €(l, ') = . Note that 7~(S) = E so
that for any measure clags on £*, (8%, £* L, L,identity, ¢)
is an observer. Moreover, since 7 is the identity, so that the
fibre 771{s} equals {s} for each point s € S, n(s,-) is Dirac
measure concentrated on this point. It is straightforward
to verify that, with these identifications, all the restrictions
placed on observers by Definition 2.1 are satisfied,

Once we realize the Turing machines as a subclass of
observers in this way, it is obvious that most observers
are not Turing machines. More generally, however, we ask
whether a Turing simulation exists for a given observer.
For this purpose we would like to define a canonical sim-
ulation procedure. In fact, we will discuss the simulation
of structures slightly more general than observers, namely
we will drop the measure zero requirement in condition
3, since no property of the measure class px will be rele-
vant to the simulation definition. We will call these more
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FIGURE 4.1. A Turing observer. X =Y =X*. F =

§ = L. = being an isomorphism means that the Turing
observer’s conclusions are deductively valid.

general structures quasi-observers, stil} using the notation
0 = (X,Y,FE,S,n,n) for a quasi-observer, Let O = (X,
Y, E, 8, 7, n} be the quasi-observer to be simulated. The
objective of the simulation is the computation of n(s, 4},
for all relevant sensorial points s and configurational situa-
tions A. Now clearly such a computation is possible only if
the “relevant” sets 4 can be seen as generated by a count-
able collection of events. To this end, let 4 denote the szt
of atoms of the o-algebra X of X. By definition, the el-
ements of 4 are the minimal measurable sets A of X1, ie.
10 nonempty proper subset of A is measurable. Similarly
we call a finite real-valued measure u on X atomic if the
minimal sets of nonzero y-measure are atoms of X (that
is, if whenever B € X with u{B) # 0, then B contains
an atom A of A such that u{A) # 0.) Any such measure
induces a function from A to R, viz. A — p(A); indeed,
this function is informationally equivalent to the atomic
measure. In particular, for a fixed s € 8, 4 v+ n(s, 4) is
2 real-valued function on A. We require, for purposes of
simulation, that the measures 5{s,-) be atomic (for oth-
erwise our scheme below may simulate a vacuous portion
of the quasi-observer). Thus, we may associate to O the
function f: 8 x 4 — R defined as follows:

5 (s, 4) = n(s, A).
Assuming that the measures 5(s,.) are atomic, we define
the canonical Turing simulator of O to be the machine T
which recognizes § in ¥ and then computes f. Thus T
exists if and only if O satisfies the requirements:

i. § is recursively enumerable in Y.
il. f is recursive.

For most observers of interest to vision researchers,
n(s,)} is not atomic, and S is uncountable (so that f has
little chance of being recursive). Hence for these observers
there is no canonical simulator. For example, in the ob-
server presented in section 3 the measures {s, ) are atomic
(almost surely on S} since generically there are only two
points of F over each point of S. However, since both §
and E are uncountable the function f will not be recursive,
‘and there is no canonical simulator. Even when everything
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is countable, f will not be recursive in general, so simply by
making a discrete approximation to an observer we cannot
expect that it will have a Turing simulation. However, at
least in certain instances of interest to vision researchers,
discrete approximations may allow Turing simulation. For
these reasons and others it is essential to have a general
theory of discretization of observer structures. We now
give some indication of this.

For our present purposes, we will restrict attention to
Euclidean configuration spaces X and ocbservation spaces
Y (with their Borel algebras), and assume that m: X - Y
is projection. Thus, let O = {X, Y, E, S, n, ) be an
observer with X = R®™, ¥ = R", and  projection, say
onto the first n coordinates, In order to effect a discretiza-
tion an additional datum is required, namely a measure
A on S. Intuitively, XA and 5 come from the same source,
namely a probability measure p on F which expresses the
actual occurrence probabilities of configuration events in
a specific universe. In particular, in this case the natural
choice for A is m.(p), just as the natural choice for n is a
version of the conditional probability distribution of p with
respect to #. In our case, since A and # are assumed given,
we can simply define the measure p on E by p = An, ie.

o(A) = /s Mds)n(s,4), A€ €.

