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We explore a method of representing solid shape that is useful for visual recognition. We assume that complex
shapes are constructed from convex, compact shapes and that construction involves three operations: solid union
(to form humps), solid subtraction (to leave dents), and smoothing (to remove discontinuities). The boundaries
between shapes joined through these operations are contours of extrema of a principal curvature. Complex objects
can be decomposed along these boundaries into convex shapes, the so-called parts. We suggest that this decomposi-
tion into parts forms the basis for a shape memory. We show that the part boundaries of an object can be inferred
from its occluding contours, at least up to a number of ambiguities.

1. INTRODUCTION
On the basis of studies showing selective impairment in
object recognition in persons with unilateral cerebral lesions,
Warrington and Taylor suggested that recognition is a two-
stage categorization process.12 Persons with right-hemi-
sphere lesions have difficulty in deciding whether pictures
representing different views of an object are in fact showing
the same physical object. Persons with left-hemisphere le-
sions are able to classify different aspects of an object as
belonging to the same physical stimulus, but their ability to
attach meaning to their percept is impaired. This suggests
that in the first stage of visual recognition the image is
categorized on perceptual grounds only, whereas a perceptu-
al category is given semantic content in the second stage. In
this paper we will focus on the perceptual categorization
stage and explore a method for representing solid shape, a
method useful for general-purpose visual recognition.

We will focus on symbolic representations of shape, which
aim at a structured description of complex objects. 3 4 We
consider a representation to be structured if it treats a com-
plex object as a configuration of irreducible elements.
Thus, one could choose an a priori set of shape primitives
and use them to approximate a complex object. Blum, for
example, introduced the symmetric axis transform, in which
two-dimensional (2-D) contours are approximated by a col-
lection of maximal disks, whose centers compose the so-
called symmetric axis of the shape. 5 A shape can then be
segmented on the basis of the behavior of the symmetric axis
and the way in which the contour changes its shape relative
to the symmetric axis. This approach has been extended to
three-dimensional (3-D) objects by approximating their
shape by spheres.6 -8 A more general and higher-level shape

primitive is the generalized cone or cylinder. 9 In the vision
system ACRONYM, for instance, airplanes are modeled in
terms of a set of generalized cones.'0 In this primitive-based
approach to shape representation, the description of an ob-
ject in terms of shape primitives determines its decomposi-
tion into parts, either directly as with generalized cones or
indirectly as with the disks and spheres in the symmetric
axis transform. If objects do indeed consist of generalized
cones or some other primitives, as might be the case with
industrial products, then this approach results in a satisfac-
tory representation. In general, however, there will always
be objects whose shape defies effective description in terms
of some set of primitives. And extending the set of primi-
tives does not provide for a more principled theory of shape
representation.

Instead of defining parts by their shapes, one could define
parts by their boundaries."" 2 But which class of curves on
the surface of an object should one use as boundaries be-
tween parts? One choice can be motivated by considering
two arbitrary objects that are made to interpenetrate (Fig.
1). In general, the new object will have a closed contour of
concave discontinuity, the part boundary, separating the
two objects that were joined [Fig. 1(b)]. Thus we can de-
compose composite objects along contours of concave dis-
continuity or their smoothed derivatives, contours of nega-
tive minima of a principal curvature. In the present paper
we will explore this boundary-based approach to shape
representation. We will define some additional part bound-
aries, enabling us to decompose objects into convex, compact
shapes-the so-called parts. We refer to such a decomposi-
tion as the deep structure of an object, and we suggest a
shape memory based on deep structures.
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(a)

(b)
Fig. 1. Whenever an object penetrates another object, the contour
of intersection (- -) will be a contour of concave discontinuity of the
tangent plane with a probability of 1. Two objects are shown before
(a) and after (b) penetration.

Human observers can often recognize familiar objects
from their contours or silhouettes, indicating that these 2-D
outlines convey sufficient information to distinguish be-
tween different 3-D objects. What does this mean in the
context of a shape memory built on deep structures? It
means that the human visual system can infer deep struc-
ture from contours. Koenderink and van Doorn showed
that the shape of the occluding contour conveys information
about surface curvature at the corresponding points on the
surface.13"14 In this paper we will study how this knowledge
of surface curvature can be used to derive deep structures
from occluding contours.

The remainder of this paper is organized as follows. In
Section 2 we present elements of a theory of 3-D shape
representation that is useful for visual recognition. In Sec-
tion 3 we show how to infer part boundaries and thereby
deep structures from the occluding contours of an object.
Finally, in Section 4 we discuss the proposed theory.

2. A REPRESENTATION OF THREE-
DIMENSIONAL SHAPE

A. Regularities and Vision
It is the task of a general-purpose vision system to assign the
most plausible interpretation to images of the external 3-D

world. However, any given image can correspond to infi-
nitely many states of the environment. For example, the
image of a cylinder under orthographic projection in the
direction of its length axis will always be a circle, regardless
of the length of the cylinder. In other words, we have a so-
called ill-posed problem; i.e., the available input does not
warrant a unique interpretation. Formulating what extra
information can be used to obtain a well-posed problem has
been the focus of much of the recent work on vision.9

The extra information needed to interpret an image is
usually expressed in terms of constraints on, for instance,
the shape or possible deformations of objects in the 3-D
world. Marr and Poggio based their theory of stereopsis on
the assumptions that a physical marker has a unique posi-
tion in space at any one time and that matter is cohesive.15
To recover the shape of an object from a'sequence of images,
a process variously known as structure-from-motion or ki-
netic-depth-effect, one can assume that objects are globally
rigid16 or locally rigid.17

The problem of representing 3-D objects in terms of parts
is similarly ill posed, since there are infinitely many ways in
which a complex object could be decomposed.

