

USER’S GUIDE TO

Fuzzy-Set / Qualitative Comparative Analysis

Charles C. Ragin
Department of Sociology

University of California, Irvine
Irvine, CA

cragin@uci.edu

Assisted by:
Tyson Patros

Sarah Ilene Strand
Claude Rubinson

July 2017
fsQCA and this manual are updated every few months.

Both can be downloaded from www.fsqca.com.

Based on: fsQCA 3.0
Copyright © 1999-2003, Charles Ragin and Kriss Drass
Copyright © 2004-2017, Charles Ragin and Sean Davey

CONTENTS

 Chapter 1. Data Files

 A) Opening a Data File ………………………………………………………... 1

 B) Opening Data Files of Various Formats ………………...…………………. 1
 Excel
 SPSS
 Stata

 Word / Notepad

 C) Saving File Options ………………………………………………………… 2

 D) Opening fsQCA Data in Other Formats …………………………………... 3
 SPSS
 Stata

 Excel

 Chapter 2. Data Editor

 A) Entering Data ………………………………………………………………. 5
 Variable Names
 Number of Cases

 B) Editing Data ………………………………………………………………... 7
 Add / Delete Variables …………………………………………………... 7
 Compute Variables………………………………………………………. 11
 Recode Variables ………………………………………………………... 11
 1) Recode Variables Into Same Variables
 2) Recode Variables Into Different Variables
 Calibrating Fuzzy Sets..………………………………….………………. 13
 Add / Insert Cases ……………………………………………………….. 15
 Delete Cases ……………………………………………………………... 15
 Select Cases If …………………………………………………………… 16

 C) Working with Output ………………………………………………………. 17
 Printing Documents
 Saving Results

 Chapter 3. Basic Procedures, Descriptive Statistics, and Graphs

 A) Necessary Conditions ……………………………………………………... 18
 Obtaining Necessary Conditions
 Sample Output

 B) Set Coincidence ………………………………………………………….... 20
 Obtaining Set Coincidence
 Sample Output

 C) Subset/Superset Analysis …………………………………………………. 21
 Obtaining Subset/Superset Analysis
 Sample Output

 D) Descriptives ………………………………………………………………. 23
 Obtaining Descriptive Statistics
 Sample Output

 E) XY Plot …………………………………………………………………… 24
 Obtaining XY Plots
 Sample Output

Chapter 4. Crisp-Set Analysis

 A) Basic Concepts …………………………………………………………... 27
 1) Use of Binary Data
 2) Boolean Negation
 3) Use of Truth Tables to Represent Data
 4) Groupings
 5) Boolean Addition
 6) Boolean Multiplication
 7) Combinatorial Logic

 Minimization …………………………………………………….………… 31
 1) Use of Prime Implicants ………………………………………...…… 33
 2) Use of De Morgan’s Law ……………………………………………. 35
 3) Necessary and Sufficient Causes …………………………………….. 36

 B) Data ………………………………………………………………………... 37

 C) Analysis ……………………………………………………………………. 37
 Truth Table Algorithm……………………………………………………. 38
 Specify Analysis …………………………………………………………. 41
 Standard Analysis ………………………………………………………... 42
 Limited Diversity and Counterfactual Analysis …………………………. 42

 Chapter 5. Fuzzy-Set Analysis

 A) Operations on Fuzzy Sets………………………………………...……. 46

 Logical AND
 Logical OR
 Negation
 B) Fuzzy Sets, Necessity, and Sufficiency (Fuzzy Subset Relation)……... 48
 C) Using the Fuzzy Truth Table Algorithm…………………………….…. 50
 D) Data and Analysis..……………………………………………………. 50
 E) “Specify Analysis” Option …………………………………..……..….. 55
 F) “Standard Analysis” Option ………………………….………………... 56
 G) Output for “Specify Analysis” Option ………………………………… 57
 H) Output for “Standard Analysis” Option ……………………………….. 59
 G) Consistency and Coverage …………………………………………….. 60

 Page 1

Chapter 1. DATA FILES

A) Opening a Data File

 FsQCA opens with the following window:

 From the menu choose:

File
 Open

 In the Open File dialog box, select the file you want to open.

 Click Open.

