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Abstract. The term biological motion has been coined 
by Johansson (1973) to refer to the ambulatory pat- 
terns of terrestrial bipeds and quadripeds. In this paper 
a computational theory of the visual perception of 
biological motion is proposed. The specific problem 
addressed is how the three dimensional structure and 
motions of animal limbs may be computed from the 
two dimensional motions of their projected images. It 
is noted that the limbs of animals typically do not 
move arbitrarily during ambulation. Rather, for 
anatomical reasons, they typically move in single 
planes for extended periods of time. This simple 
anatomical constraint is exploited as the basis for 
utilizing a "planarity assumption" in the interpretation 
of biological motion. The analysis proposed is: (1) 
divide the image into groups of two or three elements 
each; (2) test each group for pairwise-rigid planar 
motion; (3) combine the results from (2). Fundamental 
to the analysis are two "structure from planar motion" 
propositions. The first states that the structure and 
motion of two points rigidly linked and rotating in a 
plane is recoverable from three orthographic pro- 
jections. The second states that the structure and 
motion of three points forming two hinged rods con- 
strained to move in a plane is recoverable from two 
orthographic projections. The psychological relevance 
of the analysis and possible interactions with top down 
recognition processes are discussed. 

1. Introduction 

The ambulatory patterns of terrestrial and quadripeds 
have long born a unique significance for man among 
the variety of motions extant in his visual world. One's 
chances of survival in the neighborhood of a potential 
predator are presumably increased if one can dis- 
tinguish an aimless meandering from a stealthful stalk- 

ing or an outright run. More in line with our daily 
experience, we can quickly infer from the pendulum 
like motions of the limbs of a human whether he is 
walking, running, or performing some other motion. 
We can detect small deviations in gait patterns such as 
limps. Familiar individuals can often be recognized by 
the idiosyncracies of their gait. 

The term biological motion has been coined by 
Johansson (1973) to refer to this subset of visual 
motions. In this paper a computational theory t for the 
perception of biological motion is proposed. 

In developing this computational theory of biologi- 
cal motion we will also attempt to illustrate a research 
strategy that has been developed by investigators 
interested in providing computational descriptions of 
various aspects of human vision. The strategy may be 
schematized simply using six steps. 

First, human visual information processing is arti- 
ficially parcelled into provisional independent modules 
for research tractability 2. Next a "minimal information 
display", some highly impoverished visual display 
which clearly demonstrates a modular human visual 
ability, is devised. Third, once a minimal information 
display is found, the information available in the 
display is accurately and concisely described. Then the 
nature of the representations built by the visual system 
in consequence of being presented with the display is 

1 The term computational theory is used in the sense proposed by 
Marr and P oggio (1977). Marr and Poggio observe that to thorough- 
ly understand a complex information processing system involves 
obtaining descriptions of the system on three relatively independent 
levels. The top level, the level of the computational theory, describes 
what is being computed and for what purpose. The second level, that 
of the algorithm, specifies the nature of the particular algorithm used 
by the system in implementing the computational theory. The final 
level involves a description of the choice of hardware used in the 
system (e.g. neurons versus digital components) 
2 Of course these modules are but interim constructs to be later 
richly interconnected in an ideally completed computational model 
of human vision 
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Fig. la and b. A single frame of a typical biological motion movie 
showing a sideview of a person walking. In a the dots are shown and 
in b their proper connections illustrated 

specified precisely 3. Fifth, since the information avail- 
able in the display generally is insufficient in principle 
to arrive at a unique representation of the type pre- 
sumably built by the  visual system, plausible domain 
specific constraints about the nature of the world are 
sought which will allow the construction of such a 
unique representation. Finally an argument or con- 
structive proof is devised to show that it is in principle 
possible to build a unique representation of the type 
desired given the information available in the display 
along with the a priori constraints about the world. 

Once the steps of the computational analysis are 
completed, specific algorithms are considered for de- 
tailed implementations of the computational theory. 
The implementations provide existence proofs that the 
theory is internally consistent and also provide run- 
ning models which can be tested for their psychologi- 
cal reality. 