B. Transversality and Parts
The question we now pose is whether there exist regularities
in the structure of 3-D objects that would allow a meaningful
definition of the term part of an object. Consider a possible
genesis of a composite object, an example of which is given in
Fig. 1. A composite object could be obtained by penetrating
one object with another, possibly followed by a smoothing of
the contour of intersection. This is not to say that the
composite actually arose in this manner, an obvious counter-
example being limbs of animals. Our only concern is to find
a principled representation of the shape of an object. Thus
the composite object can be thought to consist of two objects:
the penetrant and the penetrated object, separated by a
contour of intersection. Since the original objects were cho-
sen arbitrarily, we cannot use their shape to identify the
parts of the composite object, and the question becomes
whether the contour of intersection has some distinguishing
property. The answer is yes and is stated in the following
transversality principle:

Whenever two arbitrarily shaped, smooth surfaces are
made to interpenetrate, they intersect transversally with
a probability of 1.

This means that, generically, at a given point along the
contour of intersection, the tangent planes to the penetrat-
ing surfaces differ. In other words, this contour will be a
contour of discontinuity of the tangent planes (Fig. 1). As-
suming the object to be the figure and positive surface nor-
mals to be oriented such that they point into the figure, the
contour will be a contour of concave discontinuity. It has
been proved that smoothing of such discontinuities gives rise
to contours of negative minima of a principal curvature
(Readers not familiar with differential geometry can find
brief descriptions of relevant terms in Appendix A). One
can thus propose that smooth surfaces be partitioned along
contours of negative extrema of a principal curvature. This
partitioning is unique, and the resulting representation is
unambiguous. The sequence of penetrations of objects that
produced the composite object is, of course, not uniquely
defined.
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Generic penetrations, however, do not generate all possi-
ble shapes; counterexamples are elbows and dents. In case
of an elbow, the intuitively appealing part boundary is an
open contour of concave discontinuity. A dent, on the other
hand, is separated from the surrounding surface by a closed
contour of convex discontinuity. We include these cases by
introducing the operations of nongeneric penetration and
subtraction.

C. Aspects of a Theory of Shape Representation
In the previous subsection we discussed the term "part of an
object." We now formalize that discussion and present the
framework for a theory of 3-D shape representation based on
the notion of parts.

Any well-defined scheme to decompose complex objects
into simpler ones has to terminate; i.e., it has to recognize
certain objects as irreducible. We assume that these irre-
ducible objects are convex and compact, in other words,
objects without any dents or depressions. By assuming cer-
tain shapes to be irreducible or primitive, our approach does
not suddenly become primitive based; we are not going to
look for convex shapes in a complex object. Instead we will
decompose objects along certain part boundaries, a decom-
position that terminates with convex, compact objects. We
further assume that objects can be combined only through
solid union and solid subtraction and that the resulting
discontinuities can be smoothed. Thus we postulate the
following:

Axiom 2.1
The 3-D shape of a smooth object can be described in terms
of primitive shapes or parts, viz., convex and compact ob-
jects.

Axiom 2.2
Parts can be combined only through generic or nongeneric
solid union or solid subtraction. Only these operations give
rise to contours of convex and concave discontinuities or to
their smoothed derivatives, contours of positive maxima and
negative minima of a principal curvature, respectively.

These two axioms form the foundation for our theory of
shape representation. We next define solid union and solid
subtraction precisely and study the part boundaries that
they cause.

Let i be solid objects, and let the surface of each Oi,
denoted surf(Oi), be the zero-level set of an appropriate
function Fi(x), where x = (x, y, z) e S3. The interior of Oi,
indicated by int(Oi), is defined as x E R31fi(x) < 0. For
example, fi(x) = X

2
+ y

2
+ Z

2 - 1 defines a sphere with a
radius of 1, whose surface consists of those points for which fi
is zero.

Definition 2.3
The interpenetration or solid union of 01 and 02 is defined
as follows:

03 = °1 U °2 = XE j31X E °1 or x E 021

= {x e 913 fl(x) < 0 orf 2(x) < 01.

The surface of the new, composite object 03 is then

surf(03 ) = surf(0 u 02)

= X 31x e surf(01) and x int(0 2)

or

x surf(0 2) and x int(01)),

(1)

or, in terms of the functions fi,

surf(0 3) = surf(01 u 02)

= {x e Y,31f,(x) = 0 andf 2 (x) > 0

or

f2(x) = 0 andf,(x) 2 01.

(b)

\~~~III _ \ \ N.

(C) (d)
Fig. 2. Primitives can be combined through (a) generic penetration
(01 U 02), resulting in a closed contour of concave discontinuity
(---); (b) nongeneric penetration (01 u 02), resulting in an open
contour of concave discontinuity; (c) generic subtraction (01 - 02),
giving rise to a closed contour of convex discontinuity; and nonge-
neric subtraction (d), which will yield the same result as (c). Nega-
tive parts are indicated by dashed outlines.

Generically, i.e., with a probability of 1, the contour of
intersection of the surfaces of 01 and 02 will be a closed
contour of concave discontinuity. Bennett and Hoffman
showed that smoothing the contour of concave discontinuity
results in a contour along which the surface has a locally
largest negative principal curvature [Fig. 2(a)].'8 Note that
this contour is located in a hyperbolic (saddle-shaped) re-
gion of the surface. For nongeneric interpenetrations, the
contour of intersection has an interval where the tangent
planes of 01 and 02 are parallel, resulting in an open contour
of concave discontinuity. The shape of the composite object
then resembles an elbow [Fig. 2(b)].

Removing 01 from the composite object 03 leaves a dent
bounded by a contour of convex discontinuity. We can
express this operation in terms of closed-set solid subtrac-
tion of 01 from 02 as follows.

Definition 2.4
The closed-set solid subtraction of 01 from 02 is defined as
follows:

01

(2)

(a)

--.-- /I 

(3)
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04 = 02 - 01 = 0X e 3 IX 6 02 and x s int(O1 )1
= {x e R3lf 2(x) < 0 and f1 (x) > 01; (4)

and the surface of the new object 04 is defined as

surf(04 ) = surf(0 2 - 01)

= X E ]?3 1x E surf(02) and x $ int(01 )

or

x e surf(01) and x e 021 (5)

We refer to the subtracted part as the negative part to
distinguish it from positive parts, which correspond to phys-
ical parts of the object. The surface of the composite object
has a closed contour of convex discontinuity composed of the
points satisfying f1 (x) = f2(x) = 0. Smoothing the convex
discontinuity gives rise to a contour along which the surface
has a locally largest positive principal curvature [Fig. 2(c)].
Gaussian curvature along this contour can be positive (con-
vex but not concave) or negative (saddle shaped), or it can
alternate between the two. Note that even if the original
penetration of the two convex objects had been nongeneric,
subtraction results in a contour of convex discontinuity that
is closed [Fig. 2(d)].