B) Opening Data Files of Various Formats

Data files come in a wide variety of formats, and the software is designed to handle the
following:

• Comma-separated values (*.csv) or comma-delimited file, produced by Excel
and other spreadsheet software

 Page 2

• Space separated (*.txt) space delimited file, can be created in WORD or other
word processing software and saved as text only

• Tab separated (*.dat) tab delimited file, can be created using SPSS and other

statistical software packages

• Raw data files (*.raw) generated by Stata (extension can be changed to *.csv if
saved in the comma-delimited format).

The recommended formats are *.csv (Excel) and *.dat (SPSS).

Please note that fsQCA makes the following assumptions about the structure of *.csv,
*.dat and *.txt data files. First, and most important, fsQCA assumes that the cells in the
first row of the spreadsheet contain variable names for their respective columns. Second,
fsQCA assumes that the data begin in the second row of the spreadsheet and that each
case is a single row. Finally, fsQCA assumes that each column contains cells of the same
type of data. Data types can vary across columns, but they must be consistent within
columns. Please remember to use very simple variables names, using only
alphanumeric characters with no embedded punctuation or spaces. For example,
“GNP1990” is OK, but “GNP 1990” and “GNP-1990” are not.

• Opening / Saving data originally created in Excel:
 Save the Excel file in *.csv (Comma Separated Values) format. Make sure that the
 first row of the Excel data spreadsheet contains the variable names. Open in fsQCA.

• Opening / Saving data originally created in SPSS:
 Save the SPSS file in *.dat (tab delimited) format or *.csv (Comma Separated
 Values) format. SPSS will ask you whether you want to “Write variable names to
 file.” Do not uncheck this option.

• Opening / Saving data originally created in Stata:
 Save the Stata file in *.dta format and then go to File, Export, and choose file as
 Comma-separated data. In the new window, insert the file name for “Write to the
 file,” then for “Delimiter” choose Comma-separated format, and click Submit. In
 some versions of Stata you may need to rename the new *.dta file as a *.csv file.

• Opening / Saving data originally created in Word / Notepad:
 Enter the data delimited by spaces. Make sure that the first line contains the variable
 names, also separated by spaces. Save the file in a *.txt (Text only) format, TXT
 (Text with Line Breaks), TXT (MS-DOS), or TXT (MS-DOS with Line Breaks).
 Open in fsQCA.

 C) Saving File Options

 From the menu choose:

 File

 Page 3

 Save…

 The modified data file is saved, overwriting the previous version of the file of the same
name and location.

Or: To save a new data file or save data in a different format, from the menu choose:
 File
 Save As…

 The file will save in *.csv (Comma Separated Values) format.

 Enter a filename for the new data file.

D) Opening fsQCA Data in Other Formats

Once you have your data in the fsQCA program and have completed some preliminary
analyses, you have the option to either edit the data in fsQCA (see Chapter 2), or edit
your data with the help of software packages you may be more familiar with (e.g., SPSS
or Excel). Similarly, you can either display the data graphically with the fsQCA program
(see Chapter 3), or turn to SPSS, Stata or Excel for more elaborate graphical
representations. If you choose SPSS, Stata or Excel for these operations, you need to save
the fsQCA file and transfer it to the program of your choice.

SPSS

 In order to open fsQCA data in SPSS, save the fsQCA data spreadsheet in Comma-
separated values (*.csv) or comma-delimited file. Make sure that the string variables
in the fsQCA data file are written without spaces in between them (no embedded
spaces are allowed)

 In SPSS choose:

 File
 Open
 Data…

 Open the fsQCA file you have just saved.

 SPSS will ask you several questions regarding your file. Check the following options:

 Does you text file match a predefined format? No
 How are your variables arranged? Delimited
 Are variable names included at the top of your file? Yes
 Line number that contains variable names 1
 What is the decimal symbol? Period
 The first case of data begins with line number? 2
 How are your cases represented? Each line represents a case
 How many cases do you want to import? All of the cases

 Page 4

 Which delimiters appear between variables? Comma
 What is the text qualifier? None
 Would you like to save this file format for future Y/N
 use?
 Would you like to paste the syntax? No
 Then click FINISH
 You can now edit the data and display it graphically in SPSS.

 In order to transfer the SPSS file back to fsQCA, see Chapter 1) B) SPSS.

