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Abstract 
Bennett. B.M., Hoffman, D.D.. and Prakash, C., 1991. Unity of perception. Cognition. 38: 
295-334. 

Perceptual scientists have recently enjoyed success in constructing mathematical 
theories for specific perceptual capacities, capacities srrch as stereovision, audi- 
tory localization, and color perception. Analysis of these theories suggests that 
they all share a common mathematical structure. If this is true, the elucidation 
of this structure, the study of its properties, the derivation of its consequences, 
and the empirical testing of its predictions are promising directions for percep- 
tual research. 

We consider a candidate for the common strldcture, a candidate called an 
“observer”. Obsesvess, in essence, perform inferences; each observer has a 
characteristic class of perceptual premises, a chasacteristic class of perceptual 
conclusions, and its own frlnctional relationship between these premises and 
conclusions. If observers indeed capture the structure common to perceptual 
capacities, then each capacity, regardless of its modality or manner of instanti- 
ation, can be described as some observer. 

In this paper we develop the definition of an obsesver. We first consider two 
examples of perceptual capacities: the measurement of visual motion, and the 
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perception of depth from visunl motion. In ench case, we review n formal 
theory of the capacity and abstract its strr~ctwwl essence. From this essence we 
construct the definition of observer. We then exercise the definition in discrts- 
sions of transdirction, perceptual illusions, perceptual ruKert0irtty. regidwizn- 
tion theory, the cognitive perletrnbility of perception, crnd the theory neutrdity 
of o bserw tion . 

Multidisciplinarv investigations of vision and other modalities have led to 
rigorous theories for several pe rceptual capacities. We now have theories of 
stereovision, for example, that are mathematically precise and that are, in 
some cases, implemented on computers. Similar advances are numerous, 
among them theories explicating the perception of visual motion, shading, 
texture, color, edges, the location of sound sources, and the grammatical 
structure of sentences. 

It is natural to follow success, to continue to study specific capacities and 
to construct mathematical theories that explain them. Many capacities have 
yet to be explained, and there are more. presumably, that have yet to be 
discovered. 

It is also natural, following the lead of other sciences, to seek a unifying 
theory, one that displays the structure common to all capacities, unencum- 
bered with the details specific to particular capacities. Theoretical physicists, 
for instance, consistently seek unified theories: their efforts have often been 
rewarding, leading today to field theories and string theories of broad scope. 
And in computer science, Turing’s formalism provides a unified conception 
of computation, underpinning the fields of automata theory and computa- 
tional complexity. Can we not as well, in our study of perception, construct 
a formal theory that unifies capacities as diverse as stereovision, color percep- 
tion, edge detection, and auditory localization? If so, then we stand to reap 
the same benefits for the science of perception that unifying formalisms have 
provided for other sciences. 

In this paper we consider a candidate for the unified description of percep- 
tual capacities. This candidate is called an observer, and the attendant theory 
observer theory (Bennett, Hoffman, & Prakash, 1987, 1989; Hoffman & Ben- 
nett, 1988). Observers, as we shall see, perform inferences; each has its own 
class of accessible premises, its own class of possible conclusions, and its own 
functional relationship between these premises and conclusions. 

If observers indeed unify the descriptions of all capacities, then one can in 
principle describe each capacity (or,, more precisely, each sufficiently rigorous 



and comprehensive theory of a capacity) as an observer. One can state this 
hypothesis as the following “observer thesis”: 

Each perceptual capacity can be described as an observer. 

This thesis cannot be proven, but it can be disconfirmed by counterexamples 
and is, therefore, an empirical thesis. If, for instance, a perceptual capacity 
were found whose mathematical description could not be cast as an observer, 
then the observer thesis would be disconfirmed. In this respect the observer 
thesis resembles Church’s thesis: the thesis that all computations can be de- 
scribed as Turing machines. Church’s thesis, too, cannot be proven, but it 
can be disconfirmed by counterexample (though. in fact. no counterexamples 
have been found). 

We now discuss these points in more detail, focusing on the definition of 
observer rather than diffusely covering the whole of observer theory. We 
begin by reviewing two examples from vision: the measurement of motion, 
and the perception of depth from motion. With theories of these capacities 
as background, we develop the definition of observer and exercise it in discus- 
sions of noise, illusions, transduction, regularization, the cognitive penetrabil- 
ity of perception, and the theory ladenness of observation. We include an 
Appendix reviewing concepts from measure theory that appear in the defi- 
nition of observer. 

epth from visual motion 

Imagine making a videotape in which each frame is black except for a few 
randomly placed dots. If you play the tape, you will perceive the dots to be 
moving about randomly in the plane of the television screen. Suppose, how- 
ever, that you create the videotape as follows: you attach several small lights 
to a rigid object - say to a household globe of the earth that is painted black 
- turn out the room lights, start the globe spinning, and then videotape. In 
this case, each frame of the tape is again black except for a few dots. If you 
view any single frame in “freeze frame” mode you will see the dots lying flat, 
in the plane of the screen: but if you play the tape at normal speed, you will 
perceive the dots moving, this time not in the plane of the screen, but in three 
dimensions. (Indeed, even a static frame can give some impression of depth 
due to foreshortening in projection, but this impression is greatly enhanced 
once motion is added.) Given enough lights on the globe, you will perceive 
a rotating sphere with dots attached, even though the globe itself, being 
painted black, is not visible. And if you use any rigid shape other than a 
sphere to create the tape, you will, in general, see the dots lying on that 
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The first is the concept of 
to two. Recall that the orthog 
say with coordinates (s,_L z). i 
is simply forgotten. Such an ort 
orthographic *‘view*‘. 

we can state the proposition: 

Given three distinct orthographic views iof t 
there are, generically. two RFA interpretatkns c 
However. given three distinct orthographic vieivs 
going RFA motion. there are, generically. no 
ible with the views. 

The proof of this proposition is constructive: there is an effective procedure 
to determine if a given set of views has any RFA interpretations. and, if it 
does, to compute the two RFA interpretations. oreover, this proposition 
provides a strateev for inferring 3D structure and motion from 2D views. A 
prentise for th’e in&xence is just three views of three points, that is, nine points 
in the plane, since this is the sensory information that the proposition assumes 
is given. To specify a premise, then. one needs 18 real numbers (nine points 
with two real coordinates each). Put simply, a premise is a point 
(M-dimensional reai Euclidean space), and, conversely, any point of 
possible mise. Although it might appear that by representing premises as 
points 0 ’ we have thrown out important information, for example, about 
the groupings into views, in fact there is no information loss since a point of 

‘The literature on structure from motion is now quite extensive. Among the theoretical treatments are 
Bennett. Hoffman. Nicola. and Prakash. 1989: Faugeras and Maybank, 1989: Giblin and Weiss. 1987: 
Grzywacz and Hildreth. 1987: Hoffman and Bennett. 1985: Hoffman and Flinchbaugh. 1982: Horn, 1985; 
Huang and Lee. 1989: Koenderink and van Doorn. 1975. 1986: Kruppa. 1913; Longuet-Higgins and Prazdny, 
1980: Richards. 1983: Ullman, 1979. 198-i: Uttal. 1987: Waxman and Wohn. 1987. 
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mises” and denote them by S. 

For such premises a natural conclusion, indeed the conclusion often drawn 
by human vision, is that the points in fact undergo RFA motion. In this case, 
as we noted before, there are two possible RFA interpretations and these 
can be computed explicitly. IIuman vision seems to alternate between the 
two RFA interpretations; a subject sees one interpretation for a while, then 
spontaneously flips to the other. Uninitiated subjects sometimes ask if the 
experimenter surreptitiously altered the display. 

In the context of the proposition, a 3D interpretation (whether RFA or 
not) is three sets of three points in three dimensions, that is, nine points in 
three space. To specify an interpretation, then, requires 27 real numbers 
(nine points . h three real coordinates each). Put simply, a 3D interpretation 
is a point 0 “. Therefore we call R2' the “interpretation space” for this 
inference. We sometimes denote it, for convenience, by X. 

Of course, most 3D interpretations in R" are not RFA interpretations. 
Those that are we call the “distinguished interpretations” and denote them 
by E.’ According to the proposition, almost every distinguished premise has 

‘It happens that the constraint of rigid fixed-axis motion can be precisely captured by Al system of seven 
polynomial equations on R” (Hoffman & Bennett, 1986). For almost all points of R” these polynomials have 
nonzero values. However, for a small subset of R.” these polynomials all simultaneously vanish: this is the 
subset of distinguislrsd interpretations, E. By the way. here lies the answer to a question that may have arisen 
about X: Why should we let X, the space of possible interpretations, be unbounded? In so doing, aren’t we 
including interpretations in which the points are, say, light years apart and therefore not, in any practical 
sense. “possible”? The answer to the second question is certainly “yes”. many interpretations in X involve 
structures so large as to be. in fact, visually imperceptible. The answer to the first question is that we are here 
considering a competence theory of structure from motion, not a performnrzce theory. This competence theory 
uses the RFA constraint, and the equations defining this constraint have a natural setting - the entire un- 
bounded space R”. Only after we have understood the theory in this general setting should we proceed to 
consider performance approximations. (The competence/performance distinction in observer theory is discus- 
sed briefly in footnote 10.) 



exactly two distinguished (i.e., RFA) interpretations compatible with it. This 
suggests that, for a distinguished premise, the conclusion should be a proba- 
bility measure which gives a nonzero weight only to these two interpretations. 
If, for instance, the two interpretations are deemed equally likely, then the 
probabilitv measure should give each a weight of one half. Furthermore. 
distinct distinguished premises are compatible with distinct pairs of RFA 
interpretations: therefore the conclusions associated with distinct distin- 
guished premises give nonzero weight to distinct pairs of distinguished in- 
terpretations. Thus to every point of S (i.e., to every distinguished premise) 
is assdciated a probability measure on E (i.e.. on the set of RFA interpreta- 
tions) that gives nonzero weight to a unique pair of points in E. We call each 
such probability measure a “conclusion” or “conclusion measure”. The collec- 
tion of all conclusion measures, each measure indexed by its associated distin- 
guished premise, we call the **conclusion kernel” of the inference and denote 
it by q. If the distinguished premise is S, we denote the corresponding conclu- 
sion measure by II(S;). 