We defined two operations on solid objects, solid union
and solid subtraction, and mentioned smoothing as an oper-
ation to remove discontinuities. Applying these operations
results in contours of extrema of a principal curvature, as a
consequence of the principle of transversality. We now use
contours of extrema to partition an arbitrary composite ob-
ject. For example, from the presence of a closed contour of
negative minima of a principal curvature on the surface of an
object, we infer that that contour resulted from solid union
of two positive parts. Before we can give the complete rules
for finding part boundaries, we have to introduce some ter-
minology regarding the deformation of contours.19

Definition 2.5
A contour p is homotopic to a contour q if p can be continu-
ously deformed into q. The deformation is called a hom-
otopy from p to q.

Definition 2.6
A homotopy between contours p and q is permissible if none
of the intermediate contours intersects a contour of extrema
of a principal curvature other than p or q.

Definition 2.7
The following partitioning rules define part boundaries on a
smooth surface of genus zero (that is, without any holes):

(1) A closed contour of negative minima of a principal
curvature is a boundary between two positive parts (indicat-
ed B,-).

(2) An open contour of negative minima of a principal
curvature is part of a boundary between two positive parts
(Bo-), unless the contour is located in a concave region.

(3) A closed contour of positive maxima of a principal
curvature is a boundary between a positive and a negative
part if the contour is permissibly homotopic to a contour
lying within the hyperbolic region separating the two pro-
spective parts (B,+).

(4) An open contour of positive maxima of a principal
curvature is not a part boundary.

Rules (1) and (4) are self-explanatory. The qualification in
rule (2) serves to exclude the case of a Bo- at the bottom of a
concavity or dent. The condition in rule (3) is based on the
fact that smoothing the contour of convex discontinuity
caused by solid subtraction always results in a hyperbolic
region. Thus the edges of a cube that have been smoothed
to form closed contours of positive maxima of a principal
curvature are not B,+. This corresponds to the way in which
a human observer appreciates the shape of a cube: The
cube's edges are not considered to be part boundaries but are
considered to be merely features of its shape.

Applying these rules to a complex object results in its
decomposition into irreducible objects. What will the shape
of these irreducible objects or parts be like? Assume for a
moment that a part is convex except for a hyperbolic region.
Consider the family of lines of curvature along which princi-
pal curvature changes from positive to negative and back to
positive as we go from the convex to the hyperbolic region
and back to the convex region. Obviously, principal curva-
ture has at least one minimum value along these lines of
curvature, resulting in contours of negative minima of a
principal curvature, i.e., part boundaries, in the generic case.
Consequently a part cannot contain any hyperbolic regions.
By reasoning along similar lines, one can also show that a
convex object with a concave dent can still be reduced, ex-
cept possibly in the presence of umbilical points (at umbi-
lics, the principal curvature is the same in all directions; for
example, all points on a sphere are umbilical). If the convex
and concave regions both have an umbilical point where
principal curvatures attain their extreme values, there will
be no contours of extrema of principal curvature along which
to partition the surface.

Let us examine some applications of the partitioning rules
and determine whether the human visual system uses them.

Example 2.8
Figure 3(a) shows a bonelike object having two B,-'s. We
can therefore partition it into three positive parts, which are

(a)

(b)
Fig. 3. (a) A bonelike object with two closed contours of negative
minima of a principal curvature (B,-); (b) its decomposition into
parts.
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C

Di

D2

Fig. 4. Two mushroomlike shapes (M1 and
M2). Depending on the sequence in which par-
titioning rules are applied, M1 has two decom-
positions (D1 and D2 ), whereas M 2 has only one
(D1).

combined through solid union. The concave discontinuities
caused by the solid unions have been smoothed to such an
extent that one of the parts became hidden [Fig. 3(b)]. This
example illustrates that in partitioning a complex object we
do not simply look for convex objects.

Example 2.9
The partitioning rules do not always result in a decomposi-
tion that corresponds to the human appreciation of an ob-
ject's shape. Consider, for example, the two mushroomlike
objects M1 and M2 in Fig. 4. Both have a B,- and a B+;
hence both can be decomposed into a positive part (the stalk
of the mushroom) and a positive part with a negative part
(the cap), resulting in decomposition D1. But human ob-
servers would consider M1 to have the structure D2 rather
than D1. We can solve this problem by applying the parti-
tioning rules in a certain sequence: First apply the rules for
B,-'s and Bo-'s until there are no more contours of negative
minima of a principal curvature (resulting in a partial de-
composition), and then apply the rules for B,+'s to the com-
ponents of the partial decomposition. In case of M1 the
partial decomposition consists of two positive parts, one
having aB+. Rule (3) no longer applies to the latter compo-
nent, as there is no permissible homotopy to a contour in a
hyperbolic region. The partial decomposition of M2, on the
other hand, consists of a positive part and a positive part
with a dent. Thus rule (3) still applies.

Example 2.10
Consider the cosine surface shown in Fig. 5. If it is assumed
that we are looking down on the surface, partitioning rule (1)
predicts negative minima part boundaries (B,-) whose loca-
tions are indicated by concentric lines on the surface. This

decomposition into concentric ridges corresponds to the way
in which a human observer would partition the surface.
Rule (3), however, predicts another set of part boundaries,
namely, the three contours of positive maxima (B,+), lying
between the B,-'s. It seems then that the human visual
system prefers B,- over B,+, at least under these circum-
stances. To incorporate this preference, the rule for B,+'s
can be modified to include the necessary condition that
there be no permissible homotopies to B,-'s on either side of

Fig. 5. Cosine surface obtained by rotating a cosine curve about the
vertical axis. Assuming that we are looking down on the surface, it
is decomposed into three concentric ridges, whose boundaries are
indicated by concentric circles.
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a tentative B,+. Note, however, that the resulting parts are
not convex. A similar situation occurs with a torus, which
does not have any part boundaries at all. We suspect that
we can account for these cases in an extension of the existing
theory that includes objects with holes (genus greater than
zero). It is, for instance, possible that we would have to
consider some nonconvex objects as irreducible.