Stata
 In order to open fsQCA data in Stata, save the fsQCA data spreadsheet in Comma-

separated values (*.csv) or comma-delimited file. Make sure that the string variables
in the fsQCA data file are written without spaces in between them (no embedded
spaces are allowed)

 In Stata, choose

 File
 Import
 Text data created by a spreadsheet

 In the new window, browse for your *.csv file and, for “Delimiter,” choose

Comma-delimited data.

 You can now edit and use the data in Stata.

 In order to transfer the Stata file back to fsQCA, see Chapter 1) B) Stata.

Excel

 In order to open fsQCA data in Excel, save the fsQCA data spreadsheet in comma
separated format (*.csv). Make sure that the string variables in the fsQCA data file are
written without spaces in between them (no embedded spaces).

 In Excel choose:
 File
 Open…

 Open the fsQCA file you have just saved.

 You can now edit the data and display it graphically in Excel.

 In order to transfer the Excel file back to fsQCA, see above.

 Page 5

Chapter 2. DATA EDITOR

A) Entering Data (creating a data file from scratch, in fsQCA)

 From the menu choose:

Variables
 Add…

 The Add Variable window will open.

 Enter the variable name. The following rules apply to variable names:

• The length of the name cannot exceed fifteen characters.
• Each variable name must be unique; duplication is not allowed.
• Variable names are not case sensitive. The names NEWVAR, NewVAR and

newvar are all considered identical.
• Variable names cannot include spaces or hyphens or punctuation.
• Only alphanumeric characters may be used (0-9, a-Z)

 Add the variable by clicking the OK button.

 In addition to adding new variables, you can delete variables by highlighting the
variable and clicking

 Variables
 Delete…

 Now, from the menu choose:
 Cases
 Add…

 Page 6

Note: In general, fsQCA is able to process a large number of cases. Yet, a main feature of
fsQCA is that it deals with combinations of causal conditions; thus, adding more
variables will influence computational time more than adding more cases. The number of
possible combinations is 2 to the k power, where k is the number of causal conditions. As
a rule of thumb, 10 or fewer causal conditions (i.e., 1024 possible combinations) is not a
problem in terms of computational time. When dealing with more than 10 conditions, it is
just a matter of the amount of time you are willing to wait for the program to do the
analyses. Most applications use three to eight causal conditions.

 Enter the number of cases of your data set, press the Ok button, and the Data Sheet
window will appear:

 Enter the data values. You can enter data in any order. You can enter data by case or

by variable, for selected areas or individual cells. The active cell is highlighted with a
darker color. When you select a cell and enter a data value, the value is displayed in
the cell editor under the menu bar. Values can be numeric or string. Data values are
not recorded until after you press Enter.

 Before closing the Data Sheet you need to save it in order not to lose the entered

information.

 Page 7

B) Editing Data

Add / Delete Variables

 In order to add variables to an already existing Data Sheet, choose:

 Variables
 Add…

 Enter the variable name and press the OK button.

 In order to delete existing variables in the Data Sheet, highlight a cell in the variable

column you want deleted and choose:
Variables

 Delete…

Compute Variables

 In order to compute new variables out of existing ones or numeric or logical
expressions, choose:

 Variables
 Compute…

 The following window will open (with the names of the variables in your data file
listed in the window on the left). [This chapter will use the example of countries with
weak class voting from Ragin (2005)]:

 Page 8

 Type the name of a single target variable. It can be an existing variable or a new
 variable to be added to the working data file. Do not use a single letter as a variable
 name (e.g., “X”). This will cause the compute function to crash. Follow the variable

name guidelines on page 8.

 To build an expression, either paste components into the Expression field or type
 directly in the Expression field (the window below the new variable field).

1) Arithmetic Operators

+ Addition. The preceding term is added to the following term.

Both terms must be numeric.

- Subtraction. The following term is subtracted from the preceding

term. Both terms must be numeric.

* Multiplication. The preceding and the following term are

multiplied. Both terms must be numeric.

/ Division. The preceding term is divided by the following term.

Both terms must be numeric, and the second must not be 0.

2) Relational Operators

< Logical Less Than. True (=1) for numeric terms if the preceding

term is less than the following term. True for string terms if the
preceding term appears earlier than the following term in the
collating sequence (in alphabetical order). This operator is
normally used only in a logical condition.