Fortunately the first two steps in building a com- 
putational theory for the perdeption of biological 
motion have already been completed by Johansson 
(1973, 1975). He first suggested that the perception of 
biological motion may be an isolable submodule of 
visual perception, a module able to build rich de- 
scriptions of the structure and motions of animals with" 
recourse only to the projected motions of a limited 
number of feature points. More specifically, he suggest- 

3 The nature of the ultimately desired representations is often 
inferred by noting what we see when shown the display. The desired 
representation may also be inferred in part by considerations of what 
in principle should be computed to reach certain goals. Marr and 
Nishihara (1978), for example, suggest what they call the 3-D model 

representation based on considerations of what would be an optimal 
representation for the purpose of object recognition 

ed that the perception of biological motion does not 
require any visual information about the form of the 
animal (i.e., the outline due to its occluding contour), 
its texture, or color. 

2. A Minimal Information Display For Biological 
Motion 

Johansson devised a minimal information display to 
demonstrate that indeed the visual system can utilize 
motion information, with no further cues, to infer the 
correct structure and motion of an animal and often 
even to recognize which animal is being observed. The 
display is constructed as follows. Small light bulbs are 
attached to a subject's body at each of its joints (e.g., 
ankle, knee, hip, shoulder, elbow, wrist, etc.). The 
subject is then placed in a dark room and filmed while 
performing various activities. Single frames of the 
resulting film look to naive observer's as merely pic- 
tures of a few randomly placed dots. But when the film 
is shown at normal speeds naive observers almost 
immediately (within 100-1000ms) see the dots as a 
person walking, running etc. (see Fig. 1). In fact, the 
perception is so powerful that it is impossible to force 
oneself to interpret the dots in any other manner. 

The imports of this demonstration are two-fold. 
The first is psychological. Humans have the perceptual 
ability to utilize the two dimensional motions of 
feature points to build accurate descriptions of the 
underlying multi-limbed object. Thus it is of interest to 
perceptual psychologists how humans perform this 
conveniently circumscribed task. The second import is 
on a more general computational level. Since humans 
perform this perceptual task so reliably and quickly it 
must in principle be possible to perform. What we have 
here, in essence, is an existence proof of that fact. 
Therefore we can be confident that if we carefully 
characterize the informational input and the per- 
ceptual representations which are built in consequence 
of that informational input, there exists a compu- 
tational procedure that maps from the former to the 
latter. Just such a characterization will be attempted 
next. 

3. Characterizing the Information Available 

Before a computational solution to the problem of 
biological motion is possible, one must make explicit 
the actual information available to the visual system 
(often called the "proximal stimulus") and the form of 
the ultimately desired representation. The desired re- 
presentation will also be called the target represen- 
tation. The actual information available to the visual 
system may be called the source representation. In this 



section we describe the source representation and in 
the next section the form of the target representation. 
The problem will be to find a mapping from the former 
to the latter. 

There appear to be at least four possible characteri- 
zations of the source representation (see Fig. 2). These 
four characterizations arise from decisions about the 
appropriate models for (a) the nature of the projection 
from the world onto the image plane and (b) the nature 
of the representation of the motion information. 
Although only one of the four characterizations will be 
used here, all four merit computational investigation. 

The available information will here be character- 
ized as a series of temporally successive orthographic 
snapshots 4. In each snapshot what is explicitly repre- 
sented is the two dimensional coordinates of the 
projections of the limb joints, such as the ankle, knee, 
and hip. Motion information is obtained by observing 
how the coordinates change from frame to frame. The 
actual coordinate system (e.g., Cartesian, polar coor- 
dinates, etc.) used to represent the two dimensional 
coordinates of the joints is not a concern at this point 
and will be left undetermined. 

4. Defining the Target Representation 

Two major considerations are involved when trying to 
specify a plausible target representation for the in- 
terpretation of biological motion. First, what do peo- 
ple perceive when presented with the minimal infor- 
mation display? Second, what information should be 
made explicit in the representation to facilitate attain- 
ing plausible goals of the observer? 

The argument from perception is simple. When 
shown a biological motion display one perceives the 
three dimensional structure and motion of the limbs. 
Presumably then one must represent the three dimen- 
sional structure and motion of the limbs. This suggests 
that three dimensional primitives are appropriate for 
the target representation. 

The computational argument is more involved. 
One plausible utilization of the target representation, 
though certainly not the only, is in shape recognition. 
Marr and Nishihara (1978) examine the problem of 
designing a representation that is in some sense op- 
timal for recognizing shapes. Based on represen- 
tational design issues and on several criteria for judg- 
ing the usefulness of a representation for shape re- 
cognition they suggest a three dimensional repre- 
sentation based on a shape's natural axes which they 
call a 3-D model. Marr and Vaina (1980) extend these 
arguments to the case of recognizing moving shapes. 