In summary, we have defined rules to decompose an object
into parts, thereby revealing its so-called deep structure.
The deep structure of an object specifies its constituent
parts and their interrelationships. It indicates, for example,
that a dented object consists of a positive and a negative part
and that these parts are related through solid subtraction.
Note that the exact configuration of the two parts is not
represented at the level of deep structure and that negative
parts do not correspond to physical parts. By specifying the
exact configuration of parts and the smoothing of the con-
tours of discontinuity, the surface structure is obtained.
Since these specifications transform deep structure into sur-
face structure, they will be referred to as transformation
rules. (We borrowed these terms from Chomsky's extended
standard theory of syntax.20 21 Shepard also used the terms
deep structure and surface structure in the context of vi-
sion.3 In his terminology, surface structure refers to the
proximal stimulus, i.e., the image of an object, and deep
structure refers to the internal representation of that ob-
ject.) We can use the deep structure of objects to define
equivalence classes. Objects in the same deep structure
class can be differentiated through different transformation
rules. In other words, we propose that objects be catego-
rized first on the basis of their deep structure and then on
the basis of their surface structure.

3. SURFACE SHAPE AND PART
BOUNDARIES FROM OCCLUDING CONTOURS

In the previous section we developed a theory of shape
representation based on the notion of parts that can be
combined through penetration and subtraction. We found
that the resulting boundaries between parts can be charac-
terized in terms of surface curvature: Smoothed part
boundaries are contours of extrema of a principal curvature.
Thus, in order to decompose an object into its parts, we have
to locate part boundaries, which, in turn, requires some
knowledge of surface curvature. Surface curvature can be
computed from a number of sources: e.g., depth informa-
tion obtained through stereo9"l5; structure-from-motionl617;
shading22 ; motion parallax23 ; and occluding contours. 4 24

Some of these sources are richer than others: motion paral-
lax, shading, and occluding contours yield only the sign of
Gaussian curvature, whereas the more detailed depth infor-
mation obtained through stereo or structure-from-motion
provides Gaussian curvature.

We will focus our attention on occluding contours because
they constitute images that are minimal in the sense that
only discontinuities of the mapping from surface to image
are indicated and because the human visual system can
recognize objects from silhouettes. By studying the mini-
mal conditions in which the human visual system can still
operate, we hope to gain the most pertinent insights into its
functioning. We shall investigate what occluding contours

tell us about surface curvature, and we shall formulate rules
for locating part boundaries on the basis of that knowledge.

A. Shape along Folds
As before, we consider only smooth surfaces of genus zero
(that is, without any holes). Since we assume objects to be
opaque, certain parts of their surface are not visible from a
particular vantage point. The curves on the surface sepa-
rating visible from nonvisible surface patches are called
folds [Fig. 6(a)]. Note that surface normals in visible re-
gions point away from the observer (by convention, surface
normals are oriented such that they point into compact
objects). However, not all regions whose surface normals
point away from the observer are in fact visible, because of
the interposition of other objects or parts of the same object.
A region will, however, always be invisible if its surface
normals are pointing towards the observer. We can there-
fore define the fold locus as follows:

Definition 3.1
A fold is a locus of points on the surface where the unit
surface normal N is orthogonal to a unit vector V in the
direction of the line of sight; N * V = 0.

Since we are considering only compact and smooth ob-
jects, folds form closed, smooth curves. By looking roughly
in the direction of the length axis of, say, a pencil, it is
immediately clear that folds are generally not planar or
orthogonal to the line of sight [see also Fig. 6(a)]. This is not
to say that the line of sight and the folds are unrelated. We
show next that their directions are, in fact, conjugate direc-
tions, something that had already been observed by Koen-
derink.1 3 "14

Proposition 3.2
The line of sight and the direction of folds are conjugate
directions.

Proof
Let (x, y, z) be the Cartesian coordinate system centered at a
point P on the fold [Fig. 6(a)]; x is along the line of sight, and
z is in the direction opposite the surface normal N at P. The
x-y plane is the tangent plane at P. Directions in the x-y
plane are given by the direction numbers x : y. For example,
1 : 0 specifies the direction along the x axis. We can approx-
imate the surface x(x, y) by a Monge patch of the form [x, y,
f(x, y)], such that x = el, xy = e2, and f(x, y) = /2(ax2 + 2bxy
+ cy2), where el and e2 are unit vectors in the direction of the
x and y-axes, respectively.

Let the direction of the fold at P be indicated by the
direction numbers Ox: y, and let ON = NOx + NyOy. By
definition N * V = N el = 0 along the fold, and thus d(N * el)
= N el + N el = N el = 0. Together with dx = xdx +
xydy = el for dx : dy = 1 : 0 (line of sight), we then have ON -
dx = 0; that is, the line of sight and the direction of folds are
conjugate. Intuitively, the difference vector N between
normals at neighboring points on the fold has to be perpen-
dicular to the line of sight, since the normals themselves are
by definition perpendicular to the line of sight.
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Fig. 6. (a) A 3-D surface, seen from a vantage point at infinity, whose visible and invisible (shaded areas) parts are separated by folds; at cusp
points the line of sight is in the direction of the fold. (b) The image of (a) consists of the projections of folds and cusps, that is, occluding con-
tours and terminations, respectively. Folds can be partially occluded by other parts of the surface, giving rise to Tjunctions in the image. (c) A
possible completion of the occluding contours of (b). (d) The sign of curvature of the occluding contour equals the sign of Gaussian curvature at
corresponding points on the fold.