We will describe the resulting canonical discretization pro-
cedure in terms of this p. This procedure will result in
quasi-observers with countable configuration spaces. In-
deed this is the motivation for considering the more gen-
eral class of quasi-observers. It is unreasonable to expect
that any unbiased measure g on a countable space would
satisfy the measure zero requirement in condition 2 of the
observer definition.

For each rational § > 0, we can partition X and Y into
hypercubes whose edges have length 6, and whose vertices
have coordinates which are integer multiples of §. Let us
call the resulting sets of hypercubes X; and ¥5. # induces
a map %5: X5 — ¥5. Let Ej denote those hypercubes
of X5 such that p(E N Z) > 0. Let 85 = 75(Es}. As a
consequence of these definitions, if & € Es then p(g) > 0,
and if & € S5, A(8) > 0. We will define below a kernel
s (depending on the original kernel 5 and &) such that
05 = (X5, Y5, Es, S5, %5, 15) 18 a quasi-observer. We can
think of this quasi-observer O 28 » “S-discretization” of
0.

This, however, is not sufficient for our purposes. In
fact, we we would like to be able to compare the various
discretizations (at -different scales §} with each other and
the original observer. To this end, we seck a canonical way
of embedding the discrete spaces E; and S5 as subsets Ej
and S} of the original X and Y, in such a way that the
original perspective map 7 is retained as the perspective
map of the new quasi-observer O = (X, Y, Ej, §;, «,
5)-

To achieve this let us first consider how to embed S
in ¥. Given a hypercube 3 € 55, we may find its center



of mass with respect to the restriction of the measure A
to & This center of mass will not, in general, lie in 8,
but it is the natural punctual representative of § in Y.
Recalling that for & € S5, A(g) > 0, we may now define the
embedding §: 55 — Y by

ﬁwﬁmﬁskdﬁ)
with

AM@=%&$”WL§€%

(3)

That is, A, is the normalized restriction of A to the hyper-

cube §,

Similarly, we wish to define a center-of-mass embed-
ding for Es using appropriate measures on X. For pur-
poses of finding the center of mass of & in F;, it may seem
natural to use the normalization of the restriction of p to 2.
However, as we shall see below, a slightly different choice
of measure on € is much better suited to the task at hand.
To this end, let pz be the normalized restriction of p to g,
that is,

_rlCneg
pelC) ="

By construction of Ej, this yields a probability measure
on & It is straightforward to verify that since # is the reg-
ular conditional probability distribution (rcpd) of g with
respect to m, the measure p, also possesses an rcpd with
respect to x, a version of which is given by the formula

222991,

)
{which is defined up to a set of #.p,-measure zero in its
first argument, and which we may take to be a markovian
kernel off this zero-measure set). As usual, by composing
11z with the measure 7, p, we can reconstruct g;. We shall,
however, compose 5z with Ag(s) instead, defining a new
measure vz as

7z(3, de) =

Mﬂ:/mhmwynﬁﬁLae&,

where C is any measurable subset of & This is, by con-
gtruction, a probability measure supported on & which
gives the embedding of Es in X by the map « as follows:

a@:/em@%?é&.

We will denote the image a(Ej) in X by Ej and the
image #{Ss) in Y by 5j.

We now show that these embeddings & and 3 respect
the original map = in the following precise sense: the center
of masg of # projects to the center of mass of § = ms{e),
ie, for € € Ej, n(afe)) = B(ns{€)). This is satisfying,
as it allows us to use a consistent perspective map at all
levels of scale &, a fact which expresses a unification of the
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discretizations at the various scales in a manner which has
at least a chance of being Turing computable in special
cases of interest.

To see why x(a{€)) should equal 8{n;(£)), note that
since 7 is linear, we may take n inside the integral defining
afg), so that -

w(a(e)) = [ s(e)uelde)
L4
=/ A,(E}(ds)/na(s,de)w(e).
*{&) z
But #.(s,-) is supported on the fibre where 7(e) = s, so

that
w@@) = [ Ax@) - o [ nelodd
=8 (.'“'6 (E))

It is worth pointing out here, that had we used the full
measure g in defining the embedding « of Es, this result
would no$ have obtained.