Fmally, observe that to each interpretation in X (RFA or not) there corrc. 
spends. by orthographic projection, one premise in Y (to obtain the premise 
corresponding to a 3D interpretation one simply strips off the z, that is, 
depth, coordinate of each of the nine points which constitute that interpreta- 
tion). We call this correspondence the ‘*perspective” of the inference and 
denote it by ~1; we call z the perspective because x relates each premise to 
its possible interpretations. With little effort one can see that each distin- 
guished interpretation corresponds, via JZ, to a distinguished premise. That 
is, each RFA interpretation, when projected, gives rise to a set of three views 
of three points that is compatible with RFA interpretations. We express this 
by the equation x(E) = S. Unfortunately, it also happens that some nondis- 
tinguished interpretations map, via JZ, to distinguished premises. A human 
subject, when presented with a display, that is, a “distal stimulus”, corre- 
sponding to such an interpretation, will perceive (incorrectly) two RFA in- 
terpretations. Therefore such a distal stimulus is called a “false target”, and 
the corresponding (nondistinguished) interpretation is called a “false in- 
terpretation”. 

This description of an inference of 3D structure from image motion is 
depicted in Figure 1. Psychophysical experiments suggesting the relevance of 
this theory to human vision are reported by Braunstein, Hoffman, Shapiro, 
Andersen, and Bennett (1987). 



4 

Figure 1. The structwe of the inferewe rrrrderlyirrg tire ~~~ter~~r~t~t~~~l @%gid@-ed-mis 
motiort. X, the possible ititerpr iis, is the tde45b.r of m/E three sets of 
three poirlts irt 30 space, that Y, the po.s.sib!e premises. is the co//et= 
tiorr of all three sets of three points ict 20 space, that is, R’“. 3, the perspec- 
tive, is projection from X to Y. imiirced b?, the orthographic projection 
(s, y, z) H (x, v). E, the distingtaishrd interpret@tiorrs, corrtains those three 
sets of three points irt 31) space that m-e related by a rigid fiked-m-is motion. 
S, the distinguished premises, is x(E). q, the set of COIK~~ONS, gives foj 
ench pre/?iise iii s ci probahihty meawre oil E (supported 011 two pods). 

easuring visual motion 

Consider a dime. If you rotate the dime in space, for example by flipping it, 
the image of its edge deforms smoothly, sometimes appearing circular, more 
often appearing elliptical. In reality, of course, the edge never changes; its 
appearance deforms due to changes in disposition of coin and eye, and their 
consequences for the projection from a 3D world to a 2D retina. In this 
respect dimes are by no means unique. Due to the ubiquity of relative motion 
between objects and the eye, the retinal images of all visible contours per- 
petually translate and deform. 

Can this deformation be measured? For smooth portions of a deforming 
contour, attempts to measure the local velocity of deformation face the so- 
called “aperture problem”: if the true velocity of the curve at a point p is 
V(p), only the component of velocity orthogonal to the tangent at p, denoted 
v’(p), can be obtained directly by local measurement. Motion in the direction 
of the tangent cannot be measured locally for the simple reason that a line 
whose endpoints are not visible, and which translates along its length, must 
appear to be stationary (see Figure 2). Human vision apparently overcomes 
the aperture problem and recovers complete velocity fields for moving curves. 
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This capacity to infer a complete velocity field along a 2D curve, given only 
the orthogonal component of the field, is called the measurement of visual 
motion. To explain this capacity, Hildreth (1984) proposes that the visual 
system chooses the “smoothest” velocity field (precisely, one minimizing 

SPVWdP) compatible with the given orthogonal component. She then 
proves the following result: 

If a,‘(p) is known along a contour which is not a straight line, then there 
exists a unique velocity field that satisfies the known velocity constraints 
and minimizes s 13 

This result suggests a precise form for an inference of velocity fields from 
their orthogonal components. A praise for the inference is a plane curve 
with an orthogonai vect field, that is, a plane curve a(p) with vector field 
V(p) satisfying (daldp) = 0 for all points on a. (Here the l indicates 
the “dot” product of vectors.) The space of all such premises is infinite dimen- 
sional. To see this, note that at each point on a curve the magnitude of the 
associated vector is free to vary although its direction is not. Since a smooth 
piece of curve has infinitely many points, there are infinitely many degrees 
of freedom in specifying orthogonal vector fields - hence infinitely many 
dimensions (and we have not yet considered different curves). This infinite- 
dimensional space of premises we denote by Y. 

Figure 2. AH ilhstsntiort of the cryertrrse problem As the contour L with velocity V 
passes through the circrilm npertrrse 0, only the perpendicrlhs cornponerit 
of V, nnrnely vl, cm be rneasrrred within 0. 



According to Hildreth’s result, there is an infinite-dimensional subset of 
Y, that is, an infinite-dimensional subset of premises, for which complete 
velocity fields cannot be inferred; these premises correspond to straight lines 
with orthogonal velocity fields. However, the remainder of Y, also of infinite 
dimension, consists of premises for which complete velocity fields can be 
inferred: these premises correspond to curves (not straight lines) with orthog- 
onal velocity fields. We call the latter the “distinguished premises” and de- 
note them by S. 

For each premise in Y, that is, for each plane curve cc with orthogonal 
vector field V-, we can consider the set of all vector fields whose orthogonal 
component is r’-. This set describes all motions of the curve that could lead 
to the measured (orthogonal) velocity field; it is, therefore, the set of possible 
interpretations for the given premise. The union of these sets for allpremises, 
distinguished or not, we denote by X and call the “interpretation space”, or 
the “configuration space”, for the inference. To each interpretation x of X 
there corresponds a unique premise y in Y obtained by taking the velocity 
fie!d of x, strippIhg ;nm off its tangentiai components, and leaving the orthogonal 

Figure 3. The strrrctrrre of the inference rrnderlying the interpsetation of velocity fields 
along contours. X, the possible interpretations, is the collection of all planar 
curves with associated velocity fields, that is, an infinite-dimensional real 
Errclidean space. Y, the possible premises, is the collection of all planar 
cwves with associated orthogonal velocity fields, that is, an infinite-dimen- 
sional real Euclidean space and a proper subset of X. n, the perspective, is 
projection fsom X to Y, sending ntir clrtqitrary velocity field to its orthogonal 
component. E, the distinguished interpretations, contains those velocity 
fields that are smoothest bv Hildreth’s criterion. S, the distinguished psem- 
ises, ase all curves, other &an straight lines, with orthogonal velocity fields. 
11, the conclusions, gives for each psemise in S a probability measure on E 
(sltpposted on one point). 

I A= pajection from X to Y 



component. This correspondence between interpretations (curves with com- 
plete velocity fields) and premises (curves with orthogonal velocity fields) we 
call the “perspective” of this inference and denote it by x. We call d7 the 
perspective of the inference because it relates each premise to its possible 
interpretations. For each premise y in Y, consisting of a curve and orthogonal 
vector field 17’ , d7-1(y) is the set of interpretations s in X whose vector fields 
have orthogonal component I’-. 

For each distinguished premise s in S there is, according to Hildreth’s 
result, a unique interpretation in JT-‘(s) that is smoothest. The collection of 
all such smoothest interpretations, one for each distinguished premise S, we 
call the “distinguished interpretations”, or “distinguished configurations”, 
and denote by E. Clearly, by this construction, x(E) = S. For each premise 
s in S the conclusion of the inference is then a probabi’lity measure giving its 
entire weight to that unique interpretation in x-‘(s) that has the smoothest 
velocity field. The collection of all such probability measures, each indexed 
by its associated distinguished premise s, we call the “conclusion kernel” of 
the inference and denote it by 11. 

This description of the inference underlying Hildreth’s theory is depicted 
in Figure 3. 

serve 

Observers are descriptions, not prescriptions. The intent in defining an ob- 
server is to state precisely, and in generality., what is tie fL2cf0 the structure 
common to all perceptual capacities. This endeavor requires us to examine 
theories of specific capacities, much as we have done above, looking for their 
common structures. What becomes apparent in this process is that non- 
demonstrative inferences, ones in which the conclusions are not deductive 
consequences of the premises, lie at the heart of each theory. By studying 
these theories, we see how each formalizes the nondemonstrative inference 
underlying its capacity. What we find is this: enclz theory describes its inference 
by specifying six strrrctrwes. 

(1) First, each theory specifies a collection of relevant interpretations. This 
collection might or might not be uncountably infinite, and might or might not 
be specified parametrically. In the RFA example it is “. The key point, 

however, is this: multistability and uncertainty in perceptual interpretations, 
as in the RFA example, indicates that conclusions of perceptual inferences 
must, in general, involve more than one interpretation; furthermore, it is well 
known that these different interpretations can vary in the ease or frequency 



with which they are perceived. It appears, therefore, that perceptual conclu- 
sions assign probabilities or preferences to interpretations; the probability 
assigned to an interpretation is a measure of the credence it is given. The two 
interpretations of an RFA display might both be given equal credence and, 
therefore, equal probability: but, for some subjects, they may not be equal. 
NOW a quite general space on which probabilities may be defined is the 
so-called “measurable space” (defined in the Appendix). Intuitively, a 
measurable space is a set of possible experimental outcomes together with a 
collection of “events” (together called a “measurable structure”) to which 
can be assigned probabilities. Thus, in short, the phenomena of perceptual 
multistability and uncertainty lead us to suggest that rl?e collection ofpossible 
interpretations forms a measurable space. We call it X. 

(2) Similarly, each theory specifies a collection of elementary premises. In 
the example of RFA motion this collection is R*‘. Again, a key requirement 
of each theory is this: because there may be noise or uncertainty in premises, 
the collection of elementary premises must be structured to allow assignment 
of probabilities. This suggests, then, that the collection of elementary premises 
also forms a measurable space. We call the space of elementary premises Y. 