4 We assume that the correct correspondence of points in the 
successive snapshots has already been assigned. This problem is 
discussed in detail by Ullman (1979) and Marr (1981) 
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Fig. 2. Possible characterizations of the input information to the 
biological motion module. The choice taken here is orthographic 
(parallel) projection with discrete motion. The other three characte- 
rizations are also viable candidates which should be considered 

Based on the argument from perception and on the 
considerations raised by Marr and Nishihara we sug- 
gest that a plausible target representation is a three 
dimensional description of structure and motion akin 
to what Marr and Nishihara call a 3-D model. 
Specifically, what is to be computed is the length (in 
three dimensions) of each limb segment, the joint angle 
(in three dimensions) between each limb segment and 
both its successor and predecessor, and how these 
angles change over time. 

The computational problem may now be precisely 
formulated. We would like to find a mapping from a 
finite number of two dimensional orthographic pro- 
jections of the endpoints of the limbs of a moving 
animal to a three dimensional representation of the 
structure and motion of the animal which Marr and 
Nishihara have called a 3-D model. 

5. The Planarity Assumption 

Unfortunately there is no unique mapping from a 
series of frames of a biological motion movie to a 3-D 
model. The set of candidate three dimensional repre- 
sentations which may consistently be paired with the 
two dimensional source data is infinite. What we have 
is a fundamental ambiguity of interpretation. 

To make the nature of this ambifuity clear we 
introduce the notion of a pairwise-rigid structure (see 
Fig. 3). A pairwise-rigid structure is a set of points 
moving in space so that each point remains at a 
constant distance from at least one other point, and no 
three points are in a rigid configuration. Intuitively a 
pairwise-rigid structure is a set of rigid rods joined end 
to end in ball and socket joints with no three rods 
forming a triangle. Consequently arms and legs qualify 
as pairwise-rigid structures. 
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It can be shown that an infinite number of different 
pairwise-rigid structures can give rise to the same 
sequence of two dimensional projections regardless of 
the size of the sequence (Flinchbaugh, 1980). The 
ambiguity derives from the fact that there are an 
infinite number of rigid interpretations consistent with 
the motions of two distinct points in an image se- 
quence. Knowledge of the exact position and motion 
of one of the points does not resolve the ambiguity. 
Thus even if an interpretation is chosen for one pair of 
points in a pairwise-rigid structure, an infinity of 
alternatives still remains for every other pair of points 
in the structure. 

To overcome this ambiguity we need to incor- 
porate plausible constraints about the nature of the 
world into our interpretation scheme. More specifi- 
cally, what we would like is a plausible constraint on 
the motions of the limbs of animals because, as we have 
seen, unless the motion of a pairwise-rigid structure is 
constrained it cannot be given a unique interpretation. 

One candidate motion constraint is the rigidity 
constraint (Ullman, 1979). Ullman proves that "Given 
three distinct orthographic views of four non-coplanar 
points in a rigid configuration, the structure and 
motion compatible with the three views are uniquely 
determined." He then proposes an interpretation 
scheme based on a rigidity assumption which states: 

Any set of elements undergoing a 2-D transforma- 
tion which has a unique interpretation as a rigid body 
moving in space, should be interpreted as such a body 
in motion. 

The rigidity constraint is sufficient to give a unique 
interpretation if the object observed is moving rigidly. 
However the objects of interest here, namely animal 
limbs, violate the requirement of having four rigidly 
moving non-coplanar points. All rigidly connected 
points on a limb are not only coplanar, they are 
collinear. If a unique interpretation for biological 
motion is to be obtained, a constraint other than 
rigidity is required. 

We propose to exploit an anatomical constraint on 
the motions of most bipeds and quadripeds as the basis 
of an interpretation scheme for biological motion. 
Casual observation reveals that in general the limbs of 
an ambulating animal do not move about arbitrarily. 
Rather, for anatomical reasons, each limb tends to 
move approximately in a single plane for extended 
periods of time. That is, joints tend to allow rotation 
more or less about a line. As will be discussed in the 
next section, this anatomical constraint is sufficient to 
provide a unique interpretation for biological motion. 