It remains to discretize 1, i.e. we want to define n;, so
that we can speak of the quasi-observers Oy = (X, Y5, Ej,
85, 75, ns), or Of = (X, Y, Ef, S§,7,ns). The appropriate
discretization of 5 is then the kernel ns given by

m&&ﬂ:LMMﬂste&j@M

This is by construction a markovian kernel on 55 x €.
Here we are merely averaging the contributions from the
various fibres in the appropriate hypercubes, Note that we
can view 75 as a kernel on S} x £} if we wish, simply by
using the identifications « and 8.

In general, E; and S5 need not be recursively enu-
merable, and a fortiori the function f defined as above
using ns need not be recursive. Thus a discretization of a
non-Turing observer may not have a Turing simulation.

We now discuss the discretization procedure applied
to observers of the type of the structure-from-motion ob-
server O of §3. In that particular case {with the notation of
§3) F is the locus of points in R satisfying the equations
(3.2)-(3.9), and § is the image of E in R? by the pro-
jection r. Note that the polynomial equations defining ¥
have integer coefficients. Thus we can apply the following
general result:

Suppose Y = R", X = R™", and m: X — Y is pro-
Jjection onto a set of r of the coordinates of X. Suppose E
is the locus of zeroes in X of a finite set L of polynomial
equations (in the r + n variables of X} with integer coef-
ficients. Let S = w(E), let & be a rational number, and
let X5, Y5, Es, S5, w5 be as defined in the discretization
procedure above. Then

i. 85 is a recursively enumerable subset of Y.
ii. For all § € Y;, n~(§) N Ej is a recursive subset of
x;2{§) (and of X;).



This result is obtained by applying the Theorem of
Tarski on the decidability of polynomial inequalities (see,
e.g. Jacobson 1974); we omit the details here.

Condition (i} of the above result corresponds to the
first requirement for the Turing simulator of Q5 to exist.
Condition (ii) is a necessary condition for the function f
associated to the observer O; to be recursive, but it is
certainly not sufficient for this purpose; the real issue here
is the nature of n;. For example, even if there are only
finitely many points in #~1(3N Ej) for each §, and 4(3, ')
assigns equal probability to each of these points, condition
(ii) does not by itself imply that f is recursive.

In discussing the issue of the computability of f, we
must first of all recognize that even if the original observer
O had a very simple structure, ns may be more complex in
a certain sense than the original n. For exarmple, suppose
exactly n points of E lie over each point of §, and that »
assigns equal probability to each of these points. In well-
behaved situations, like the algebraic examples at hand,
the map Fs — S; induced by n5 will still be finite-to-one.
However, the number of points of E; mapping to a given
5 will vary considerably with & (but will always be at least
equal to n for small enough §). This variation corresponds
to the fact that the mean slope of E over § within 5 will
vary with 3 in general. This raises the question of whether
there is a canonical choice for the shapes of the regions in
the partition of X and Y leading to the discretization. For
example, in our case X = R", if we make a globally de-
fined and well-behaved coordinate change, the hypercubes
defined in terms of the new coordinate system will have
in general a different shape from the original hypercubes.
Can we choose a coordinate change so that the discretiza-
tion resulting from the hypercube decomposition in this
system will yield, for sufficiently small §, a map Es - S
of minimal complexity, for example, whose degree is the
same as that of the original F — S7

The rigorous analysis of this question is beyond the
scope of this paper. However, we can consider at top level
the consequences of the existence of such a coordinate sys-
tem by assuming, for the sake of discussion, that our origi-
nal ¢oordinate system has the desired property. Moreover,
to fix ideas, assume that the original map £ — S is n to
one. Thus we are assuming that for all sufficiently small §,
the maps E; — S5 are all n to one. Notice that this is 2
stability result for the discretizations: it says that a funda-
mental structural property of the discretization is eventu-
ally atable as § — 0, and in fact it stabilizes in such a way
that the corresponding structural property of the limiting
object (the observer O) is attained at a finite stage in the
discretization process.