(3) Each theory specifies a perspective. That is, it specifies, for each 
elementary premise, the interpretations compatible with that premise. Such 
interpretations are the only ones between which to choose, given that prem- 
ise. In the case of RFA motion, each elementary premise specifies the 2D 
cocrdinates of nine points, and each interpretation specifies the 3D coordi- 
nates of nine points. The interpretations compatible with a premise are ob- 
tained as follows: to each 2D coordinate specified by the premise add any 
real number as a third coordinate. Of course, not all interpretations so ob- 
tained are instances of RFA motion; but each is compatible with the premise 
in the sense that its image, under orthographic projection, is the premise. 
The appropriate formalism for a perspective, then, is a function, from the 
space of interpretations to the space of premises. This function is chosen such 
that the interpretations mapped to any given premise (the so-called “fibre” 
of the function “over” that premise) are precisely the interpretations compat- 
ible with that yremisr. Moreover, the function should be “measurable”; that 
is, it should relate the events on the space of elementary premises (its range) 
to events on the space of interpretations (its domain). This, together with the 
natural requirement that each premise has at least one interpretation, implies 
that the perspective of the inference is a measwable function fsorn the space 
of interpretations onto the space of premises. We call it IL n maps X onto Y 

( 
. 

every elementary premise has at least one interpretation). For each 
promise y in Y the set of compatible interpretations is a subset of X denoted 

by n-‘(y)* 



(4) Each theory specifies a collection of diisritt&~/~e~ inter~retdorrs. Since, 
in the general case, each theory describes a norlnernorlst~ati~~e inference. it 
makes appeal to some principle, in addition to those of logic, in deciding, for 
each premise, which interpretations are appropriate conclusions. This princi- 
ple picks out a subset of interpretations, the distinguished interpretations. 
from the space of possible interpretations. For instance. in the case of Hil- 
dreth’s theory of motion measurement the distinguished interpretations are 
specified by a “smoothness” principle. And in Hoffman and Bennett’s theory 
of RF-4 motion they are specified by the RFi4 principle. Moreover, only 
distinguished interpretations are assigned positive probabilities, the precise 
probabilities depending upon the given premise. For example. in Hildreth’s 
case there is at most one distinguished (smoothest) interpretation compatible 
with each premise, so this interpretation is chosen with probability one. And 
in Hoffman and Bennett’s case there are often two distinguished (RFA) 
interpretations compatible with a premise, so these two interpretations are 
each given a probability of, say, one half. Therefore, because each theory 
assigns probabilities to distinguished interpretations, it must require that the 
collection of distingrrished interpretations is an event in the space of interprem- 
tiom. and that it, too. has a measurable structure. We call the set of distin- 
guished interpretations E. 

In some sense, the distinguished interpretations are the most crucial com- 
ponent of each theory. @ne can view the larger set of a!! interpretations as 
existing merely to provide a language, representational framework, or con- 
ceptual repertoire within which to define the distinguished interpretations. 
The distinguished interpretations play the role of a “theory”, or restricted 
body of background knowledge, used to interpret the premises. 

(5) Each theory specifies a set of distinguished premises. The set of all 
premises contains two kinds of premises: those that are compatible with at 
least one distinguished interpretation, and those that are not. Those that are 
we call distinguished premises. In Hildreth’s theory the distinguished pre- 
mises are orthogonal velocity fields on curves other than straight lines: or- 
thogonal fields on straight lines are not compatible ‘with any distinguished 
(smoothest) interpretation. It is only to distinguished premises that percep- 
tual interpretations are given. Because each theory discriminates between 
distinguished and nondistinguished premises, each must require that the COZ- 
htb~ o,f distinguished premises is an evezt in the space of premises, and that .WL..U.. 

it, too, has a measurable structure. We call the set of distinguished premises 
s. 

Since s contains all premises compatible with at least one distinguished 
interpretation, we conclude that S = n(E). The space of all premises serves 
primarily as a framework within which to describe the distinguished premises. 



(6) Each theory specifies, for each of its distinguished premises, an appro- 
priate conclusion. For RFA motion, each distinguished premise is compatible 
with two RFA interpretations: its associated conclusion is a probability mea- 
sure giving positive weight oniy to these two interpretations. As mentioned 
before, one can think of this probability measure as stating the degree of 
confirmation or belief assigned to each interpretation. Or one can think of it 
as describing the ease or frequency with which each interpretation is per- 
ceived. In theories such as Hildreth’s, where each distinguished premise is 
compatible with only one distinguished interpretation, the associated conclu- 
sion is a probability measure giving a weight of one to that interpretation. 
Now, as discussed in the Appendix, the assignment to each distinguished 
premise of a probability measure on the compatible distinguished interpreta- 
tions can be described compactly by a mathematical object called a “Marko- 
vian kernel on E relative to S”. Thus, using this terminology, we are led to 
suggest that the collection of all conclusions is a Markovian kernel on E 
relative to S.” 

These are the structural commitments of rigorous perceptual theories. A 
complete description of a perceptual capacity describes all six structures: 
premises, interpretations, perspective, distinguished interpretations, distin- 
guished premises, and conclusions. We are led, therefore, to define a com- 
plete structural description of a perceptual capacity, henceforth an observer, 
as follows (see also Figure 4): 

efinition. An observer is a six-tuple (X, Y, E, S, .7t, q) where 
(1) Xand Y are measurable spaces. E is an event of X. S is an event of Y. 
(2) Jx is a measurable map from X onto Y such that n(E) = S. 
(3) 2;7 is a Markovian kernel that associates to each point s of S a probability 

measure on E giving nonzero weight only to points of E in n-l(s). 

It might be reassuring to remark that this definition is simply a concise state- 
ment of the six points made above. Nothing new has been smuggled in. 

The six components of an observer play the following roles in modeling 
the inference which underlies a capacity: 

(1) X is the space of all possible interpretations. 
(2) E is the set of distinguished interpretations. 
(3) Y is the space of all possible elementary premises. 
(4) S is the set of distinguished elementary premises. 

‘This suggests, by the way. that rather than speaking of confirmation “metrics”. as is sometimes done in 
discussions of inductive inference, one should speak of confirmation “measures” or even confirmation “ker- 

nels” . 
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Figure 4. An iihstrntion of the definition of observer. X represents the possible in- 
terpretations, Y the possible premises. E the distinglrished interpretations 
(Le., the interpretationnl “theory” or “nsswnption ” empIoyed by the ob- 
server), S the distinguished premises. and 11 tk collection of probnbilitj 
measwes on E that me the possible conclmions o_f the observer. 

(5) do is the perspective. 
(6) v is the collection of conclusions. 

Before going on to exercise the definition of observer, we pause to make 
a few general comments. First, observer theory asserts, for the reasons given 
above, the following observer thesis: to every perceptual capacity, regardless 
of its modality or manner of instantiation, there is naturally associated a 
structural description which is an instance of the definition of observer. As 
mentioned before, this thesis cannot be proven, since it states a relationship 
between something formal and something informal. But it is open to discon- 
firmation by counterexample and is, therefore, an empirical thesis. To say 
this, by the way, is not to say that one can empirically test the definition of 
observer; definitions are, of course, neither true nor false. It is not the ob- 
server definition, but the observer thesis that can be disconfirmed. The status 
of the observer thesis for perception parallels that of Church’s thesis for 
computation. Boolos and Jeffrey point out, for instance, that “Although this 
thesis (‘Church’s thesis’) is unprovable, it is refutable, iffaLse. For if it is false, 
there will be some function which is computable in the intuitive sense, but 
not in our sense [of Turing computability] . . . the more experience of compu- 
tation we have without finding a counterexample, the better confirmed the 
thesis becomes” (Boolos & Jeffrey, 1980, p. 20). Similarly, if the observer 
thesis is false, there will be some perceptual capacity which, though widely 
acknowledged to be a bona fide perceptual capacity, will resist all efforts to 



cast it as an observer. For example, it might require that the premise space 
be a gelze&zed measurable space @udder, 1988) rather than simply a 
measurable space.’ Although in this paper, for sake of brevity, we have given 
only two detailed examples in support of the observer thesis, there are many 
capacities whose mathematical treatments lend it support.” 

Second, if the observer thesis is correct, then the definition of observer 
provides a canonical form for the description of perceptual capacities. We 
can, for example, summarize the theory for RFA motion by saying: “X = 
R”. Y = R”. X and Y have their natural Lebesgue measurable structures. 
zc X --, Y is induced by orthographic projection. E c X is picked out by the 
principle of rigid fixed-axis motion and specified by such and such equations. 
S = n(E). For each premise s in S the conclusion I is a probability 
measure supported on the two points of&(s) R E”. The resulting economy 
of language can give perceptual theorists the same edge that mathematicians 
enjoy by employing standard structures (such as rings, groups, and vector 
fields). It gives, of course, the same disadvantage as well: the effort of learn- 
ing the language. But once one has learned the language, one can use the 
definition of observer to guide the construction and the evaluation of 
mathematical theories for specific capacities; the definition provides a stan- 
dard against which to check the completeness and well-formedness of each 
new theory of a specific capacity. (These specific theories will typically have 
empirical consequences, providing another point of contact between observer 
theory and data; see, for example, Braunstein, Hoffman, and Pollick (1990) 
for empirical tests of a specific observer.) 

Third, it is a mistake to identify entire persons with observers. Each ob- 
server, for instance, has a fixed perspective, it, whereas most persons do not. 
Each observer has a fixed collection, q, of conclusions that it is willing to 
entertain, whereas most persons learn from experience. These dynamical 
aspects of perception are not captured by the definition of observer, but 

‘In a measurable space the union of every pair of events is itself an event that can be assigned a probability. 
So is the intersection of every pair of events. But in a generalized measurable space the union of two events 
need not be an event unless the original two events are disjoint. Moreover the intersection of two nondisjoint 
events need not be an event either. Generalized measurable spaces are intended to model situations where 
certain pairs of events are not simultaneously observable. 