> Logical Greater Than. True (=1) for numeric terms if the

preceding term is greater than the following term. True for string
terms if the preceding term appears later than the following term in
the collating sequence (in alphabetical order). This operator is
normally used only in a logical condition.

<= Logical Less Than Or Equal. True (=1) for numeric terms if the

preceding term is less or equal than the following term. True for
string terms if the preceding term appears earlier than the
following term in the collating sequence (in alphabetical order), or
if the two are equal. This operator is normally used only in a
logical condition.

>= Logical Greater Than Or Equal. True (=1) for numeric terms if

the preceding term is greater or equal than the following term. True
for string terms if the preceding term appears later than the

 Page 9

following term in the collating sequence (in alphabetical order), or
if the two are equal. This operator is normally used only in a
logical condition.

== Logical Equality. True (=1) for terms that are exactly equal. If

string terms are of unequal length, the shorter term is padded on
the right with spaces before the comparison. This operator is
normally used only in a logical condition.

!= Logical Inequality. True (=1) for terms that are not exactly equal.

If string terms are of unequal length, the shorter term is padded on
the right with spaces before the comparison. This operator is
normally used only in a logical condition.

&& Logical And. True (=1) if both the preceding and the following

term are logically true. The terms may be logical or numeric;
numeric terms greater than 0 are treated as true. This operator is
normally used only in a logical condition.

|| Logical Or. True if either the preceding or the following term are

logically true. The terms may be logical or numeric; numeric terms
greater than 0 are treated as true. This operator is normally used
only in a logical condition. This operator only works by pasting
the symbol into the Expression Field.

~ Logical Not. True if the following term is false. 1 – (numeric

term). This operator is normally used only in a logical condition.

3) Arithmetic Functions

abs (x) Returns the absolute value of x, which must be numeric.

acos (x) Returns the arc cosine (inverse function of cosine) of radians,

which must be a numeric value between 0 and 1, measured in
radians.

asin (x) Returns the arc sine (inverse function of sine) of radians, which

must be a numeric value between 0 and 1, measured in radians.

atan (x) Returns the arc tangent (inverse function of tangent) of radians,

which must be a numeric value, measured in radians.

ceil (x) Returns the integer that results from rounding x up (x must be

numeric).
 Example: ceil (2.5) = 3.0

 Page 10

calibrate Transforms an interval or ratio scale variable into a fuzzy set; see
below for details.

cos (x) Return the cosine of radians, which must be a numeric value,

measured in radians.

cosh (x) Returns the hyperbolic cosine [(ex + e-x)/2] of radians, which must

be a numeric value, measured in radians. X cannot exceed the
value of 230.

exp (x) Returns e raised to the power x, where e is the base of the natural

logarithms and x is numeric. Large values of x (x > 230) produce
results that exceed the capacity of the machine.

floor (x) Returns the integer that results from rounding x down (x must be

numeric).
 Example: floor (2.5) = 2.0

fmod (x,y) Returns the remainder when x is divided by modulus (y). Both

arguments must be numeric, and modulus must not be 0.

fuzzyand (x,…,) Returns the minimum of two or more fuzzy sets.
Example: fuzzyand (1.0, 0.1) = 0.1

fuzzyor (x,…,) Returns the maximum of two or more fuzzy sets.
 Example: fuzzyor (1.0, 0.1) = 1.0

fuzzynot (x) Returns the negation (1-x) of fuzzy sets (same as Logical Not ‘~’).
 Example: fuzzynot (0.8) = 0.2

int (x) Returns the integer part of x. Numbers are rounded down to the

nearest integer.

log (x) Returns the base-e logarithm of x, which must be numeric and

greater than 0.

log10 (x) Returns the base-10 logarithm of x, which must be numeric and

greater than 0.

pow (x,y) Returns the preceding term raised to the power of the following

term. If the preceding term is negative, the following term must be
an integer. This operator can produce values too large or too small
for the computer to process, particularly if the following term (the
exponent) is very large or very small.

 Page 11

round (x) Returns the integer that results from rounding x, which must be
numeric. Numbers ending in .5 exactly are rounded away from 0.

