
Inferring 3D structure

from three points in rigid motion

B. M. Bennett

Department of Mathematics, University of California,

Irvine, California 92717

D. D. Hoffman

Department of Cognitive Science, University of California,

Irvine, California 92717

We prove the following: Given four (or more) orthographic views of three points then (a) the

views almost surely have no rigid interpretation but (b) if they do then they almost surely have

at most thirty-two rigid interpretations. Part (a) means that the measure of “false targets”,

viz., the measure of nonrigid motions that project to views having rigid interpretations, is

zero. Part (b) means that rigid interpretations, when they exist, are not unique. Uniqueness of

interpretation can be obtained if a point is added, but not if views are added. Our proof relies

on an upper semicontinuity theorem for proper mappings of complex algebraic varieties. We

note some psychophysical motivations of the theory.
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1. INTRODUCTION

Although our retinal images are two dimensional, we see the world in three dimensions.

Among the sources of information used by human vision to infer the third dimension is

visual motion. A large body of theoretical work1−19 and psychophysical work 20−32 has

explored how human vision (or robotic vision systems) might use visual motion to infer

depth.

The obvious problem to be overcome in such an inference is the infinite ambiguity of

retinal images, whether dynamic or static. Given any collection of images, there are always

an uncountable collection of three-dimensional interpretations whose projections onto the

retina would lead to the given images16. Thus various constraints must be employed to

restrict the possible interpretations to a few, or to one.

Among the constraints examined in the literature are rigid motion1,4,7,8,12,14,17, rigid

fixed-axis motion10,19, nonrigid fixed-axis motion2, planar rigid motion10, rigid motion

about a vertical axis15, certain bending motions12, and rigid motion that conserves angu-

lar momentum3. This latter constraint led to the following theorem: Given three distinct

orthographic projections of three points, (a) the projections are almost surely incompatible

with any three-dimensional interpretation in which the points move rigidly and conserve an-

gular momentum, but (b) if the projections are compatible with such an interpretation then,

generically, they are compatible with at most two such interpretations.

It was our desire to submit this theorem to psychophysical tests of its psychological

plausibility that led to the result presented in this paper. We needed to show human subjects

displays of three points undergoing rigid motion that conserves angular momentum, in order

to find out if subjects can infer properties of the inertia tensor from such displays, or simply

to find out if they could discriminate such displays from displays showing more general rigid

motions of three points. We discovered that there are no theorems specifying what can be

inferred from the motions of just three points using the constraint of rigidity alone; thus there
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was no theoretical work on which we could base “catch” trials consisting of three points

undergoing purely rigid motion. The well-known result of Ullman17 is close to what we

needed, but Ullman’s theorem requires four noncoplanar points, whereas we needed a result

involving only three points. We had reported elsewhere10 that three orthographic views

of three points are always consistent with sixty four rigid interpretations, but this theorem

was not sufficient for our purposes because it does not specify conditions under which false

targets (nonrigid motions that project to views having rigid interpretations) are rare. Instead

it implies that with three views of three points false targets are ubiquitous, making three views

of three points useless for inferences of rigid structures. Thus we were forced to investigate

whether or not any reasonable inferences of rigid structure could be made from more than

three views of three points. In the next section we describe what we found.

2. RIGIDITY THEOREM

In this section we prove the following theorem.

Theorem 1. Given four (or more) orthographic views of three points then (a) the views

almost surely have no rigid interpretation but (b) if they do then they almost surely have at

most thirty two rigid interpretations.

Proof. Without loss of generality, we take one of the three points to be the origin of an x,

y, z coordinate system with corresponding unit vectors êx, êy , and êz . The positions of the

other two points are represented in this coordinate system: the position of point m in view i

is the vector am,i = xm,iêx +ym,iêy + zm,iêz . The condition that the three points move rigidly
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over four views, i.e., that they maintain constant interpoint distances in space, is given by the

following nine equations:

am,i · an,i = am,j · an,j , 1 ≤ m ≤ n ≤ 2, 1 ≤ i ≤ 3, j = i + 1. (2)

The six diagonal equations (m = n) state that the lengths of the position vectors remain

constant over the views. The three off-diagonal equations (m �= n) state that the angle

between the two position vectors remains constant over the views. Equations (2) define an

algebraic variety E embedded in a Euclidean space X = {am,i:m = 1, 2; i = 1, 2, 3, 4} = R24.