‘Among these capacities are edge detection (Poggio. Voorhees, & Yuille, 1985). structure from motion 
(Bennett, Hoffman, Nicola, & Prakash, 1%9), area -based optical flow (Horn & Schunck, 1981), stereo vision 
(Longuet-Higgins, 1982: Mayhew & Frisby, 1981). shape from shading (Ikeuchi & Horn. 1981). spatiotemporal 
approximation (Fahle & Poggio, 1981). surface reconstruction (Grimson. 1982: Terzopoulos. 1983). sentence 
parsing (Bennett, Hoffman, & Prakash, 1989). detection of light sources (Ullman. 1976). and classification of 
sound sources (Wildes & Richards, 1988). Observers for some of these capacities are described in Bennett. 
Hoffman, and Prakash (1989). 



310 B. M. Bennett et 01. 

rather by dynamical entities called participators whose state spaces are spaces 
of observers (Bennett, Hoffman, & Prakash, 1989). Different observers in 
these state spaces have different xs and qs; so as the participator moves about 
on this space it is, in effect, updating its x and )I. 

Fourth, many observers correspond to perceptual capacities that, as it 
happens, have no biological instantiation. After all, any inferential system 
that satisfies the definition of observer is ipso facto an observer. Biology, or 
lack thereof, is irrelevant. This is convenient, for it allows us to uncover 
observers in biological perceptual systems and to implement them in silicon. 
But this independence of observerhood from biology sometimes raises the 
question: if some observers have no biological instantiation, then what good 
is observer theory to perceptual psychologists and cognitive scientists? Isn’t 
observer theory too general for those interested in bVrmnn capacities? Com- 
pare this to an analogous question one could ask students of formal language: 
if there are formal languages that are not natural, that is, that could not be 
acquired by humans, then what good is the theory of formal languages to 
researchers studying natural languages? Isn’t the theory of formal languages 
too general to be of use to those interested in human languages? The answer 
to this, of course, is that it is precisely the generality of formal language 
theory that recommends it to the student of natural languages. It is, for 
instance, precisely because the natural languages are a subset of the formal 
languages that one can hope to use the theory of formal languages to charac- 
terize the special class of natural languages. The parallel, in the case of 
observer theory, is clear. Although there may be, despite efforts to the con- 
trary, defects in the definition of observer, its generality per se is not one of 
them. It is, in fact, precisely the generality of observer theory which suggests 
that if one seeks a useful vocabulary for the delineation and description of 
hrrrnnn perceptual capacities, then a good place to look is the definition of 
observer. 

We now discuss how illusions fit within the definition of observer and what 
properties an observer must have to minimize them. To this end, rather than 
stipulate that an illusion is a failure of correspondence between a perceptual 
conclusion and some reality, we content ourselves to note that a sufficient 
condition for the occurrence of an illusion is a failure of agreement between 
the conclusions of distinct observers given the same, or overlapping, prem- 
ises. To illustrate this condition, suppose that dots are made to move on a 
CRT in a manner compatible with an RFA interpretation, and suppose that 



a subject observes the CRT with both eyes. If the subject is neither stereo- 
blind nor structure-from-motion blind, then the subject’s ‘stereo observer” 
and “RFA observer” will yield contradictory conclusions: coplanarity of mo- 
tion in the case of stereo, noncoplanarity in the case of the RFA observer. 
Both conclusions cannot be right, so at ieast one is wrong and, therefore, 
illusory. 

Fortunately, this sufficiency condition on illusions also suffices to describe 
how illusions fit within the definition of observer, as foiiows: the set F = 
n-‘(S) - E is the set of “false interpretations”, and an observer minimizes 
the likelihood of illusions if the probability of F is zero. 

Let us consider this in some detail (see Figure 5). Recall that an observer, 
0, characterizes a class of inferences whose premises come in two kinds: 
those in S (distinguished premises) and those in Y - S (nondistinguished 
premises). Hence interpretations come in two kinds: those compatible with 

Figure 5. An illustration of the false interpsetations for- an observer. X represents the 
possible interpretations. The subset of X delineated b?l dashed lines is 
n-‘(S). namely all interpretations compatible with distinguished premises. 
The set x-‘(S) is composed of two subsets: E and F = J”T- ‘(S) - E. E is 
represented by the solid curve within the dashed lines; F is what remains 
within the dashed lines after E is removed. F is the set of false interpretations. 
representing the possible false targets and, therefore, the source of possible 
illusions for this observer. 
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S (elements of x-‘(S)) and those incompatible with S (elements of X - 
or-‘). Furthermore, interpretations compatible with S come in two kinds: 
interpretations in E (distinguished interpretations) and those not in E but in 
F = x-‘(S) - E. Now, on the one hand, for each premise in S the conclusion 
of 0 gives positive probabilities OH/~ to interpretations in E. not to interpre- 
tations in F, this even though each interpretation in F is compatible with S. 
Any probability measure. say v . giving positive probability only to interpreta- 
tions in F would contradict, therefore. each of O’s conclusions: such a 1’ 
would give zero probability to each distinguished interpretation. thereby con- 
tradicting every possible conclusion of 0. On the other hand, for premises 
in Y - S, 0 reaches the conclusion that none of its distinguished interpreta- 
tions are compatible with its premise. Since this conclusion is, by definition 
of observer, necessarily true, contradictions here are not an issue. Therefore 
the measures v are the real source of possible trouble: were they the conclu- 
sions of some observer 0’. they would suggest that O’s conclusions might be 
illusory. Since such a I’ gives positive probability only to interpretations in F 
it is appropriate, in keeping with terminology in the computational literature 
on perception, to call each interpretation in F a “false interpretation”. Con- 
clusions by an observer 0’ that give positive probability only to false interpre- 
tations raise the possibility that O’s conclusions are illusory. For these 
reasons, we say that F is the strwctrrrd counterpart, within the definition of 
observer, of perceptual illusions.” 

Consider again the exampie of a stereo observer and an RFA observer 
giving contradictory conclusions in response to a computer-generated display. 

e stereo observer has its own distinct (and, one can prove, infinite) set 
KtrW3 of false interpretations, and the RFA observer has its own distinct (and 
infinite) set FRFA of false interpretations. The conclusion of the stereo ob- 
server, namely that the dots are coplanar, lies in FRFA whereas the conclusion 
of the RFA observer, namely that the dots are noncoplanar, lies in Fstereo. 
Therefore the two conclusions are incompatible. This implies that at least one 
is wrong and, therefore, illusory. Such a situation is by no means uncommon. 
Quite often human vision must deal with conflicting visual cues, integrating 
them to obtain a coherent interpretation of the environment. In the particular 
case of stereo and motion, when there is a conflict it appears that human 

“As Jim Higginbotham pointed out to US. one can argue that F does not contain 011 false interpretations. 
There might be clisrirrg~ishe~ interpretations that aren’t given positive probability by any of the observer’s 
conclusions. Were the observer to be presented with a distal stimulus corresponding to such an interpretation. 

it would. by hypothesis, never give positive probability to the proper interpretation, and therefore it would 
misperceive. Thus one can argue that the set of false interpretations is the largest set F’ in x-‘(S) such that 
I#, F’) = 0 for all s in S. F is a subset of F’, In gerreral, F is a proper’ subset of F’; when it is, the intersection 
of F’ with E is not empty. 



vision often settles upon a weighted average of the two eonflieting interpreta- 
tions (Rogers & Collett. 1989). Though t is is not the place to discuss it, the 
definition of observer motivates a theoretical approach to this problem of cue 
integration (Bennett. Hoffman, & Murthy, 1990). 

We should like to minimize, in the design of an observer, the probability 
of illusions. But what measure should we use to determine the probability of 
illusions? On what probability space? Shall we ground it in the probabilities 
of events in some reality external to the observer*? If so, we have metaphysical 
issues to confront. If not. we must find some other way. 

Rather than evaluate the probability of illusions with respect to some exter- 
nal world. we here content ourselves to evaluate it with respect to the in- 
terpretational framework, X, of the observer itself. The idea is this: given 
some notion of rrnbinsed probabilities on X, we want the unbiased probability 
of false interpretations to be small - much smaller than that of all other 
interpretations. 

What can we mean by unbiased probabilities on X? An example should 
answer the question. Recall that for the RFA observer of section two the 
space of interpretations, X, is R”. Since 27 dimensions are hard to visualize 
let us suppose instead, for the moment, that X is just R’ - the plane. Consider 
the following measure on R’: the measure of any subset of R’ is the area of 
that subset. So, for instance, a square whose sides are two units long has 
measure four. Obviously such a measure is not, strictly speaking, a probabil- 
ity. It is called Lebesgrre measure. Lebesgue measure is unbiased in the fol- 
lowing natural sense: if you take a square, say of measure four, and translate 
it rigidly anywhere you wish, it still has measure four. (By contrast, this would 
not be true were we to use a probability measure, any probability measure, 
in place of Lebesgue measure.) This notion of unbiased measure can be 
generalized to non-Euclidean spaces, but we need not do it here. However, 
we do need one more intuition, namely the notion of a set of measure zero. 
We can get at this by asking what is the Lebesgue measure of a line in the 
plane. Well, since the iine has no area, and since the Lebesgue measure of 
a set in the plane is defined to be its area, a line has measure zero. Tile2 
what is the Lebesgue asure in R” of a plane ? Well, since the Lebesgue 
measure of a subset in is, appropriately, its volrdlne, and since a plane has 
no volume, it follows that a plane has Lebesgue measure zero in R’. We begin 
to see the pattern. Intuitively, a subset of a space has measure zero, or small 
measure, with regard to an unbiased measure if that subset is quite small 
relative to the space in which it is embedded. 