Proposition 3.3
For points on a fold, the direction of that fold is the only
direction conjugate to the line of sight, and therefore folds do
not cross.

Proof
The direction ax: ay, conjugate to some arbitrary direction
dx: dy, is given by the linear equation (Ldx + Mdy)Ox +
(Mdx + Ndy)Oy = 0, where L, M, and N are the second
fundamental coefficients. If we represent the surface as the
Monge patch mentioned in Proposition 3.2, L = a, M = b,
and N = c. By choosing dx: dy = 1 : 0 (the line of sight), we
obtain the equation aax + bay = 0; that is, the equation for
the direction ax : y conjugate to the line of sight. But
because a cannot be zero along the fold (there would not be
any fold otherwise), we conclude that, for points on a fold,
there is only one direction conjugate to the line of sight.
Since the direction of the fold itself is conjugate to the line of
sight, the fold is the only such direction. Now suppose that
two folds cross at a point P. Since the direction of folds and
the line of sight are conjugate, we have a situation at P in
which two directions are conjugate to the line of sight. Since
we just showed that there can only be one such direction, we
conclude that folds do not intersect.

Summarizing, folds are smooth, closed curves that do not
intersect; that is, they are topologically equivalent to nested
circles. Folds are projected onto occluding contours in the
image [Fig. 6(b)]. As is clear from Figs. 6(a) and 6(b), oc-
cluding contours are not always closed; that is, the corre-
sponding folds are not always completely visible. A contour

can stop either at a Tjunction or at a termination [Fig. 6(b)].
In the case of T junctions, the corresponding fold is occluded
by another object or a nonneighboring part of the same
object. In the case of terminations, on the other hand, the
fold does occlude neighboring parts of the same fold. To
study the behavior of the contour in a neighborhood of a
termination, imagine for a moment that the objects that we
are looking at are transparent instead of opaque. Figure
6(c) gives one example of what we might see in that case
(contours are no longer occluding). Since the mapping be-
tween surface and image has a cusp at terminations, the
point on the surface that projects onto the termination is
termed the cusp point. At cusp points the fold reverses
direction; that is, the observer looks in the direction of the
fold: the line of sight and the direction of the fold coincide
[Fig. 6(a)]. Combining this with the above observation that
line of sight and direction of the fold are conjugate, we
conclude that at cusp points we are looking in self-conjugate
or asymptotic directions. As asymptotic directions exist
only on hyperbolic surface patches, so do cusp points. 24

Whitney showed that folds and cusps are the only stable
singularities of mappings between smooth manifolds of di-
mension 2.25 Since the image and the surfaces of 3-D objects
are both 2-D manifolds, and projection is a mapping between
manifolds, we need not be concerned with other singulari-
ties.

We now turn to the problem of inferring 3-D shape from
occluding contours. Koenderink 4 showed that one can read
off a valuable intrinsic property of the surface directly from
its occluding contours:
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Proposition 3.4
The sign of curvature of the occluding contour equals the
sign of Gaussian curvature at the corresponding points on
the fold.

That is, an elliptic arc of the contour (one that is convex
toward the background) indicates an elliptic (convex) sur-
face, a hyperbolic arc (one that is concave toward the back-
ground) indicates a hyperbolic surface, and an inflection
point of the contour corresponds to a parabolic point [Fig.
6(d)]. Note that it is assumed that the occluding contour
has been assigned an orientation and that it is known which
side of the contour is the occluder and which side is being
occluded. Also note that extrema of curvature of occluding
contours do not necessarily indicate the presence of extrema
of a principal curvature on the surface, i.e., possible part
boundaries.

B. Shape between Folds
In the previous section we saw that the sign of Gaussian
curvature at folds can be extracted from their projections,
the occluding contours. We will now investigate how this
curvature information can be propagated to regions of the
surface between folds. But let us first study how surface
regions with different signs of Gaussian curvature are laid
out on the surface. Elliptic regions (positive Gaussian cur-
vature) and hyperbolic regions (negative Gaussian curva-
ture) are separated by parabolic lines (zero Gaussian curva-
ture), which are therefore closed curves. Isolated parabolic
points are not stable, since the slightest perturbation of the
surface results in a closed contour separating elliptic and
hyperbolic surface patches. Generically parabolic curves do
not intersect themselves or each other. 26 Of course, folds
can intersect parabolic lines; their visible intersections show
up as inflections of the occluding contour.

We have now characterized two classes of curves on the
surface: folds and parabolic lines. Members of each class
form smooth, closed curves that do not intersect curves of
the same class. But what can we say about the intersections
between folds and parabolic lines? To begin with, the only
stable intersections of curves on smooth surfaces are trans-
versal intersections. Since folds and parabolic lines are
topologically equivalent to circles, every intersection of a
fold and a parabolic line has to be matched by another one.
Folds will therefore intersect parabolic lines an even number
of times; in other words, folds will have an even number of
parabolic points. Not all these parabolic points might actu-
ally be visible from a particular vantage point; that is, not all
these parabolic points show up as inflections of the occlud-
ing contours. It is, of course, also quite possible that none of
the parabolic points is visible or that a parabolic line does
not cross a fold to begin with. In that case we will have to
infer the presence of these parabolic lines indirectly from the
presence of other parabolic curves.

We can propagate curvature information from folds to
regions between folds as follows. Consider a fold with n
parabolic points. Each of these parabolic points is paired
with another one. By pairing two parabolic points we assert
that both lie on the same parabolic curve, and by pairing
parabolic points we also pair their projections, the inflection
points. Figure 7 shows the three possible pairings of a con-
tour with four inflection points. (In the sequel we consider
only pairings on one side of a fold; pairings on the other side

(a)

(c) (d)
Fig. 7. (a) A contour having four inflection points (II, I2, I, I4).
The corresponding four parabolic points (P1, P2, P3, P 4) on the fold
can be paired generically (b), (c) or nongenerically (d).

are similar.) These pairings are generic except for the one in
Fig. 7(d). This pairing is nongeneric because the parabolic
lines connecting the parabolic points on the fold intersect.
As each pairing of parabolic points corresponds to a differ-
ent completion of the partially known surface curvature, it is
important to know how many different completions are in
fact possible for a given number of parabolic points on a fold.
We next derive expressions for the total number of pairings
(generic plus nongeneric) and the number of generic pairings
only.