We take the image plane to be the x, y plane, with the z axis pointing along the line of

sight. The orthographic projection onto the image plane of the position vector am,i is the

vector bm,i = xm,iêx + ym,iêy . Thus

am,i = bm,i + zm,iêz. (3)

Substituting (3) into (2) gives the nine quadratic equations

zm,izn,i − zm,jzn,j + bm,i ·bn,i −bm,j ·bn,j = 0, 1 ≤ m ≤ n ≤ 2, 1 ≤ i ≤ 3, j = i + 1,

(4)

where the bm,i are known from the images and the eight zm,i must be found as the solutions to

(4). Of course the number of such solutions depends on the “parameters” bm,i. The collection

of possible parameters forms a Euclidean space Y = {bm,i:m = 1, 2; i = 1, 2, 3, 4} = R16.

Part (a) of Theorem 1 states that the collection S ⊂ Y of parameters for which (4) has at least

one solution for the zm,i is a set of measure zero for the Lebesgue measure on Y .

The spaces X and Y are naturally related by a projection map π:X → Y given by

{am,i} �→ {bm,i}. Using π, we can characterize the collection of parameters S ⊂ Y as follows:

For y ∈ Y − S the set π−1(y) ∩E, i.e., the set of real solutions to (4) for the zm,i, is empty; for

y ∈ S the set π−1(y)∩E is nonempty. From this it is clear that π(E) = S. The situation so far
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can be summarized in the following diagram.

all 3D motions = X = R24 ⊃ E = rigid 3D motions


�π



�π

all 2D displays = Y = R16 ⊃ S = ‘rigid’ 2D displays

(5)

To prove part (a) of Theorem 1, i.e., to prove that S has Lebesgue measure zero in Y ,

we use the following key fact. Let YC = C16 be the complexification of Y , and EC the

complexification of E. It is shown elsewhere3 that varieties EC which arise as complex

solution spaces of systems of equations of the type of (2) have the following property: their

projective completion in the zm,i variables has no more points than EC itself. Thus

(†) EC is a family of projective varieties parametrized by YC.

Let f :YC → N be the function which assigns to each set of parameters y ∈ YC the correspond-

ing number of real and complex solutions in EC, counted with multiplicities, to equations

(4). Because of the property (†) above, the function f is upper semicontinuous in the Zariski

topology3. In the Zariski topology the closed sets are closed algebraic varieties, i.e., solution

sets to systems of polynomial equations. To say that f is upper semicontinuous in the Zariski

topology is to say that if at some point y ∈ YC the function f takes the value n, then the locus

of points on which f takes values greater than n is a Zariski closed set. Our interest here in

these sets is that they have positive codimension in YC and therefore are of Lebesgue measure

zero in YC. Thus if we can produce a point y ∈ YC for which f has the value zero, then the

set SC of points in YC for which f has a value greater than zero is of Lebesgue measure zero

in YC. This will imply that the set S of points in Y for which f has a value greater than zero

is also of Lebesgue measure zero in Y , proving part (a) of Theorem 1.

It has been shown elsewhere3 that the six equations of (4) corresponding to the first three

views (i.e., for which 1 ≤ i ≤ 2) have, for generic parameters, precisely sixty four complex

affine solutions for the six zm,i, (m = 1, 2; i = 1, 2, 3). Thus to check that equations (4) have

no solutions at all for some parameter point y ∈ YC we can do the following: (1) Find all

sixty four solutions to those equations for which 1 ≤ i ≤ 2, (2) substitute these solutions into
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the two remaining diagonal equations to compute the corresponding values for z1,4 and z2,4,

(3) substitute these values into the final off diagonal equation to see if it is satisfied, and (4)

if the final off diagonal equation is never satisfied we are done. We have done this with the

help of Mathematica and found that for a random choice of parameters bm,i the equations

(4) have no solutions when checked in this manner. Thus, since f is upper semicontinuous,

we conclude that SC has measure zero in YC.

To finish the proof of part (a) of Theorem 1 we must note that SC having measure zero

in YC implies that S has measure zero in Y . The technical arguments for this are available

elsewhere10.

We now turn to the proof of part (b) of Theorem 1. We have shown already that S has

measure zero in Y . Part (b) states that the function f , restricted to S, generically takes a value

of at most thirty two. We can once again use the upper semicontinuity of f , together with a

test point, to prove this claim. The idea is to find a point of SC for which the equations (4)

have thirty two solutions, real or complex, for the zm,i. By the upper semicontinuity of f this

then shows that, except on a Zariski closed proper subset of SC, the function f takes a value

of at most thirty two. Since this Zariski closed proper subset is of measure zero within SC,

we conclude that generically on SC there are at most thirty two solutions to equations (4).