Turning again to minimizing illusions, we want the collection of false in- 
terpretations to be quite small relative to the entire coHection of interpretations 
X. Ideally, we want it to have measure zero. So let us stipulate: any observer 
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for which the rinbinsed measure of false interpretations is zero is an ideal 
obse~l~e~. Ideal observers are the goal of much perceptual theorizing. For 
example, Hoffman and Bennett (1986) prove that the RFA observer is ideal: 
Ullman (1979) proves that his structure-from-motion observer is ideal: Lon- 
guet-Higgins (1982) proves that his stereo observer is ideal.’ Perceptual 
theorists, while finding illusions unavoida&!e. do their best to keep them to 
a minimum. 

This account differs, incidentally. from another sometimes offered to 
suggest why illusions are rarer than they might be and why perceptual infer- 
ences are typically truth preserving. The account goes like this. Consider an 
organism which infers 3D structure from image motion using, say, a rigidity 
constraint. Why does this organism use rigidity rather than some other con- 
straint? Well, because the organism inhabits a universe where most objects 
move rigidly. Were most objects nonrigid, then a rigidity constraint would be 
pointless and misleading. 

This account, despite its prima facie plausibility, is false. Nonrigid objects 
might vastly outnumber rigid ones in the organism’s universe, indeed in its 
immediate neighborhood, and yet the organism, using a rigidity constraint, 
could be correct in its 3D interpretations nl~~ost always. Conversely, rigid 
objects might outnumber nonrigid ones and yet the organism, using a rigidity 
constraint, could quite often be incorrect in its 3D interpretations. Here is 
how. Let 0 = (X, Y, E, S, x, 1;7) be a rigidity observer. Then points of E 
represent rigid transformations, points of X - 
mations, points of F = n-l(S) - 

E represent nonrigid transfor- 
E represent false targets (viz., nonrigid 

transformations that fool the observer into giving rigid interpretations), and 
points of X - x-‘(S) represent nonrigid transformations that do not fool the 
observer. Suppose that nonrigid objects outnumber rigid ones, and that al- 
most all nonrigid objects are of the X - n-‘(S) variety (ones that don’t fool 
the observer) and not of the F variety (ones that fool the observer). Then 
the observer will correctly discriminate rigid from nonrigid objects almost 
surely. Conversely, suppose that rigid objects outnumber nonrigid ones, and 
that most nonrigid objects are of the F variety (ones that fool the observer) 
and few of the X - x-‘(S) variety (ones that don’t fool the observer). Then 
the observer will often give rigid interpretations, and it will typically be 
wrong. 

‘An ideal observer in this sense is also an ideal observer in the sense of signal detection theory (see Green . . 
62 Swets, 1966, ch. 6; see also Berger, 1985: Geisler, 1989; Lehmann, 1986). One can easily show that the 
likelihood ratio employed in signal detection theory. when applied to the space of premises for an observer, 
takes the value zero for points of Y - 

theory and observer theory is beyond 
S and positive values for points of S. To further compare signal detection 

for a detailed discussion). 
the scope of this paper (but see Bennett, Hoffman, & Kakarala, 1990, 



We see then that. for a constraint to be useful in perception, it is not 
necessary to have a high ratio of constraint-obeying to constraint-disobeying 
objects. Nor, of course, is a high ratio sufficient to guarantee the truth of the 
observer’s conclusions. What is crucial is that there be a low ratio of fn/sp 
m-gets to objects obeying the constraint: that is, that objects represented by 
E be more frequent or probable than objects represented by z-*(S) - E. 
Unfortunately, even ideal observers might not enjoy this property. Recall 
that an ideal observer has, by definition, almost no false targets. This is great 
as far as it goes, for it guarantees that almost all of the observer’s decisions 
are correct. But this doesn’t guarantee freedom from false interpretations, 
for it doesn’t, by itself, guarantee a low ratio of false targets to objects obey- 
ing the constraint. With respect to an unbiased measure, false targets could 
have measure zero in X and yet have full measure within ZZ-~(S). Indeed this 
is often the case. The only hope for such an ideal observer is that the true 
measure in its universe is not the unbiased measure, but rather one in which 
E has full measure in z-‘(S). Such a universe is, for this observer, an ideal 
rlniverse. An ideal observer in an ideal universe is almost never fooled by 
false targets. 

An ideal observer in an ideal universe can nevertheless make incorrect 
interpretations quite often. Consider, for example, the well-known Necker 
cube illustrated in Figure 6. Subjects typically report seeing two different 
interpretations of this figure as a 3D cube. These 3D interpretations con- 
tradict, however, the conclusion that must be reached by a stereo observer, 
namely that the figme lies in a single plane. Since we have two sets of incorn: 
patible interpretations here, one planar and one three-dimensional, at least 

Figure 6. A Neckes cube. Observe that the cube periodically reverses. 
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one interpretation must be incorrect and therefore illusory. So far this exam- 
ple is almost identical to the previous example of illusions using the RFA and 
stereo observers. But now suppose that one observes. monocularly, a real, 
3D wire-frame cube. In this case one still perceives two distinct 3D interpre- 
tations of the cube, since both interpretations are compatible with the retinal 
image. Both interpretations are points of E for some “cube observer”, so that 
neither interpretation is in the set of false targets F for this cube observer. 
But since the two interpretations are distinct, at most one can be correct, so 
that the observer has a 50% chance of being wrong. And note, this two-way 
ambiguity is inherent, whether or not the observer in question is an ideal 
observer in an ideal universe. Thus even an ideal observer in an ideal universe 
can make incorrect interpretations quite often. 

As a final example to suggest that so-called “geometrical illusions” are 
susceptible to the foregoing style of analysis, consider the Ponzo illusion 
shown in Figure 7. The two horizontal lines appear at first to be tif different 
lengths, whereas closer inspection, or the use of a ruler, suggests that they 
have the same length. Why do we think that our perception of this figure is 
illusory? Quite simply, as in the example of stereo versus RFA motion, be- 
cause we get contradictory answers from distinct perceptual capacities; in this 
case the contradictory answers regard the lengths of the lines. If all ways we 
had of assessing the lengths of the two lines gave the same answer, we would 
have little reason to suspect an illusion. Now the precise source of the con- 
tradictory percepts in the case of the Ponzo illusion is still a matter of debate 
among perceptual psychologists. Perhaps the best received theory is that 

an vision interprets the Ponzo figure using the rules of perspective projec- 

Figure 7. A vession of the Ponzo ilhsion (devised by M. Ponzo in 1913). The two 
horizontd lines m-e of egirnl lengths. 



tion (Gregory, 1970). In our terminology, there might be a “perspective 
observer”. This observer normally interprets converging Eines as evidence of 
increasing depth: therefore the hoti zontal line near the apex of the converging 
lines is assumed to be further away than the other horizontal line. Since the 
retinal images of the two lines are roughly equal in length the line seen 
further away is also seen, due to the rules of perspective. as larger. On this 
account, then, Figure 7 is a false target, an element of the set F, for this 
perspective observer. For in fact the figure is flat (say, according to the stereo 
observer), but it is given a 3D interpretation by the perspective observer; 
similarly, the RFA motion display is flat according to the stereo observer, 
but is given a 3D interpretation by the RFA observer. 

6. A relational definition of transducer 

The value of a definition derives in part from the work one can do with it. 
Therefore in this and the next few sections we apply the definition of observer 
to several issues of central interest in perception. We begin with the topic of 
transduction. 

A transducer is a physical device that transforms energy from one physical 
form to another (possibly losing energy or gaining energy in the process). In 
the case of vision, for instance, the transducer is the retina with its rods and 
cones, and the transformation is from energy in the form of photons to energy 
in the form of neural activity. Or, in the case of tactile perception, the trans- 
ducers inc!ude Pacinian corpuscles, and the transformation is from mechani- 
cal energy to neural activity. So goes the typical explanation. 

But, as Fodor and Pylyshyn (1981) have pointed out, this rough account 
is inadequate. If one wants each sensory modality to have a unique stage of 
transduction, then the account fails because it implies that the whole human 
organism, as well as many of its subdivisions, are transducers; they, too, 
transform energy from one physical form to another. If one drops the require- 
ment of uniqueness, the account still fails because it blurs useful distinctions: 
cognitive transformations and transformations at the retina qualify, alike, as 
“transductive”. 

Another problematic account claims that transduction is distinctive among 
the perceptual and cognitive processes in that it is noninferential. Transduc- 
tion, rather than being an inferential process, is governed by psychophysical 
laws. In the case of vision, for instance, such laws specify a nomological 
relationship between the distribution of photons at the retina and the per- 
ceived intensity of light. So to determine if something is transduced, one 
simply needs to employ the “method of differences”, thereby determining 
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whether or not it is inferred. For instance, suppose that you want to know if 
journals are visually transduced, although you suspect that they might instead 
be inferred from properties of light (other than the property “reflected from 
a journal”). Then the method of differences involves the following experi- 
ments: first present the journal without the light, and then the light without 
the journal. For the first experiment you can simply observe a journal and 
then turn off the light. In the second experiment you can, say, present a 
hologram of the journal. In the first case, with the light absent and the journal 
present, you no longer perceive the journal. In the second case, with the light 
present and the journal absent, you perceive the journal. YOU conclude that 
indeed the property “is a journal” is inferred, and therefare not transduced. 
This approach is perhaps most clearly defended by Fodor and Pylyshyn (1981) 
and by Pylyshyn (1984). 

But this account is also inadequate. It entails, for instance, that no proper- 
ties of the light are transduced. The reasons are straightforward. First, there 
is an old and extensive literature on phosphenes, showing that human sub- 
jects, given the appropriate electrical stimulation of cortex, can have sensa- 
tions of light when there is, in fact, no ambient light (Brindley & Lewin, 
1968, 1971; Button & Putnam, 1962). A similar illusion of light obtains simply 
by rubbing one’s eyes in the dark. Second, the familiar phenomenon of dark 
adaptation - a temporary blindness upon going from a bright environment to 
one low lit - shows that human subjects can fail to perceive light even when 
photons, in substantially suprathreshold quantities, strike the retina. Thus we 
have a situation for light that parallels the one for journals: we can perceive 
light without photons, and fail to perceive light when there are many photons. 
The method of differences, then, applied to light, leads one to conclude that 
all properties of light are inferred and therefore, on Fodor and Pylyshyn’s 
account, not transduced.” This leads one to wonder what, if not light, is 
transduced in vision. 