Remark 3.5
The number of generic plus nongeneric pairings, t for a fold
with n parabolic points is given by

(6)

Proof
The number of generic plus nongeneric pairings, t, for a fold
with n parabolic points equals (n - 1)(n - 3).. .3. 1, since
the first parabolic point can choose among n - 1 potential
partners, the second can choose among n - 3, etc. We can
simplify this expression as follows:

tn (n-)(n-3). ...5 3 1,

n!
n(n -2)(n -4). .. .4 2

2n,2 (n/2)(n/2 - 1) .. .2 1

n!

2n/,(n/2)! (7)
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Remark 3.6
The number of generic pairings, gn, for a fold with n parabol-
ic points is

(8)

Proof
We indicate the parabolic points on an oriented fold by Pi,
where 0 < i < n - 1, and the parabolic points lying between
and including Pi and Pj by the interval [Pi, Pj], where Pi and
Pi are beginning and end points, respectively, if the fold is
traversed in the positive direction. (Pi, P,) denotes a pairing
between Pi and Pj, and gn indicates the number of generic
pairings for a fold with n parabolic points.

A pairing of the parabolic points on a fold is generic if the
following constraints are satisfied: (1) all n parabolic points
are paired, and (2) the parabolic curves connecting the para-
bolic points do not cross. From constraint (1) it follows that
a pairing (Pi, Pj) partitions the parabolic points into the two
disjoint subsets [Pi+,, Pjr] and [Pj+,, Pj._.], both with an
even number of parabolic points, namely, j - i - 1 and n + i
- 1, respectively; and Trom constraint (2) it follows that no
pairings between these subsets are possible. We can now
derive a recursive formula for the number of generic pair-
ings. Select some parabolic point Pi, and enumerate all
possible pairings with it; for each of these pairings, enumer-
ate all possible pairings within the two disjoint intervals.
Thus the number of generic pairings with the pair (Pi, Pj)
will be g 1-i-,gn+i-,, assuming that i <j. Since i can be any
value, we choose i = 0 for convenience. The allowed values
for j are then 1, 3, . . . , n - 1, and the number of pairings is

n-1

gn = Egj-lgn-l

j=1,3,5

n-2

Egjgn-j-2
j=0,2,4

n/2-1

E 2gn-2j-2; (9)
j=0

that is,

gn= gg- 2 + g2 gn-4 + * * * + gn-2g0
(10)

g(X) = /2 - /2 1 (-1)/ 4mm

Since a funct n h s at m t o (12)

Since a function has at most one Taylor series expansion
about x = 0, it follows that

gm = /2(..)m 1/2 4m

(13)
T mr-2]

Substituting m = n/2 + 1, we obtain the final result

[n lI n/2 + 1).
Ln/2 J

(14)

Requiring pairings between parabolic points to be generic
obviously decreases their number. Table 1 illustrates this
effect but also shows that the number of generic pairings is
still quite large, even for moderately many parabolic points.
If we were also to consider pairings between parabolic points
on different folds, the number of pairings would become
even larger, since each parabolic point would have many
more potential partners. It is clear, then, that any vision
system depending on the pairing of parabolic points has to
use constraints other than genericity to arrive at a reason-
ably small number of pairings. For example, pairing might
proceed from coarser to finer scales, or only pairings between
neighboring parabolic points might be allowed, as it is likely
that they were generated by the same event, i.e., penetration
or subtraction. Alternatively, sources of curvature informa-
tion other than occluding contours might be used: certain
extrema in illumination, for instance, occur at parabolic
lines. 2 6

By pairing the parabolic points of folds, we divide the
surface between folds into regions, regions for which we can
specify the sign of Gaussian curvature in a globally consis-
tent manner. This leads us to the following definition.

Definition 3.7
A curvature interpretation of the surface of an object is

(1) A generic pairing of the parabolic points on the folds
of the surface and also

(2) An assignment, for each region bounded by parabolic
curves, of the sign of principal curvatures in a way that is

where go = 1.
To derive a nonrecursive expression for gn, divide all sub-

scripts in Eq. (10) by 2, add 1 to each subscript, and let m =

n/2 + 1; then

gm = glgm-1 + g2gm2 + * + gm-lg1l

(11)

and g, = 1. Now, consider the so-called generating func-
tion2 7 g(x) = 2=1 gx m for the sequence tg1, g2 , .. .1. By Eq.
(11), g(X) = x - [g(X)]2. Solving this quadratic equation
yields g(x) = 1/2 - 1/2(1 - 4x)12 . By expanding (1 -4x)/2

into a binomial series we obtain

Table 1. Number of Pairings of n Parabolic Points on
a Single Fold

Parabolic Points Total Pairingsa Generic Pairingsb

0 1 1
2 1 1
4 3 2

6 15 5
8 105 14

10 945 42

a Total pairings (generic plus nongeneric), t,, = n!/(n/2)!2n/2.
b Generic pairings, gn = [n/2]/(n/2 + 1).
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globally consistent and consistent with the sign of Gaussian
curvature on each fold.

We can derive the sign of Gaussian curvature directly from
the sign of the principal curvatures: if the principal curva-
tures have equal signs, Gaussian curvature is positive; other-
wise it is negative. By specifying the two signs of principal
curvature we can distinguish among convex (both are posi-
tive), concave (both are negative), and hyperbolic (one is
positive and one is negative) surface regions. Assignment of
the sign of principal curvatures in a globally consistent man-
ner means that parabolic lines must separate regions with
different signs of Gaussian curvature and that, conversely,
regions with different signs of Gaussian curvature must be
separated by parabolic lines. Before we continue we should
mention that the above curvature interpretations are mini-
mal in the sense that only those parabolic lines are included
for which there is positive visual evidence (in the form of
inflection points on the occluding contours) or that are nec-
essary for a consistent assignment of Gaussian curvature.