 Example: round (2.5) = 3.0

sin (x) Returns the sine of radians, which must be a numeric value,

measured in radians.

sinh (x) Returns the hyperbolic sine [(ex - e-x)/2] of radians, which must be

a numeric value, measured in radians. X cannot exceed the value
of 230.

square (x) Returns the square of x, which must be numeric.

sqrt (x) Returns the positive square root of x, which must be numeric and

not negative.

tan (x) Returns the tangent [sine/cosine] of radians, which must be a

numeric value, measured in radians.

tanh (x) Returns the hyperbolic tangent [(ex – e-x) / (ex + e-x)] of radians,

which must be a numeric value, measured in radians.

4) Other Operators

() Grouping. Operators and functions within parentheses are
evaluated before operators and functions outside the parentheses.

" Quotation Mark. Used to indicate the values of string variables.
 Example: Compute if….: Variable == “NA”

SYSMIS System Missing. Used when selecting subsets of cases.
 Example: Select if...: Variable == SYSMISS

Clear Deletes the text in the Expression Field.

Recode Variables

You can modify data values by recoding them. This is particularly useful for collapsing
or combining categories. You can recode the values within existing variables, or you can
create new variables based on the recorded values of existing variables.

1) Recode Into Same Variables reassigns the values of existing variables or collapses

ranges of existing values into new values. You can recode numeric and string
variables. You can recode single or multiple variables – they do not have to be all the
same type. You can recode numeric and string variables together.

 In order to recode the values of a variable choose:

 Page 12

 Variables
 Recode…

 The following window will open:

 Select the recode existing variables option, a window with your existing variables will

open.

 Select the variables you want to recode (numeric or string).

 Optionally, you can define a subset of cases to recode.

 You can define values to recode using the Old Values and New Values windows.

Old Value(s). The value(s) to be recoded. You can recode single values, ranges of

values, and missing values. Ranges cannot be selected for string variables,
since the concept does not apply to string variables. Ranges include their
endpoints and any user-missing values that fall within the range.

New Value. The single value into which each old value or range of values is recoded.

You can enter a value or assign the missing value.

 Add your specifications to the list on the right.

2) Recode Into Different Variables reassigns the values of existing variables or

collapses ranges of existing values into new values for a new variable.

 Page 13

• You can recode numeric and string variables.

• You can recode numeric variables into string variables and vice versa.

 In order to recode the values of an old variable into a new variable, do the same as
above and choose:
 Variables

 Recode…

 The following window will appear:

 Select code new variable as well as the existing variable you want to recode from the

drop-down Based on menu.

 Enter an output (new) variable name.

 Specify how to recode values.

Calibrating Fuzzy Sets

In order to transform conventional ratio and interval scale variables into fuzzy sets, it is
necessary to calibrate them, so that the variables match or conform to external standards.
Most social scientists are content to use uncalibrated measures, which simply show the
positions of cases relative to each other. Uncalibrated measures, however, are clearly
inferior to calibrated measures. For example, with an uncalibrated measure of democracy
it is possible to know that one country is more democratic than another or more
democratic than average, but still not know if it is more a democracy or an autocracy.

 Page 14

Fuzzy sets are calibrated using theoretical and substantive criteria external to the data,
and take into account the researcher’s conceptualization, definition, and labeling of the
set in question. The end product is the fine-grained calibration of the degree of
membership of cases in sets, with scores ranging from 0.0 to 1.0.

The researcher must specify the values of an interval-scale variable that correspond to
three qualitative breakpoints that structure a fuzzy set: the threshold for full membership
(fuzzy score = 0.95), the threshold for full nonmembership (fuzzy score = 0.05), and the
cross-over point (fuzzy score = 0.5). These three benchmarks are used to transform the
original ratio or interval-scale values into fuzzy membership scores, using
transformations based on the log odds of full membership.

 From the menu choose:

Variables
 Compute…

 The following window will open [This chapter will use the example of countries with
weak class voting from Ragin (2005)]:

 Name the new variable (using 2-8 standard alphanumeric characters and no spaces,

dashes, or punctuation) for the fuzzy set.

 Click calibrate(x,n1,n2,n3) in the Functions menu, which will then transfer to the

Expressions window.