To construct a definition of transduction using observer theory, we first 
return to an insight from the field of perceptual psychology: perception in- 
volves hierarchies of inferences. In vision, for instance, Marr (1982) post- 
ulates a hierarchy of inferences, with distinct levels of the hierarchy identified 
by distinct representations. Each representation contains the conclusions of 

‘One might argue that this is unfair. What is transduced, after all, is relative to psychophysical lawn that 
hold under some conditions bnt not others. The cases of dark adaptation and electrical stimulation of cortex 
are violations of these “normal” conditions: in each case something interferes with the causal chain from light 
to perceived intensities. This may be so. But notice that someone claiming that journals are transduced could 
similarly cry unfair to the use of holograms to disconfirm that claim. Holograms are surely no more normal 
than rubbing the eyes. And this points to what is perhaps the real weakness in using the method of differences 
to define transduction: the potential for unproductive quibbling over what’s “normal”. 



those inferences which, together, constitute one level of the hierarchy. Spec- 
ifically, inferences whose conclusions regard such low-level tokens as edges 
and blobs feed their conclusions into the “primal sketch”. The contents of 
the primal sketch then serve as premises for perceptual inferences whose 
conclusions regard surfaces - especially viewer-centered descriptions of their 
3D shapes and patterns of occlusion. These conclusions feed into the “29D 
sketch”. The contents of the 2HD sketch, in turn, serve as premises for percep- 
tual inferences whose conclusions regard 3D objects, now represented in 
object-centered coordinates. These conclusions feed into the “3D model”. 

Of course there are controversies about the details of this proposal, for 
example, about whether other levels are needed, whether some levels might 
be skipped, whether there could be feedback in addition to feedforward, and 
so on. These, though properly of central interest to vision researchers, are 
irrelevant for present purposes. What is relevant is this notion: the conclu- 
sions of some perceptual inferences can serve as premises for others. That is 
(using the language of observer theory), there can be hierarchies of observers, 
with an observer at one level receiving its premises from the conclusions of 
observers at other levels. 

This suggests the following definition of transducer and (as a convenient 
precursor) immediate transducer. Immediate transducer is a relation on a set 
of observers; one observer in the set is an immediate transducer for a second 
observer if the conclusions of the first observer are among the premises of 
the second. Transducer is also a relation on a set of observers; it is, techni- 
cally, the minimal transitive relation that contains the relation of immediate 
transducer. Intuitively, one can understand the definition of transducer by 
considering the following analogy: the relation “transducer” is to the relation 
“immediate transducer” as “ancestor” is to “parent”. 

On this definition of transducer it is incorrect to ask what is the transducer 
for, say, vision: there are various transducers in vision. What counts as a 
transducer depends on the observer under consideration. Hildreth’s observer, 
for instance, takes, as its premises, 2D contours with orthogonal velocity 
fields. Therefore another observer, whose conclusions are contours with or- 
thogonal velocity fields, cc;uld serve as a transducer, indeed an immediate 
transducer, for Hildreth’s observer. An observer whose conclusions are, say, 
patterns of light intensity, might also serve as a transducer for Hildreth’s 
observer, but not, presumably, as an immediate transducer. Again, an ob- 
server whose premises are contours with complete (not just orthogonal) ve- 
locity fields and whose conclusions are, say, 3D interpretations, could have 
Hildreth’s observer as an immediate transducer; it could also have, as a 
transducer, an observer whose conclusions are contours with orthogonal ve- 
locity fields. Evidently, on the observer-theoretic definition, any given ob- 
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Suppose that ‘6 is a collection of observers. say ‘6 = CO,, Q2, O+ O,}, all of 
which are immediate transducers for an observer 0. Awd suppose that O1 
does stereo, CL shape from shading, O2 auditorv localization, and O4 some 
type of kinesthetic sensing. Since these observers are immediate transducers 
for 0. among the premises of 0 are conclusions from stereo, shape from 
shading, auditory localization. and kinesthetic sensing. This implies that the 
premise space of 0 must be rich enough to represent this variety of informa- 
tion: it must, in a sense, be “multimodal” with respect to the premise spaces 
of observers in %. In the terminology of Fodor (I983), 0 is informationally 
unencapsulated relative to %. Moreover since, for any observer, Jx maps X 
onto all of Y, its space of pos&le interpretations is no less rich than its space 
of possible premises. Therefore the set of possible interpretations of 0 is 
multimodal relative to %; again in the terminology of Fodor, 0 is domain 
neutral relative to %. Now informational unencapsulation and domain neu- 
trality are, for Fodor, hallmarks of the cognitive as opposed to the perceptual; 



is ter~i~~~~~~. of the “centraP prcxesses*’ as opposed to the “input 
l ‘. We agree. 

This suggests the following definition of cognitive. Let $ be a colleetiQn of 
observers containing 0 and 0. If 0 is an immediate transducer for 6, we 

8 is ~~~~~~~~~~~~~r cqpi~k=- relative to 0. Then we define CC+@&? 
e minimal transitive relation ,+at contains immediately cognitive. 

Thus if 0 is a Wan r for 0, then 8 is cognitive with respect to 0. 
This definition, ough motivated in part by considerations like Fodor’s, 

implies a radically di rent view of mind than the tripartite view that he and 
others espouse. The tripartite view of mind divides mental processes into 
three classes: transducers. input analyzers, and central processes. On this 
view, roughly, transducers convert physical stimuli into descriptions suitable 
for further perceptual processing. Input analyzers then use these descriptions, 
together with restricted kinds of background knowledge. to infer specific 
properties of the external or internal environment. The conclusions of the 
inferences are delivered to the central processes which perform genuine cog- 
nitive processing - for example, deliberation and belief fixation - using, in 
principle, anything that the organism knows or believes. On the tripartite 
view, transducers are distinct from input analyzers, and input analyzers from 
central processes: transduction is not to be confused with perception, nor 
perception with cognition. But, in contrast to this approach, the observer- 
theoretic definition of cognitive suggests that there may be many levels, not 
just three, and no group of levels which are the transducers, rhe input analyz- 
ers, or the central processes. Rather, any observer 0 may be transductive 
relative to some observers and, simultaneousIy, cognitive relative to others. 
And there Iteed be neither inferential top nor noninferential bottom to the 
collection of levels. 

8. Cognitive penetration and theory neutrality 

The hierarchy of observers jrrst discussed may serve to clarify a concern of 
modern philosophy of science regarding the theory neutrality of observation. 
The concern is this. It is widely agreed that theory and experiments are, 
together, crucial to the progress of science, and that scientific theories must 
submit to the rigors of experimental tests to be confirmed or disconfirmed. 
It is also agreed that, for scientific objectivity, empirical data should be inde- 
pendent of theories in the sense that two scientists, holding contradictory 
theories, should be able to agree on the outcomes of critical experiments. 
The philosophical concern, in short, is that the scientists might not agree, 
that the theories they hold might so color their perceptions of the data that 
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in cognitive science: the 
organism, a perceptual ca 
penetrable if some of the 
rational fashion, affect the functionjng of that aq~~ity ( 
definition is admittedly r 
over cases. Churchland (1988) argues that the perceptu 

Neeker cube (shown in Fi 
rability of perception. According to Churchlan 
interpretation of the cube 
perceptual processing, wi 
Fodor (1988) replies that 
rability: there are many 
infinite number, of whit 
hard one tries to see th 
the cognitive penetrati 
among the alternatives 

The intuitions on co 

observers Ci is theory neutral only if it forms a strict partial order under the 
relation cognitive: otherwise the collection is theory laden. Intuitively, a col- 
lection of observers is theory neutral if there is no cognitive penetration, no 
loops in the cognitive hierarchy. Note that this defkrition requires one to 
specify beforehand the collection of observers. It may be that one collection 
G of observers is theory neutral, but that it is contained in another collection 
6’ which is theory laden; a theory-laden collection of observers may contain 
theory-neutral subcollections. When applied to human perception, this adds 
an interesting dimension to the question of theory neutrality. Perhaps there 
are collections of observers in, say, human vision, that are theory laden. This 
does not exclude the possibility of large collections that are theory neutral. 
To settle this issue requires extensive empirical research, enumerating the 
observers in human vision and describing their order under the cognitive 
relation. 



enter is given a precise premise s from among 
n is a probabihty measure on the distin- 

ut what if the observer is not given a precise 
ncertainty or measurement error so that the 

is not a precise premise S, but rather a 
+ on the space of possible premises Y? It’s hard to 

ge here, but, in brief, a natural conclusion for the 

with probability ;t(Y - S) there is no distinguished interpretation; 
with probability R(S) there are distinguished interpretations, and their 
distribution is 11, 

where 11 is defined, for any event A, by 

V(A) = Rq(A) = 2(S)-” J q(s, A n n-‘(s)jL(dS). 
s 

(1) 

Intuitively. k(S) is the probability of having received a “signal”, that is, a 
distinguished premise, and il( Y - S) is the probability of not having received 
a signal. The integral equation simply describes a linear map from probability 
measures, il, representing premises to probability measures, v, representing 
conclusions.” 

An empirical prediction follows fl=om equation (1). According to this equa- 
tion, as one increases the variance (when it can be defined) in the premise 
il, one gets a corresponding increase in the variance of the interpretation v. 
This implies that as subjects are given increasingly blurred or uncertain proxi- 
mai stimuli, their perceptual judgements and responses should increase in 
variance. Evidence that, in fact, this does occur comes from psychophysical 
investigations of visual alignment (Watt & Morgan, 1983), stereo acuity (Hal- 
pern & Blake, 1988), curvature (Wilson & Richards, 1985, 1989), Glass pat- 

“Note that the observer. when viewed as a mapping from premise measures i, to conclusion measures 1.7. 
is more general than a linear system which produces output by convolution. In fact. while the operator E. +- 
Rrl is a linear integral operator. it usually cannot be given by convolution. There are two reasons. First, for 
most observers convolution cannot be defined because the spaces X and Y have no group actions. Second. 
even when the requisite group actions exist, the operator A H ilq still cannot. in general, be represented by 

convolution. The operators that can be so represented are. speaking briefly, those which commute with the 
group action. For example, in the familiar case where the spaces are R” with its additive group structure. the 
differential operators with constant coefficients commute with the group action: that is. they commute with 
translation: this is the case familiar to engineers. In short. most observers cannot be described by transfer 
functions. 
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terns (Maloney, Mitchison, & Barlow, 1987), vernier acuity (Bradley & Skot- 
tun, 1987: Morgan & Regan, 1987), visual oscillation (Buckingham & 
Whitaker, 1985), and interference fringes (Williams & Colletta, 1987). 