To illustrate our approach we will take a closer look at a
surface with two folds and six visible parabolic points.

Example 3.8
Consider the occluding contours shown in Fig. 8(a). The
contour C2 is the silhouette of the object 0 with surface S,
and the contour C, is contained within C2; that is, the fold F,
(of C,) is nested within fold F2 (of C2). Inflection points are
indicated by I, and their corresponding parabolic points are
indicated by Pi. We are going to address the following
problem: Does the path X between points A and B lie
within a convex region of the surface? In other words, does
the contour C indicate the presence of a hump separated
from the background surface by a hyperbolic region? Note
that the first part of path X is actually invisible from our
vantage point, whereas the path Y is entirely visible. We
will assume that the surface S has finitely many parabolic
lines, it being intuitively clear that the contrary is nongener-
ic. We will examine the possible completions of contour C,:
(1) no parabolic poin ;s on the invisible part of fold F, and (2)
two or more (but finitely many) parabolic points on the
invisible portion of Fl.

In case (1), no parabolic points are on the invisible part of
F, [Fig. 8(b)]. The parabolic line crossing F, at parabolic
point P has to go through P6 as well, because crossings of
folds and parabolic lines come in pairs and P6 is the only
remaining point on Fl. And since the path X has to cross
this parabolic line, X cannot be completely contained within
a convex region.

In case (2), two or more parabolic points are on the invisi-
ble part of F, [Fig. 8(c)]. Consider the Gaussian curvature
along Fl: The segment between P 5 and P6 is convex, the two
segments [P6, P7 ] and [P8, P5] are hyperbolic, and the re-
maining segment [P7, P8] is concave. In general, any seg-
ment of the invisible part of a fold is either hyperbolic or
concave, just as any segment of the visible part of a fold is
either hyperbolic or convex. The reason for this difference
between the visible and invisible parts of folds derives from
the fact that radial curvature,'4 that is, curvature of the
intersection of the surface and the normal section containing
the line of sight, along the visible parts is positive (curvature
vector points into the figure, parallel to the surface normal),

B

(a)

F2 -2

(b) (c)
Fig. 8. (a) Is the path X between A and B completely contained
within a convex region of the surface? (b) Folds F, and F2 , with P5

and P being the only parabolic points on fold Fl. (c) Folds F, and
F2, with the invisible parabolic points P 7 and Ps on fold Fl.

whereas it is negative along invisible parts. Since transver-
sal curvature,'4 that is, curvature of the occluding contours,
can be positive or negative, it follows that there cannot be
any concave segments along a visible fold, just as there can-
not be any convex segments along the invisible part of a fold.
From this it follows immediately that the parabolic line
crossing F, at P5 has to continue through P6 , and, again, we
conclude that X has to cross a parabolic line and therefore
cannot be completely contained within a convex region.

In summary, path X has to pass through a hyperbolic
region, whereas it is possible that path Y is completely con-
tained within a convex region.

C. Part Boundaries from Occluding Contours
We showed how to derive a curvature interpretation from
the occluding contours of an object. We now turn to the
problem of locating part boundaries on a surface when its
curvature interpretation is given. According to our theory
(Subsection 2.C) composite objects arise through combina-
tions of primitive objects called parts, and boundaries be-
tween parts are contours of extrema of a principal curvature.
A curvature interpretation, on the other hand, specifies only
the signs of the principal curvatures, which is clearly insuffi-
cient to locate part boundaries.

Even though we are unable to locate part boundaries pre-
cisely on the basis of a curvature interpretation, we are able
to decide whether a certain region of the surface contains a
part boundary. This is possible because hyperbolic regions
can originate only from combinations of parts, as the parts
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themselves are by definition convex. If we further assume
that partitionings having fewest part boundaries are pre-
ferred, we can formulate rules for partitioning a surface on
the basis of its curvature interpretation. (Note, however,
that these rules apply only to cases in which existing part
boundaries have not been disrupted by subsequent penetra-
tions or subtractions.)

Definition 3.9
A surface can be partitioning on the basis of its curvature
interpretation by the following rules:

(1) A hyperbolic ring separating two convex regions con-
tains a B,.

(2) A hyperbolic region inside a convex region indicates
the presence of a Bo- or a B,+.

Example 3.10
Consider the occluding contour shown in Fig. 9(a). It has
four inflection points and therefore four curvature interpre-
tations (or, more precisely, it has four interpretations that
are minimal in the sense that no extraneous parabolic lines
are included). These four curvature interpretations are
shown in Figs. 9(b)-9(e): Fig. 9(b) shows a hyperbolic ring
separating two convex regions, which implies the existence

(a)

(c)

(b)

/ 

/ - I+

(d)

(e)
Fig. 9. (a) Occluding contour with four inflection points and four
curvature interpretations, which are illustrated in (b)-(e). Dashed
and dotted lines indicate parabolic lines on the visible and invisible
parts of the surface, respectively.

of a B,-; Fig. 9(c) shows a hyperbolic region inside a convex
region, which implies the existence of a Bo- or a B,+; Fig. 9(d)
is the same as Fig. 9(c); and Fig. 9(e) shows two hyperbolic
regions inside a convex region, implying the existence of two
Bo-'s, two B,+'s, or one Bo- and one B,+.

Summarizing, occluding contours generally allow multiple
curvature interpretations and therefore multiple partition-
ings; that is, observers can infer multiple deep structures
from the occluding contours of an object. Given the fact
that we can decompose the contours of objects in a number
of ways, we can ask whether the human visual system prefers
some decompositions over others. Experiments addressing
this question could help us to constrain further the defini-
tions of part boundaries.