Motivated by the observation of this anatomical 
constraint, the principle we propose for the interpre- 
tation of biological motion is what we shall call the 
planarity assumption :5 
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Fig. 3. This figure illustrates a pairwise-rigid structure constrained to 
move in one plane. This pairwise-rigid structure is composed of two 
r i n d  rods (though in general a pairwise-rigid structure can have 
anywhere from one to an infinity of rigid rods) with endpoints at A 
and B and a common endpoint at the joint  O. The only motion 
allowed is a change in the angle ~b, translation in the plane spanned 
by OA and OB, and rotation in that  plane. (In general pairwise-rigid 
structures are not subject to these motion constraints) 

Any set of elements undergoin 9 a 2-D transformation 
which has a unique interpretation as a pairwise-rigid 
structure moving in one plane, should be interpreted as 
such a body in motion. 

6. Interpreting Visual Motion 
Utilizing the Planarity Assumption 

The planarity assumption is employed in interpreting 
visual motion by looking at groups of two or three 
points and checking if they have a unique interpre- 
tation as a pairwise-rigid structure constrained to 
move in a plane. If not, no interpretation is assigned. If 
so, the planar interpretation is provisionally accepted 
as correct. 

As is the case with Ullman's rigidity assumption for 
the recovery of three dimensional structure and mo- 
tion, the planarity assumption must be shown to be 
immune to "false targets" and "phantom structures". A 
false target occurs when a collection of points that does 
not constitute a pairwise-rigid structure in planar 
motion gives rise to a series of orthographic pro- 

5 Although the most obvious application of the planarity assump- 
tion is in the interpretation of biological motion, we do not intend to 
imply that utilization of the assumption is restricted to the in- 
terpretation of biological motion. Rather we suggest it is a general 
principle for interpreting visual motion that, like the rigidity prin- 
ciple, is used by the visual system whenever appropriate 
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jections which are consistent with the planar in- 
terpretation. A phantom structure occurs when a 
collection of points that does constitute a pairwise- 
rigid structure in planar motion gives rise to a series of 
orthographic projections which are consistent with 
more than one planar interpretation. Ullman's proof 
(1977, Appendix 1) that false targets occur only with 
probability zero also holds for the planar case. The 
proof that there can be no phantom structures follows 
from the following "structure from planar motion" 
propositions. 

The Structure from Planar Motion Propositions 

Proposition 1. Given three distinct orthographic pro- 
jections of the two endpoints of a rigid rod which is 
constrained to rotate in a plane, the structure and motion 
compatible with the three views are uniquely 
determined 6. 

Proposition 2. Given two distinct orthographic projec- 
tions of the three endpoints of  two rigid rods linked in a 
hinge joint to form a pairwise-rigid structure which is 
constrained to move in one plane, the structure and 
motion compatible with the two views are uniquely 
determined. 

The proofs for these propositions are outlined in 
appendices one and two respectively. The proofs are 
constructive and thus provide algorithms for the com- 
putation of the structure and motion. 

The Interpretation Scheme 

The interpretation scheme based on these propositions 
is as follows. (1) Divide the image into groups of two or 
three elements each. The appropriate elements for the 
interpretation of biological motion seem to be the 
joints of the limbs of an animal, such as the ankle, 
knee, and hip. (2) Test each group for pairwise-rigid 
planar motion. For  groups of two elements 
Proposition 1 may be applied. For  groups o f  three 
elements Proposition 2 may be applied. (3) Combine 
the results from (2). 

Some Potential Objections to the Scheme 

Some potential objections to this scheme should be 
considered. First, it appears that the most this scheme 
can deliver is the three dimensional structure and 
motion of the limbs of an animal. The trunk typically 
violates both the rigidity assumption and the planarity 
assumption. This may or may not be a serious objec- 
tion. Two avenues are worth exploring on this pro- 
blem. First, perhaps further natural constraints in the 

6 Since orthographic projection is used the structure and motion 
are uniquely determined up to a reflection about the image plane 

spirit of the rigidity and planarity assumptions can be 
found to aid in the bottom up interpretation of trunk 
structure. In general, bot tom up avenues of interpre- 
tation should be exhausted before recourse to top 
down schemes is taken. With this consideration in 
mind a second interesting possibility exists. Perhaps 
the limb structure and motion obtained bottom up 
using the planarity assumption is sufficient to provide 
a unique index into a stored table of 3-D models of 
animals. The interpretation of biological motion 
would then involve an interaction of both bottom up 
and top down processes. The bottom up processes get 
the interpretation process off the ground and the top 
down processes complete the interpretation of those 
structures which resist bot tom up attack. 

Another objection to this scheme might be raised. 
The planarity assumption may work quite nicely when 
the object observed is performing some repetitive 
activity such as running, walking, or jogging. But how 
about more complicated activities? Johansson, for 
example, has minimal information displays of a danc- 
ing couple which We seem able to interpret, though 
with a bit more difficulty. A good portion of the time 
the couple is badly violating the planarity assumption 
when, for example, they spin or turn. 