Such an account of measurement uncertainty is, of course, just a beginning. 
It must be fleshed out with a study of quantization uncertainties (Bennett, 
Hoffman, & Prakash, 198Q). and it must be allowed recourse to the sophisti- 
cated tools and language of statistical decision theory. One advantage, how- 
ever, of this formalism as it now stands is that it decouples premise uncer- 
tainty, described by A, from the perceptual uncertainty, described by 11. that 
exists even in the absence of any premise uncertainty. For example, in the 
inference of RFA motion we found that there are two RFA interpretations 
compatible with each premise in S, even when the point of S is precisely 
known. This perceptual uncertainty is modeled formally by having 1;7 give 
nonzero weight to both interpretations, not just to one. If the point of S is 
not precisely known, we represent this by a measure ii on S, thereby decou- 
pling the representation of premise uncertainty. namely A, from the represen- 
tation of perceptual uncertainty, viz., $” 

The observer thesis states that the definition of observer provides a normal 
form for the description of all perceptual capacities: each perceptual capacity 

“Though this is not the place for technical developments. one bears brief mention. Suppose an RFA 
observer is shown a display that can almost. though not quite. be given an RFA interpretation: the premise 
is a point of Y - S very close to S (granting. for the moment. some notion of distance). Since. by definition 
of observer. the interpretation kernel assigns probability measures only to premises in S. such a premise should 
receive no interpretation. But human subjects. on the contrary. when shown such displays. sometimes report 
seeing a 3D interpretation that is not quite an RFA interpretation: it looks like a rigid body in fixed-axis 
motion. E *,;p’~ tl:~+ it is slightly nonrigid or wobbly. This discrepancy is best understood in terms of a distinc- 
tion commorily drawn by cognitive researchers: competence versus performance. The RFA observer provides 
a competence theory of the capacity to perceive RFA motion. To account for performance. according to 
observer theory. requires. in addition to the RFA observer itself. two kernels. The first. a “noisy” interpreta- 
tion kernel. is a sub-Markovian kernel 0: Y x ‘X -+ [O. I] that respects fibers of II. Intuitively. 4. like 11, assigns 
nonzero probabilities to RFA interpretations: unlike 11, it also assigns nonzero probabilities to interpretations 
that are almost. but not quite. RFA interpretations. The second kernel. a “retraction” kernel. is a kernel R: 
xx t - [O. 11. such that. for each _V E X. R(.L E) = 1 or R(s, E) = 0. R relates 4 to 11, thus connecting 
performance to competence. Intuitively, R describes, for each “almost RFA” interpretation, the truly RFA 
interpretations it most resembles. R and 4 satisfy a compatibility requirement: if E = {s E XI R(s, E) = 1). 
and & = X - E’, then for all y E Y, Q(y, ,!?) = 0. The two kernels R and 0 are, together. a “performance 
extension” of the original “competence” observer. In this paper we have cast the observer thesis as a compe- 
tence thesis: if one prefers. it can be cast as a performance thesis. Replace “observers”. in the statement of 
the th&s, by “observers with performance extensions”. This entire issue is discussed in more detail by 
Bennett, Hoffman, and Kakarala (1990). 



can be described, canonically, as some observer. It might seem to some that 
a theory general enough to warrant such a claim must also be too general to 

have empirical import. Therefore in this last section we illustrate the empir- 

ical import of observer theory by comparing some of its implications with 
those of another general formalism sometimes used in vision research, namely 
regularization theory. 

The following definitions lie at the core of regularization theory. A 
mathematical problem is said to be IYell posed if it has a solution, the solution 
is unique, and the solution varies continuously as one varies the initial data 
supplied for the problem. Otherwise the problem is said to be i/Z posed. A 
regrrlarizafion wzefhod is any method that transforms an ill posed problem into 
one that is well posed. 

Poggio, Torre, and Koch (1985) propose that certain capacities in early 
vision can be modeled as regularizations of ill posed problems: a particular 
regularization algorithm models a visual capacity if the solution of the al- 
gorithm, for any initial data L!, corresponds to the interpretation given bv the 
visual capacity when it is presented with the proximal stimulus L/. Regulariza- 
tion theory has proved a valuable source of insight and concrete progress in 
the study of several capacities in earlv vision. Nevertheless, Poggio et al. are 
careful not to suggest that regularization can be used as a theoretical model 
for perceptual capacities in general, and it is helpful to review the reasons 
why - particularly as a means to better understand the formalism and empir- 
ical import of observer theory. 

Three aspects of regularization theory preclude it from serving as a general 
framework for perception: (1) its requirement that interpretations be unique; 
(2) its requirement that interpretations vary continuously with the data; and 
(3) its requirement that interpretations always exist. We consider these in 
turn and compare them with the observer formalism. 

Uniqueness 

By definition, any regularization technique, whether it be a standard 
technique (Tikhonov, 1977) or some stochastic technique (Marroquin, Mit- 
ter, & Poggio, 1987) yields a unique solution for each initial datum. Regulari- 
zation theory, then, if interpreted as the general structure of perceptual 
capacities, leads to the empirical prediction that there are no multistable 
perceptions, that instead all perceptions are unique. This prediction is, of 
course, false, and is a primary reason why regularization theory is not pro- 
posed as a general theory of perception. Consider again, for example, the 
theory of structure from motion discussed in section 2. Here, no initial datum 
is assigned a unique 3D interpretation; each datum is either given no interpre- 
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tations, or given two. Moreover, as predicted by this theory, in displays of 
fixed-axis motion subjects either see no interpretations or they see two.” If 
one augm_ents such displays by a’rlowing points in front to occlude points 
behind, then subjects see a unique 3D interpretation (Braunstein et al., 1982). 
Thus human vision can, typically. achieve a unique interpretation of a natural 
scene by combining distinct sources of information, and by adjudicating 
among the (often nonunique) interpretations of distinct capacities. But to 
capture this in a general theory requires a formalism sufficiently flexible to 
model both unique and multistable percepts. 

Observers represent unique and multistable percepts by means of the con- 
clusion kernel rj. This kernel assigns to each distinguished premise, S, a prob- 
ability measure, F,$s, a), giving positive probabilities only to distinguished in- 
terpretations that are compatible with s. There might be one or, in the mul- 
tistable case, two or more such distinguished interpretations; the kernel for- 
malism handies all cases with equal facility. A unique percept corresponds to 
a conclusion ~(s, 0) giving a probability of one to a single interpretation and 
a probability of zero to all others: a multistable percept corresponds to a 
conclusion z;7(s, 0) that gives no single interpretation a probability of one, but 
rather that gives two or more interpretations, together, a probability of one. 

Another prediction follows from the uniqueness requirement of regulariza- 
tion theory: blurring of the sensory data should not increase variance in 
subjects’ perceptual interpretations. In a vernier acuity task, for example, 
regularization theory predicts that subjects should be no less certain about 
the relative positions of two lines when the lines are blurred (say by defocus- 
ing) than when the lines are in sharp focus. In both cases regularization 
theory requires, despite the differences in signal to noise ratio, that the solu- 
tion be a single point of the solution space. An algorithm which did not return 
a single, unique, solution in the case of the blurred stimulus would ipso facto 
not be a regularization algorithm. A regularization algorithm could, of 
course, use probabilistic methods such as Markov random fields to arrive at 
its unique interpretation, and these methods might involve distributions with 
higher variance in the case of the blurred stimulus; but when the algorithm 
is finished, the solution, by definition, must be unique. This runs contrary to 
the prediction of observer theory, discussed in the previous section, that 
variance in perceptual interpretations should increase monotonically with in- 
creases in variance of the sensory data. 

“Other examples of multistabilitv are quite common. They arise in the perception of line drawings (e.g.. . 
the Necker cube). shape from shading . shape from occluding contours, the location of sound sources. and 
syntax. Some useful sources on multistuhility are Attncave (1971). Grcgary (I%(,. 1070). Mnrr (1082). 
Ramachandran ( l990). and Wolfe ( 1986). 
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Continuity 

By definition, any regularization technique must yield solutions which vary 
continuously as the initial data vary. Thus any perceptual capacity which 
exhibits discontinuous changes in percepts, without a concomitant discontinu- 
ous change in the proximal stimulation, is beyond the purview of every reg- 
ularization technique. Examples include, once again, all multistable percep- 
tions. Particularly clear are cases where one experiences a discontinuous 
change in percept when there is, in fact, no change in the stimulus. This often 
occurs, for example, when one views a Necker cube. One might argue that 
in the case of the Necker cube the effective proximal stimulus does change, 
due say to eye movements. But such movements can easily be eliminated by 
flashing the Necker cube in a darkened room so as to produce a retinal 
afterimage of the cube; the afterimage, despite being stabilized on the retina, 
is still perceived to flip back and forth. 

To avoid possible misunderstandings here, it is important to distinguish 
between two types of discontinuities: (I) discontinuities in the function that 
maps initial data onto solutions; and (2) discontinuities in the solutions them- 
selves. Only discontinuities of type (1) are, by definition, precluded by reg- 
ularization theory; discontinuities of type (2) are allowed. Consider, for 
example, surface reconstruction in random dot stereograms. Regularization 
theory allows the surface that is reconstructed for a specific stereogram to 
have discontinuities of depth and orientation (e.g., Blake, 1984; Blake & 
Zisserman, 1986, 1987; Marroquin, 1985; Terzopoulos, 1983). But regulariza- 
tion theory requires that as one continuously changes the stereogram, the 
surface (with all its discontinuities) reconstructed for the stereogram must 
also change continuously. It is this continuity requirement of regularization 
theory that is contradicted by human vision, as the Necker cube example 
above makes clear. 