 Page 15

 Edit the expression calibrate(,,,), for example, “calibrate(manf,25,10,2).” Here, manf

is the name of an existing interval or ratio scale variable already in the file, which you
can transfer from the Variables menu on the left. The first number is the value of
oldvar that corresponds to the threshold for full membership in the target set (0.95),
the second number is value of oldvar that corresponds to the cross-over point (0.5) in
the target set, and the third number is the value of oldvar that corresponds to the
threshold for nonmembership in the target set (0.05).

 Click “OK.”

 Check the data spreadsheet to make sure the fuzzy scores correspond to the original

values in the manner intended. It may be useful to sort the variable in descending or
ascending order, by clicking on the variable name in the column heading. The result is
a fine-grained calibration of the degree of membership of cases in sets, with scores
ranging from 0 to 1.

Add / Insert Cases

 In order to add cases into an already existing data sheet, choose:
 Cases
 Add…

 The following window will appear:

 Enter the number of cases you want to add to the existing number of cases. The

additional case(s) will appear at the end (bottom) of the data spreadsheet.

Delete Cases

 In order to delete single cases from an already existing data sheet, highlight the case

that you want to delete and choose:
 Cases
 Delete…

 Page 16

 The following window will appear:

 With this function you can only delete one case at a time.

 The program will ask you whether you want to delete the case in which you have

highlighted a cell in the data sheet.

Select Cases If

Select Cases If provides several methods for selecting a subgroup of cases based on
criteria that include variables and complex expressions, like:

 - Variable values and ranges
 - Arithmetic expressions
 - Logical expressions
 - Functions

Unselected cases remain in the data file but are excluded from analysis. Unselected cases
are indicated by a faded appearance in the data spreadsheet.

 In order to select a subset of cases for analysis, choose:
 Cases
 Select If…

 The following window will open:

 Page 17

 Specify the criteria for selecting cases.

 If the result of a conditional expression is true, the case is selected. If the result of a

conditional expression is false or missing, the case is not selected.

 Most conditional expressions use one or more of the six relational operators (<, >,

<=, >=, ==, !=) on the calculator pad.

 Conditional expressions can include variable names, constants, arithmetic operators,

numeric and other functions, logical variables, and relational operators.

Note: “Select If” works best when it is univariate. For example, if you want to use the

“Select If” function combining two logical statements, e.g., both a logical AND
and a logical NOT, try creating a new variable (with compute or recode) that
reflects your selection criteria and then use the new variable with “Select If.”

 If you want to reverse your selection, choose:
 Cases
 Cancel Selection…

C) Working with Output

When you run a procedure, the results are displayed in the fsQCA window. You can use
scroll up and down the window to browse the results.

 Page 18

 In order to print output, choose:
 File
 Print Results…

 Your computer specific printer options window will appear, in which you can specify

your printing options.

 The output is written in monospace New Courier (10) in order allow simple transport

between programs. Therefore, if you open the *.out file in SPSS or some other
program, the numbers in the tables will be slightly dislocated, unless you specify the
appropriate font.

 Output may also be copied and pasted into Word, Wordpad, Text, or other files.

 In order to save results, choose:
 File

 Save Results...

 fsQCA will save results in *.txt (plain text) format.

Chapter 3. BASIC STATISTICS AND GRAPHS
[This chapter will use the example of countries with weak class voting from Ragin
(2005).]

Necessary Conditions

The Necessary Conditions procedure produces consistency and coverage scores for
individual conditions and/or specified substitutable conditions.

 In order to analyze necessary conditions, choose:
 Analyze
 Necessary Conditions…

 Page 19

 The following window will open…

 Select the outcome in the drop-down Outcome menu. Then select a condition from

the drop-down Add Conditions menu and then transfer it to the Conditions box on the
right-hand side of the Dialog window. You can specify substitutable necessary
conditions using logical or (+).

 Once you’ve entered the specifications, click OK and the analysis will be displayed.

 Page 20

In this context, consistency indicates the degree to which the causal condition is a
superset of the outcome; coverage indicates the empirical relevance of a consistent
superset.

Set Coincidence

The Set Coincidence procedure assesses the degree of overlap of two or more sets.

 In order to analyze the coincidence of two or more sets, choose:
 Analyze
 Set Coincidence…

 The following window will open…

 Page 21

 Select the conditions you’d like to assess. For example, you can select all of the non-
outcome conditions to assess the degree of overlapping of all possible combinations.

 Once you’ve entered the specifications, click OK and the analysis will be displayed.