This objection brings up several interesting points. 
First it should be noted that the planar interpretation 
scheme does not provide spurious interpretations 
when the planarity assumption is violated. The scheme 
can determine when the assumption is valid and when 
it is not 7. When it is invalid, no interpretation is made. 

To make the second point we divide the dancing 
sequence into three categories depending upon which 
assumptions the couple's movements obey. During 
part of the sequence, for example when the partners 
step toward or away from each other, their movements 
conform to the planarity assumption. During these 
movements the planarity scheme can uniquely de- 
termine the three dimensional structure and motions 
of the dancer's limbs. At other times the dancers spin 
with many of their limbs held in one position during 
the spin. Under these conditions the rigidity assump- 
tion holds and three dimensional structure may be 
computed. But there are definitely periods when the 
motion clearly violates both the rigidity and planarity 
assumptions. During these periods the bottom up 
processes proposed so far will simply not be able to 
give an interpretation. What could happen percep- 

7 This is a point that may have escaped some researchers who 
have objected to the use of elaborate assumptions to aid in the 
interpretation of the visual world. Generally, schemes based on 
elaborate assumptions are able to check in a bottom up manner 
whether or not their assumptions are valid. A second point is worth 
mentioning. The world is structured. Why shouldn't the visual 
system exploit that structure in interpreting the visual world? 
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tually during these periods? There are two possibi- 
lities. First, the visual system could utilize the struc- 
tural information obtained during periods obeying the 
planarity or rigidity assumptions to interpret the mo- 
tion during the periods of violation. It can be shown 
that if the three dimensional structure of a pairwise- 
rigid object is known, then its motion can be inferred 
uniquely even when the planarity constraint is vio- 
lated. The second possibility is simply that no in- 
terpretation is made during these periods of violation. 
From observing these dancing displays it appears that 
the latter possibility is what often happens. At the 
moment a dancer starts a spin, we momentarily lose 
the structure and motion only to regain it later during 
periods of planar motion. 

Linkin9 the Feature Points 

One advantage accrues to the planarity scheme some- 
what as a side effect. A persistent problem for in- 
vestigators of biological motion has been to get the 
correct two dimensional linking of the points. For 
example, how can we go about linking the ankle point 
to the knee and the knee to the hip without also 
introducing an incorrect link between the ankle and 
hip? Simple solutions like nearest neighbor connec- 
tions simply do not work. Rashid (1979) sets out 
specifically to compute the correct two dimensional 
links based on graph-theoretic cluster analysis of the 
two dimensional positions and velocities of the points. 
Webb (1980) starts his analysis of structure from 
biological motion by assuming that the correct two 
dimensional links are already known. The planarity 
scheme does not make the computation of the correct 
two dimensional linking of the points a specific goal. 
Instead the three dimensional structure and motion 
are computed and the two dimensional linkage then 
falls out incidentally. 

A simple example may help to see this. Suppose we 
have several views of just three feature points: the 
ankle, knee, and hip. We would like to determine if 
there is a unique interpretation of these points as a 
pairwise-rigid structure in planar motion using the 
second proposition that two views of three points is 
sufficient for our purpose. First we submit the three 
points to an implementation of Proposition 2 with the 
ankle tagged as the provisional pivot point. The 
routine returns with no interpretation. Next we tag the 
hip as the provisional joint of a pairwise-rigid structure 
in planar motion. Again no interpretation is returned. 
Finally we ask if there is an interpretation with the 
knee as the pivot point. The routine returns the three 
dimensional distance between the knee and hip, be- 
tween the knee and ankle, the motion of these limbs, 
and the plane of the motion. Consequently we know 

that this is the correct interpretation, and we know the 
correct three dimensional structure and motion. But 
note that we also know, as a side effect, there is no link 
between the ankle and hip feature points. 

A Psychophysical Prediction 

Some previous algorithms require that each limb be 
seen at least once in its full extension so that its 
projected length is the same as its length in three 
dimensions. The planarity scheme clearly predicts that 
it is not necessary to see any of the limbs in maximal 
extension to infer the correct structure and motion. 
The critical psychophysical experiment on this issue is 
trivial. One simply views a biological motion display 
where none of the limbs reaches maximal extension. 
When this is done the perception of the biological 
motion is not at all reduced. 