This will imply that generically on S there are at most thirty two solutions.

There is one important technical issue to be considered before taking this approach. That

issue is the irreducibility of SC. Recall that an algebraic variety W is reducible if it can be

expressed as a union of distinct subcomponents where no subcomponent is contained in any

other and where each component is itself the zero set of a distinct set of polynomials. If SC

is reducible, then we must check a test point on each irreducible component of SC. This

issue did not arise in our proof of part (a) because the entire space YC = C16 is irreducible.

Fortunately SC is irreducible. The irreducibility of SC follows from the irreducibility of

EC and the fact that SC = π(EC). To see that EC is irreducible we first note that EC is
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isomorphic to C6 × SO(3, C)3; in fact {am,i} ∈ EC iff there exists γ1, γ2, γ3 ∈ SO(3, C) such

that am,k+1 = γkam,1, k = 1, 2, 3. Thus EC is a product of irreducible varieties and is therefore

irreducible.

Hence to show that generically on SC the number of solutions to equations (4) is at most

thirty two, it suffices tofind a single test point in SC for which these equations have thirty two

solutions. This we have done, simply by taking three points in R3, applying three different

elements of SO(3, R) (other than the identity) to the points, and projecting the results onto

the x, y plane to obtain a point in SC.

Two issues remain before the proof of part (b) is complete. First we must be concerned

with the multiplicity of each of the thirty two solutions obtained in the manner just described.

If we want to use the upper semicontinuity of f to show that generically on SC there are at

most thirty two solutions then we need to show that each of the thirty two solutions we

obtain for a particular test point has multiplicity one; it is the number of solutions counted

with multiplicities, and not just the number of solutions alone, that is upper semicontinuous.

One can check the multiplicities of the solutions in the obvious way: check the Jacobian

of the equations (4) when evaluated at each of the thirty two solutions to see that each is

nonsingular. This we have done with the help of Mathematica.

We have shown that generically on SC the function f is at most thirty two. The final

issue in the proof of part (b) is to note that this implies that generically on S the function f is

also at most thirty two. The technical arguments for this are available elsewhere10.

3. OBSERVER REPRESENTATION

Theorem 1 defines a class of visual inferences. The premises for these inferences are four
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views of three points; the conclusions describe 3D structures in rigid motion. The abstract

form of these inferences can be described as follows. The set of possible premises is the set

Y = R16 of all possible three views of two vectors in the plane. The set of possible conclusions

is the set X = R24 of all possible 3D interpretations for elements of Y . Those interpretations

satisfying the rigidity constraint form a Lebesgue measure zero subset E of X . The conclu-

sions X and premises Y are related by a function π given by (xij , yij , zij) �→ (xij , yij), and

for each premise y ∈ Y the set π−1({y}) is the set of all 3D conclusions compatible with the

premise y. Those premises y which have at least one compatible conclusion that satisfies the

rigidity constraint form a subset S of Y . Clearly S = π(E). Moreover, S has Lebesgue mea-

sure zero in Y . Thus for most y ∈ Y none of the compatible conclusions satisfy the rigidity

constraint, and hence the probability of false targets for this inference is zero. For premises

s ∈ S the number of compatible rigid interpretations is, generically, thirty two. Therefore

the conclusion associated to such an s is best thought of as a probability measure, say ηs,

supported on these thirty two rigid interpretations. The weight given to a particular inter-

pretation by this measure can be thought of as the frequency with which that interpretation

is perceived, given that one is viewing the display s.

Thus the inference of structure from rigid motion examined here is specified by a six-tuple

(X, Y, E, S, π, η). This six-tuple precisely satisfies the definition of observer given in observer

theory33,34. According to the observer thesis33,34 every perceptual capacity, whether instanti-

ated in neurons or in silicon, can be described as an instance of a single formal structure, viz.,

the observer:

Definition 6. An observer is a six-tuple (X, Y, E, S, π, η) where

1. X and Y are measurable spaces. E is an event of X . S is an event of Y . Points of X and

Y are measurable.

2. π is a measurable map from X onto Y such that π(E) = S.

3. η is a markovian kernel that associates to each point s of S a probability measure on E
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which gives the set π−1(s) ∩ E a probability of one.

The present theory of structure from rigid motion is a specific example in support of the

observer thesis.
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