4. DISCUSSION

If an organism is to interact successfully with its environ-
ment, it has to maintain an internal model of certain impor-
tant properties of the environment. It is, for instance, im-
portant for human beings to be able to recognize objects by
their shape. This ability implies that human beings some-
how store shape descriptions of known objects in a shape
memory. We elaborated a representation of 3-D shape in
which smooth objects are partitioned along contours of ex-
trema of a principal curvature. We arrived at these particu-
lar part boundaries by assuming that an object's shape can
be described in terms of convex parts and that parts can be
combined only through solid union and subtraction. The
decomposition of an object into parts is called the deep
structure of the object. Koenderink and van Doorn's obser-
vation24 that "sculptors in many European and Asiatic sty-
listic periods build their shapes from 'ovoids' (in academic
practice), that is, elliptically bounded pot-like volumes"
lends support for the hypothesis that the human visual sys-
tem represents shape in terms of combinations of parts, i.e.,
as deep structures. In some sense parts are analogous to
morphemes, the smallest linguistic units that have meaning
and cannot be further divided into even smaller units. We
proposed one such unit for shape description: convex ob-
jects. It remains to be seen whether other aspects of shape,
e.g., spatial relationships, can also be described in terms of
irreducible units. We also have to extend the theory to
include objects with holes (objects of genus greater than
zero).

The description of solid shape in terms of parts has a
number of important properties. First, the deep structure
of an object is an object-centered description, i.e., is inde-
pendent of a particular vantage point (but the observer
might have to look at the object from different points of view
to learn its complete structure). Second, the deep structure
of a nonrigid object, such as a hand, is independent of the
particular configuration of its rigid components, in this case
the fingers of the hand. In other words, the deep structure
of a hand is invariant under all possible positions of the
fingers. The nonrigid aspect of shape (different positions of
the fingers) would be captured by the transformation rules,
which derive surface structure from deep structure. A third
important property of the proposed representation is that it
is incremental: Adding object X to object Y to form a
composite object entails adding the description of X to the
description of Y without changing the description of either
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X or Y itself. The same can be said about removing parts of
an object.

Describing the shape of an object is not an end in itself but
a means toward recognizing that object. We propose a
shape memory based on the deep structure of objects. Ob-
jects sharing the same deep structure can be distinguished
by certain aspects of their surface structure. For instance,
all humans fall into the category of human being on the basis
of their deep structure. We can distinguish individuals on
the basis of their surface structure, such as the exact shape of
their eyes. A shape memory built on deep structures that
are object-centered descriptions of shape does not adequate-
ly model human shape memory. Experiments on the use of
coordinate systems in long-term memory showed that hu-
mans use both object-centered and viewer-centered coordi-
nate systems.2 8 A related aspect of recognition is the fact
that humans find it difficult to recognize inverted or other-
wise disoriented figures.2 9 A face or an outline of a country
shown upside-down is suddenly hard to recognize. We sug-
gest that rotating an object does not alter the way in which
humans decompose it into parts but does affect the predi-
cates of spatial relationships between the parts. Perhaps
(some) spatial relationships are specified with respect to a
viewer- or environment-centered coordinate system.

We can now try to interpret the results of the studies on
object recognition in persons with cerebral lesions. One
interpretation is that persons with right-hemisphere lesions,
who have difficulty in deciding whether two views are of the
same object, cannot construct the deep structure of the ob-
jects that they are looking at. Another interpretation is that
these patients can construct deep structures from images
but cannot compare them. Persons with left-hemisphere
lesions can compare objects on the basis of their shape (i.e.,
they can construct deep structures), but they cannot access
shape memory (for instance, because the matching between
a deep structure and the deep structures stored in memory
does not function properly). As a consequence, they cannot
attach meaning to their percepts.

APPENDIX A: RELEVANT CONCEPTS FROM
DIFFERENTIAL GEOMETRY

Consider a plane curve C that is smooth everywhere, that is,
has a well-defined tangent everywhere, and let x = x(s) be a
natural representation of C (where the parameter s indicates
length along C). The tangent vector t(s) indicates the direc-
tion of C at x(s). The rate at which the direction of t(s)
changes as one moves along the curve is a measure of its
curvature: the faster it changes, the larger the curve's cur-
vature is. The curvature vector is defined as k(s) = dt(s)/ds,
and the principal normal unit vector, N(s), is a vector paral-
lel to the curvature vector. By convention, the principal
normal is positive if it points toward the figure side of the
curve and negative if it points toward the ground side. We
can define a continuous valued function K(s) along C such
that k(s) = K(s)N(s). If N and k point in the same direction,
K(S) will be positive; otherwise it will be negative. K(S) is

called the curvature of C at x(s). Depending on the sign of
curvature an arc will be called hyperbolic (negative curva-
ture), elliptic (positive curvature), or parabolic (zero curva-
ture).

The curvature at a point P on a surface in Y?3 is, of course,
more complex than the curvature of a plane curve, as it
depends on the direction in which the surface is traversed.
Let C be a curve through P cut out by a plane containing the
normal, N, at P; that is, C is a normal section of the surface
patch containing P, and its curvature is called normal curva-
ture, denoted K. The normal curvature depends on the
direction of C, and the two perpendicular directions for
which the value of Kn is maximal or minimal are called the
principal directions. The corresponding normal curvatures,
K, and K2, are called principal curvatures. A line on the
surface whose tangent is everywhere in a principal direction
is called a line of curvature.

The Gaussian curvature K of a surface is defined as K =
KlK2. The sign of the Gaussian curvature is a qualitative
measure of surface shape: if K > 0 the surface is on one side
of the tangent plane (synclastic or elliptic) and is either
convex (K1, K2 > 0) or concave (K1, K2 < 0); if K < 0 the surface
is on either side of the tangent plane (anticlastic or hyperbol-
ic) and is saddle shaped (one of the principal curvatures is
negative and the other is positive); and if K = 0, at least one
of the principal curvatures is zero (monoclastic or parabolic),
and the surface is cylindrical or planar. Since a hyperbolic
surface has negative and positive normal curvatures, there
must be two directions for which Kn = 0, the so-called asymp-
totic directions. A curve everywhere tangent to an asymp-
totic direction is an asymptotic line. Two directions, with
direction numbers du : dv and bu: 3v, are conjugate if dx * 6N
=0.
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