Observers model discontinuous changes in perception by means of the 
conclusion kernel 21. For example, in the case of RFA motion discussed in 
section 2, r typically gives positive probabilities to two distinct interpreta- 
tions. Such an q indicates that there are discontinuous jumps between the 
two interpretations. l2 

“Speaking a bit more technically. the notion of discontinuity requires a topological space. Now every 
topological space can be viewed, naturally, as a measurable space whose u-algebra is that generated by the 
open sets of the topology. But the converse is not true: there are measurable spaces that cannot be viewed 

as topological spaces. In this sense, measurable spaces are more general than topological spaces. and it is 

measurable spaces that figure in the definition of observer. Thus there are observers and. by implication. 

perceptual capacities for which continuity of interpretations not only fails to be required - it fails to be defined. 
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Existence 

A problem is ill posed if there are initial data for which no solutions exist. A 
regularization method, by definition, alters the problem so that, for each 
initial datum, it has a solution. Were regularization theory taken then, as is, 
to be a general theory of perception, it would imply the following prediction: 
Each well-formed theory of a perceptual capacity specifies, in principle, pre- 
cisely one interpretation for each possible input datum. Empirically, it would 
predict that each perceptual capacitv assigns preciselv one interpretation to _ 
each of its possibie inputs. But this-is easily disconfirmed. Return again to 
the example of RFA motion discussed in section 2. According to the propos- 
ition of that section, a generical!y chosen input has no RFA interpretations. 
It is therefore assigned no interpretation. Only inputs in a distinguished sub- 
set, intuitively a subset of probability zero, are compatible with RFA in- 
terpretations, and only these are given distinguished interpretations. This is 
easily checked in the lab. One finds that most displays, consisting of three 
views of three points, do not lead subjects to any coherent interpretations. 
RFA or otherwise: subjects report seeing no 3D interpretations. Only if one 
carefully programs the motions of the dots, so that the resulting display is 
among the small collection of distinguished inputs specified by the proposi- 
tion, do subjects report seeing 3D interpretations. 

Why should many of the possible inputs be given no interpretation? Quite 
simply, to minimize illusions. A perceptual capacity must be able, in princi- 
ple, to discriminate those inputs that have legitimate interpretations from 
those that do not. Otherwise it will be needlessly subject to illusions. This 
point is treated clearly by Pullman (1979) in his analysis of the inference of 
rigid 3D structure from image motion. He finds that for displays consisting 
of three views of four points, almost none have rigid interpretations. This 
implies, he shows, that false targets (false rigid interpretations) have probabil- 
ity zero. Illusions are not eliminated but, because there is a way to discrimi- 
nate the displays (initial data) having rigid interpretations from those that do 
not, they are minimized. This ability to discriminate initial data having solu- 
tions from initial data having no solutions is absolutely essential for reducing 
the probability of false targets. If a perceptual theorist, in designing a theory 
of a perceptual capacity, wants to make the probability of false targets to be 
zero, then a very effective method, and the method most often employed in 
the computational perception literature, is to make sure that almost all initial 
data have no solutions, that is, to make sure that the perceptual problem is 
ill posed for almost all initial data? 

“In Ullman’s theory. as we mentioned, almost all inputs have no rigid interpretations. Those inputs that 
have rigid interpretations have, it turns out, two or more. No inputs have precisely one rigid interpretation, 
Therefore Ullman’s theory is completely ill posed. So are many others, 



Observer theorv does not require each input, that is, each initial datum, 
to have an interpretation. For observers, the premises that have interpreta- 
tions are a subset of the possible premises. Thus it is possible, as discussed 
in section 5, to discriminate among premises and thereby to minimize the 
probabilitv of illusions. ” u 

From this discussion we would draw one concluding point: formalisms as 
general as regularization theory or observer theory can have empirical impli- 
cations. The implications of regularization theory, though perhaps true for 
some perceptual capacities are, we have seen, not true for all capacities. The 
same evidence that contradicts the implications of regularization theory, 
when construed as a general theory of perception, does not appear to con- 
tradict the implications of observer theory. Or at le=tst not yet. 

Appendix 

A formal theory should employ formalisms general enough to cover the rele- 
vant cases, yet specific enough to display the appropriate structures. In con- 
structing a definition of observer, this consideration has led to the use of 
three formalisms that, unfortunately, are not generally familiar - namely 
measurable spaces, measwable frlnctions, and Markovian kernels. While these 
concepts are not difficult, their acquaintance is essential to a clear under- 
standing of observers. We review them. 

In the example of structure from motion we found that if there are any 
RFA interpretations compatible with a premise, then in fact there are two. 
We decided, therefore, that the appropriate conclusion is a probability mea- 
sure which gives a weight of Q to each interpretation. But if we decide this 
then, of course, our representation of the possible interpretations must use 
a formalism that allows us to talk of probabilities. Certainly Euclidean spaces, 
properly construed, allow this. But we cannot expect that every perceptual 
capacity has a set of possible interpretations that-can be described by some 
Euclidean space (consider, for example, shape recognition, or language ac- 
quisition). Requiring that the set of possible interpretations form a Euclidean 
space is simply too restrictive. What we need instead is a more general kind 

“A bit more technically. to discuss the probability of illusions for an observer. 0 = (X. Y. E, S. x, 11). 
we must introduce, as discussed in section 5, an unbiased measure ,N on X. Then /4.-r-‘(S) - E). when 
compared to /1(X - x-‘(S)). measures how likely it is that a nondistinguished interpretation will lead to an 

illusion. Ideally, we want &r-‘(S) - E) to be zero, One can show that a sufficient (but not necessary) 

condition for this to obtain is to have x,&S) = 0, where the measure IT,JI on Y is defined. for all A E 3. by 

,7,,u(A) = p(.7-‘(A)). Thus if S has measure zero, then illusions have measure zero. 
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of space, but one that still allows us to talk of probabilities. A quite general 
such space is called a menswcrble space. 

A measurable space has only two parts. First, it has a set of points, say X. 
These points are called the possible outcomes. Second, it has a collection of 
subsets of X. usually denoted ‘1 (“curly x”). This collection is called the set 
of ewnts, and satisfies some simple properties we’ll come to shortly. But first 
let’s take an example. 

Suppose we’re interested in knowing how likely it is to get exactly two 
heads in three flips of a coin. There are eight possible outcomes for the three 
flips (viz., HHH, HHT. HTT, etc.). These eight outcomes form the set X. 
If we’re interested in the event that exactly two heads come up in three 
flips, then we’re interested in the following subset of outcomes: 
{ HHT, HTH, THH}. This subset, call it A, should be one of the subsets in 
our collection, Z%. of events. Now if A is an event of possible interest, then 
surely the event “not A” is also. Moreover, if B is another event of possible 
intere>,t, then surely “A and B” and “A or B” are also of possible interest. 
Finally, the event that there was some outcome. that is, the event X itself, 
is of interest. Putting these considerations together, we are led to stipulate 
that the collection, 3, of events should contain X itself and should be closed 
under complementation, union, and intersection. In this case we call the 
collection, 3, an nlyebnz of events: if 2 is closed under countable union, we 
call it a o-algebra. We summarize. 

A mensrrrable space (X, 13,) is a set of outcomes, X, together with a 
o-algebra, 3, of X-events. 

Having a measurable space (X, %) 5 v ,Q can turn it into a measure space by 
defining a mensrrre. Intuitively, a measure is a way to generalize the notion 
of an area or a volume. More formally, a measure is a countably additive 
function, ,~4, from %’ into the extended real numbers u { oc 1, that sends the 

empty set to zero. By saying that ,U is countably additive we mean that if Ai 
is a sequence of events in %! that are mutually disjoint, then p(uiAi) = 
zip(Ai)* If, moreover, the measure ,U gives a total weight of one to the whole 
space X, that is if p(X) = 1, then ,u is called a probability measure, and 
satisfies our intuitive notion of a probability. 

Enough for measurable spaces, now for measurable functions. (We use 
measurable functions to describe the “perspectives” of observers.) Suppose 
that we have two measurable spaces, say (X, %?) and (Y, %), and suppose 
that we need to talk of a function, such as projection, between these two 
spaces. It is useful if the function respects the structure of events on the two 
spaces, in the sense that it takes events in one space to events in the other: 
this allows us to use the function to compare probabilities of events on the 



two spaces. A function which respects the structure of events is called l?zeasl(r- 
able. We state this more precisely. 

Given two measurable spaces (X, x) and (Y, 3) a measurable firnction is 
a map ,7: X- Y such that, for all events A in 3, the set ;r-‘(A) is an event 
in 25 

The notation 3-l (A) denotes the set, B, of points in X such that x(B) = A. 
Now on to Markovian kernels. One can think of a Markovian kernel, q, 

as an indexed collection of probability measures. One first specifies some 
index set S and a space E. Then to each point s in S one assigns a unique 
probability measure on E. This collection of probability measures, each as- 
sociated to its own point in S, is the kernel q. Throughout this paper we 
denote by the symbol &;) the probability measure associated tlo point s. If 
S and E are finite sets, then q can be represented as a matrix, each row of 
the matrix representing a probability measure on E and each row number its 
associated index. Understanding this intuitive description of a Markovian 
kernel will suffice for understanding observers. But, for completeness, we 
define such kernels more precisely: 

A MarkorGan kernel on (E, %) relative to (S, y) is a mapping 21: S X % + 
[0, 11, such that 
(1) for every s in S, the mapping A -+ q(s, A) is probability measure on 

E, denoted by I; 
(2) for every A in y, the mapping s -+ ~_l(s, A) is a measurable function 

from S to [0, 11. 
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