In this way, the stable structure of the collection of
discretizations represents the structure of the original ob-
server. Not only the stabilities of the maps E; — 55, but
also those of the ns a8 § — 0 should in principle be included
in an analysis of this kind. In any event, these consider-
ations will lead to notions of effective simulation of an
observer (: a system of successively finer discretizations
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O3, converging to O, whose stable structural properties
(i.e., properties which hold for all sufficiently small 8} re-
flect the perceptually relevant properties of the original O.
Thus, the fundamental structure of O is accessible at finite
stages of discretization, in a manner which is independent
of scale, at least for sufficiently small scales. It seems clear
that in the absence of this kind of stability the Turing aim-
ulability of the individual O is an insufficient hypothesis
to justify a “perception as computation® viewpoint.

Once the notion of effective simulation is given a pre-
cise definition (which we have not done here) note that
its existence is a property of O and not of any single dis-
cretization of . The analysis of O to determine whether
it is effectively simulable in this sense, is an appropriate
level on which to address the real issues a propos of the
relationship between perception and computation.
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Appendix

The definition of observer given in this paper makes
use of several mathematical concepts from probability and
measure theory. In this appendix we collect basic termi-
nology and notation from these fields for the convenience
of the reader.

Let X be an arbitrary abstract space, namely a non-
empty set of elements called “points”. Points are often
denoted generically by z. A collection X of subsets of X is



called a o-algebra if it contains X itself and is closed un-
der the set operations of complementation and countable
union (and is therefore closed under countable intersection
as well). The pair {X, X) is called a measurable space and
any set A in X is called a measurable set. In the case that
X =R", the smallest o-algebra ¥ containing all open balls
ie called the Borel algebra of R*®. A map = from a mea-
surable space (X, X') to another measurable space (¥, ),
7: X — Y, is said to be measurable if n*(A) is in X for
each A in lf; this is indicated by writing m € X /¥, In this
case the set o(n) = {r~1(A)| 4 € ¥} is a subo-algebra of
X, called the o-algebra of . The simplest such real-valued
function is the so-called indicator function 14 of a subset
Ae X, defined by 14{z) =0ifz¢ Aand 1ifz € A.

A measure on the measurable space (X, X') is amap u
from X to R U {oo}, such that the measure of a countable
union of disjoints sets in I is the sum of their individ-
val measures. A property is said to hold u almost surely
(abbreviated p a.s.) or p almost everywhere (1 a.e.) if
it holds everywhere except at most on a set of u mea-
sure gero. A support of & measure is any measurable set
with the property that its complement has measure zero.
A probability measure is a measure ;£ whose range is the
closed interval [0, 1) and that satisfies u{X) = 1. A Dirac
measure is 2 measure supporfed on a single point. H v
and g are two measures defined on the same measurable
spaces, we say that 1 is absolutely continuous with respect
to p {written 1 < ) on a measurable set E if »{4) = 0
for every A C E with p{A) = 0. A measure class on
(X, X} s an equivalence class of measures on (X, X); the
equivalence relation is that of mutual absolute continuity.
Given a measure space (X, X, p) and a mapping p from
(X, X, p) to a measurable space (Y, ¥}, one can induce a
measure p,p on (Y, Y} by (p.u)(4) = u(p~'(4)). Then
psp is called the distribution of p with respect to p, or the
projection of u by p,

Let (X, X), (Y, ¥) be measurable spaces. A kernel on
X relative to Y, or a conditional distribution on X relative
to Y, is a mapping N:Y x X — R U {00}, such that

i. for every y in Y, the mapping A — Ny, A) is 2 mea-
sure on X which will often be denoted by N{y, -);

ii. for every A4 in X, the mapping y — Ny, A) is a
measurable function on ¥ which will often be denoted
by N{(-, A). N is called positive if its range is in |0, co]
and markovian. if it is positive and, for all y € Y,
N{y,X) = 1. If X = Y we say that N is a kernel on
X.

I pis a measureon ¥ and N is a kernelon ¥ x X,
we may define a measure on X denoted by uN and given
by the formula uN(B) = f,, u{dy)N(y,B), B X.

Suppose now that m: X -+ Y is a measurable mapping,
and that p is a probability measure on X. We say that a
kernel K on Y x X is a version of the regular conditional
probability distribution of p with respect to = (rcpd of p
with reapect to ) if
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i, For m.p-almost every y € Y, K(y, ) is supported on
the fibre 7= {y}, and K(y,n"{y}) = 1.

ii. For every A € X, p(4) = [y (m.p){dy) K (v, A), A €
X. That is, p = {m.p)K.