Summary 

The visual interpretation of biological motion has been 
investigated using a computational approach. 
Anatomical constraints on how the limbs of animals 
typically move during ambulation were exploited as 
the basis for an interpretation scheme based on an 
assumption of planar motion. Two "structure from 
planar motion" propositions were proved, providing 
explicit computational methods for implementing the 
planarity scheme s. 

Appendix 1. The Structure 
from Planar Motion Proposition for Two Points 

Proposition. Given three distinct orthographic projec- 
tions of the two endpoints of a rigid rod which is 
constrained to move in a plane, the structure and motion 
compatible with the three views are uniquely determined 
(up to a reflection about the image plane). 

Proof Let O, A 1, A 2, and A 3 be the endpoints of the 
rigid rod in frames one through three respectively (see 
Fig. 4). Let a i be the vector from O to A i in frame i. Let 
the coordinates of ai be (x~, y~, zl). Under orthographic 
projection the x and y coordinates of each vector are 
unaltered and the z coordinates are lost completely. 
Thus the problem consists of recovering the three 
unknown z coordinates. We first show that there are at 
most four solutions (i.e., two solutions plus their 
reflections) for the z coordinates given three views, and 
then show that there is a unique solution. 

8 An implementation of the planarity scheme in a simple local 
network is developed in Hoffman (1981) 



Note that in Fig. 4 the reference point 0 does not 
translate over the three views. This does not imply a 
loss of generality. Two types of translation are possi- 
ble. The first, translation in depth, is in principle 
unrecoverable under orthographic projection. The se- 
cond, translation parallel to the image plane, yields 
projected translations identical to the translation of 
the object in the world. Since these translations are 
trivially recovered, they are ignored in this analysis. 

From the fact that the length (in three dimensions, 
not in the image) of a is invariant over the three views 
we obtain the two equations 9 

][al II = I[a2][, (1) 

Ilal H = [la3 H. (2) 

Three vectors lie in a plane if and only if their triple 
scalar product is zero. From the planarity constraint 
we obtain the equation 1~ 

[ a l a z a  3] = 0 .  (3) 

Equations (1)-(3) may be expanded into poly- 
nomial equations in 
giving: 

2 2 q - k  I = 0  Z I -- Z 2 

2 2 _ } _ k 2  = 0  ' Z 1 - - Z  3 

k3Z 1 -Jr- k4Z 2 -~- k5Z 3 = O. 

terms of their z coordinates 

(4) 
(5) 
(6) 

The k's in these equations are expressions entirely 
in the x and y coordinates of the position vectors 11. 
Since these quantities are available directly from the 
orthographic projections they are lumped together 
into constants. The goal here is to solve these three 
equations for the three z coordinates. 

The solution space for the three z coordinates in 
three views can be visualized as the mutual intersection 
points of two hyperboloid sheets and one plane pass- 
ing through the origin. This is illustrated in Fig. 5. 

The simple fact that we have three equations and 
three unknown here does not mean that this system 
has a finite number of solutions. To ascertain if there 
are a finite number of solutions we apply the inverse 
function theorem. This theorem allows us to conclude 

9 The notation []a~[I is vector shorthand for the length of the 
vector a~. In terms of the components of a 1 this length may be 

2 2 2 expressed ~ +z~ 
10 The triple scalar product of three vectors ax, a2, a3 is indicated by 
the shorthand [ala2a3]. Taking the triple scalar product involves 
first taking the vector cross product of a z and a 3 and then taking the 
dot product of the resulting vector with a 1. Intuitively the triple 
scaiar product gives the volume of the parallelepiped formed by the 
vectors a l ,  a 2 ,  a n d  a 3 

_ 2 2 2 2 11 The actual expressions for the k's are k l - x ~ + y ~ - x 2 - y z ,  
__ 2 2 2 2 k2 --Xl q-Yl --x3--Y3, k3 =x2Y3--x3Y2, ]r = x 3 Y l  - -  x l Y 3 ,  

k 5 = x l y 2 - x 2 y x  
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Fig. 4. Geometry underlying the proof of Theorem 1 

Z 8 

Fig. 5. The solution space for the coordinates zl, z2, and z 3. The 
solution can be seen here to be the mutual intersection of two 
hyperboloid sheets rotated ninety degrees with respect to each other 
and a plane passing through the origin. The asymptotic lines of the 
hyperboloid sheets are always at forty five degrees with respect to the 
Zl axis. (The limbs of the hyperboloids on the other side of the ZzZ 3 
plane are not shown) 

that wherever the Jacobian of these equations is 
nonsingular the mapping defined by the equations is 
locally one to one and onto (i.e., a local diffeomor- 
phism). Consequently any roots at points where the 
Jacobian is nonsingular are isolated and not part of a 
continuum of solutions. 

The determinant of the Jacobian of (1)-(3) is: 

2z 1 - 2z 2 0 " 

2z 1 0 - 2z  3 

k3 k 4 k 5 
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This Jacobian has rank threC 2. If (4)-(6) involved 
transcendental functions the most we could conclude 
from this Jacobian test would be that the set of 
solutions was of measure zero. However (4)-(6) are 
polynomials. Consequently we can assert that the 
system of equations has but a finite set of solutions in 
general. By Bezout's theorem ~3 we know that the sum 
of the multiplicities of the solutions does not exceed the 
product of the degrees of the equations, which in this 
case is four. This can be seen geometrically from Fig. 5. 

We have shown that there are at most four real 
solutions given three views of the two points. These 
four solutions come in two pairs, with the two mem- 
bers of a given pair being the reflections about the 
image plane of each other. 

We now prove the solution is unique up to a 
reflection ~4. Solve (6) for z 1, substitute into (4) and (5) 
and simplify. 

+ + 2k ksz z  + klk  = 0 ,  (7) 

2 2 2 2 2 2k4ksz2z3+k2k2=O. (8) k,,z2 + (ks - k3)z 3 + 

Multiply (7) by k 2 and (8) by kp Subtract (8) from (7). 
Divide the result by z 2 and let x = Zz/Z 3. 

[kz(k ~ -  k 2) -  k~kl]x 2 + 2k4ks(k2 - kl)X 

+ [kzk ~ -  k~(k~- k32)] = 0. (9) 

Solve (9) for x. 

x =  - b +  ~ (10) 
2a 

Where a=k2(k ~ 2 - k 3 ) - k l k  2, b=2k4ks(k2-k~),  and 
c=kzk2-k~(k~-k2) .  

Before continuing we establish one claim. 

Claim. Provided the plane of rotation of the rod is not 
parallel to the image plane and that none of the three 
projected images of the rod are collinear, at most one of 
the solutions for x is valid. 

Proof Let the length of the rod be Q. Let the projected 
lengths of the rod in views 2 and 3 be, respectively, r 2 

12 The actual expressions for the k's in terms o fx ' s  and y's must  be 
used when determining the rank of the Jacobian. Otherwise hidden 
dependencies among  the variables may escape notice. One can find 
all the degenerate cases (i.e., cases when the Jacobian drops rank and 
no unique solution is possible) by factoring the determinant of the 
Jacobian and setting the factors equal to zero 
13 For a nontechnical discussion of the inverse function theorem 
and Bezout's theorem see Richards et al. (1981) 
14 Horn  (1981, personal communication) first proved uniqueness 
of the solution. He noted that  the two points in planar mot ion trace 
out  a circle in space. This circle maps  into an ellipse with known 
center under orthographic projection. Three points on the ellipse 
determine its three parameters - the major  and minor  axes, and the 
angle of the major axis. He made a similar construction for the case 
of two views of three points 

2 2 and r 3. Then z 2 = - v ~  + 02]/TfT~-r~2'2 and z 3 _+ 0]/72Zr3. 
Consequently 

x = z2 = + / 0 2 -  r2 
(11) 

z3 - V -4 

Thus if x has two solutions, then these two so- 
lutions must have the same absolute value and op- 
posite sign if both are to be valid. From (10) we 
conclude that x will have two valid solutions only 
when 

- b + ~ 2 a  - _  {.- b -  ~ ] 2 a a  ] (12) 

which is true only when b = 0. From the equation for b 
in (10) we see this implies the following degenerate 
conditions: k 4 =0,  k 5 = 0, k 2 = k 1. k 4 c a n  be interpreted 
as the dot product of the projected image of the rod in 
view three with a vector orthogonal to the projected 
image of the rod in view one. k s can be interpreted as 
the dot product of the projected image of the rod in 
view one with a vector orthogonal to the projected 
image of the rod in view two. Thus k,  or k 5 is zero only 
if the appropriate projected images of the rod are 
collinear, kl = k 2 implies that r 2 -= r 3. This can happen 
if the plane of rotation of the rod is parallel to the 
image plane or if the projected images in view two and 
three are collinear. Thus, except for these degenerate 
conditions, x must have a unique valid 
solution. Q.E.D. 

Substitute z3x for z 2 in (7). This can be done since 
x = z2/z 3. Note that x is now one of two known values. 

2 2 2 2 2 
--  k3)X z 3 + k s z  3 + 2k4ksxz ~ + k l k  ~ = 0 .  (13) 

The solution for z 3 is 

1/ 
z3 = +- V(k~ , -  k~)x 2 + k~ + 2k4ksx" (14) 

The solutions for z 2 and z, follow immediately: 

Z2=XZ3, Z1-.~. ~ .  By the claim we know that 
only one of the two values of x is valid, except in 
degenerate cases. Thus the solutions for z~, z 2, z 3 are 
unique up to a reflection. 

In practice we can find solutions for the z's using 
both values of x and reject the pair of solutions which 
is either imaginary or which violates the conditions 
established in the claim. Q.E.D. 

Appendix 2. The Structure 
from Planar Motion Proposition for Three Points 

Proposition. Given two distinct orthographic projections 
of the three endpoints of two rigid rods linked to form a 
pairwise-rigid structure which is constrained to move in a 



plane, the structure and motion compatible with the two 
views are uniquely determined (up to a reflection about 
the image plane). 

Outline of Proof Let O, A i, Bi be the endpoints of the 
two rigid rods (which form a joint at O) in frame i 
where i -- 1, 2 (see Fig. 6). Let a~ be the vector from O to 
A i and b~ be the vector from O to B~. Let the coor- 
dinates of a~ be (Gi, Y,~, G~). Let the coordinates of b~ be 
(Xbi, Ybi, Zbi)" Under orthographic projection the x and y 
coordinates of each vector remain unaltered and the z 
coordinates are lost completely. Thus the problem 
consists of recovering the four unknown coordinates 
z~i and Zb~. We first show that there are but a finite 
number of solutions for the z coordinates given only 
two views, and then show that the solution is actually 
unique up to a reflection. 

From the fact that the lengths (in three dimensions, 
not in the image) of a and b remain invariant over the 
two views we obtain the two equations 15 

Ilall I = I[a2l[, (1) 

[Ib~ II = lib2 II. (2) 
Three vectors lie in a plane if and only if their 

triple scalar product is zero. From the planarity con- 
straint we obtain the two equations: 

[ -a lbla2]  = 0 ,  (3) 

[a~b~b2] = 0 ,  (4) 

Equations (1)-(4) may be expanded into poly- 
nomial equations in terms of their four z coordinates 
giving: 

2 2 q_kl = 0  (5) Zal -- Za2 

z~ - z~2 + k 2 = 0, (6) 

k3Zal -t- k4Zbl q- k5Za2 = 0, (7) 

k6Z al -}-k7Zbl -1-ksZb2 = O . (8) 

The k's in these equations are expressions entirely 
in the x and y coordinates of the position vectors. Since 
these quantities are available directly from the ortho- 
graphic projections they are lumped together into 
constants. The goal here is to solve these four equa- 
tions for the four z coordinates. 

The simple fact that there are four equations and 
four unknowns does not imply that this system has a 
finite number of solutions. To ascertain if there are a 
finite number of solutions we apply the inverse func- 
tion theorem. This theorem lets us conclude that 
wherever the Jacobian of these equations is non- 
singular the mapping defined by the equations is 
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locally one to one and onto (i.e., a local diffeomor- 
phism). This means that any roots at points where the 
Jacobian is nonsingular are isolated and not part  of a 
continuum of solutions. 

The determinant 
equations is : 

2zal - 2 Z a 2  0 0 

0 0 2Zbl -- 2Zb2 

k 3 k 5 k 4 0 

k 6 0 k 7 k s 

of the Jacobian of these four 

This Jacobian has rank four. If (5)-(8) involved 
transcendental functions the most we could conclude 
from this Jacobian test would be that the set of 
solutions was at most of measure zero. However (5)-(8) 
are polynomials. Consequently we can assert that the 
system of equations has but a finite set of solutions in 
general. By Bezout's theorem 16 we know that the sum 
of the multiplicities of the ~olutions does not exceed the 
product of the degrees of the equations, which in this 
case is four. 

We have shown that there are at most  four real 
solutions given two views of the three points. These 
four solutions come in two pairs, with the two mem- 
bers of a given pair being the reflections about  the 
image plane of each other. The proof  that the solution 
is unique is almost identical to that given in appendix 
one and will not be reiterated here. 
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