Subset/Superset Analysis

The Subset/Superset Analysis procedure provides scores of consistency and coverage for
conditions and configurations of conditions, as well as a combined score (which is
experimental). It provides a way to examine the sufficiency of a hypothesized causal
recipe, as well as all subsets of conditions in the given recipe.

 In order to analyze a set of conditions, choose:
 Analyze
 Subset/Superset Analysis…

 Page 22

 The following window will open:

 Select the outcome variable and click Set. Then choose the causal conditions and

click Add or Add Negated, depending on your expectations.

 Once you’ve entered the specifications, click OK and the following window will

open:

 Page 23

 Once you’ve run the analysis, you can choose to save the results to a file in *.csv

format, or send the result to the output window. The following shows the results in
the output window

Descriptives

The Descriptives procedure displays univariate summary statistics for specified
conditions in a single table.

 In order to obtain descriptive statistics, choose:
 Analyze
 Statistics

 Page 24

 Descriptives…

 Select one or more conditions from the Variables column and transfer them into the

Descriptives column. Click Ok.

 The output window will show your descriptive statistics:

 The first line of your output will state the file name and the procedure you have chosen

(Descriptive Statistics). The columns in the descriptives table indicate the following:

1. The variable chosen (Variable)
2. The mean value (Mean)
3. The standard deviation (Std. Dev.)
4. The lowest value of the variable (Minimum)
5. The highest value of the variable (Maximum)
6. The number of cases (N Cases)
7. The number of missing cases (Missing)

Graphs

XY Plot

 In order to produce a XY Plot, choose:
 Graphs
 XY Plot...

 The following window will open:

 Page 25

 Select a variable to define the values on the X Axis shown in the chart.

 Select a variable to define the values on the Y Axis shown in the chart.

 You can also add more information by choosing a Case ID Variable. This variable

will not be represented in the graph, but you can determine its value by moving the
cursor to a particular point in the graph after you’ve plotted the graph. For example,
the Case ID variable could be a string variable with the names of the countries in the
data set. Once plotted, it is possible to move the cursor to any point in the plot, and a
window will appear with the case name and the x and y values of the point.

 Once you have entered the specifications, click the Plot button and the plot will be

displayed:

 Page 26

 The numbers below the “Plot” button show set-theoretic consistency scores. The upper

line shows the degree to which the data plotted are consistent with X ≤ Y (X is a
subset of Y). The lower line shows the degree to which the data plotted are consistent
with X ≥ Y (Y is a subset of X). If one of these two numbers indicates high
consistency, the other can be interpreted as a coverage score. For example, if the
number in the upper line is .91 and the number in the lower line is .63, these
calculations indicate that the data are largely consistent with the argument that X is a
subset of Y and its coverage of Y is 63%. That is, X accounts for 63% of the sum of
the memberships in Y.

 You can negate variables in the graph by clicking on the negate option next to the

variable name. This feature will subtract the fuzzy-set value of this variable from 1.
Example: Inequality = .4; negation of Inequality = .6. [Same as ‘~’ and ‘fuzzynot(x)’]

 You can copy the graph as an image and paste it into Word, Text, or other files.

 Page 27

4. CRISP-SET ANALYSIS

This part of the manual refers to the analysis of dichotomous social data reflecting the
memberships of cases in conventional, crisp sets. In-depth discussions of this method can
be found in The Comparative Method (Ragin 1987), in chapter 5 of Fuzzy-Set Social
Science (Ragin 2000). The data analytic strategy used here is known as qualitative
comparative analysis, or QCA. QCA is based on Boolean algebra, where a case is either
in or out of a set, and QCA uses binary-coded data, with 1 indicating membership and 0
indicating nonmembership. QCA using conventional, crisp sets is also known as csQCA.

A) Basic Concepts

An explicit algebraic basis for qualitative comparison exists in Boolean algebra. Also
known as the algebra of logic and as the algebra of sets, Boolean algebra was developed
in the mid-nineteenth century by George Boole. The Boolean principles used in
qualitative comparative analysis are quite simple. Seven aspects of Boolean algebra are
essential for the algorithms and are presented here in rough sequence, with more difficult
concepts following simpler concepts.

1) Use of binary data

There are two conditions or states in Boolean algebra: true (or present) and false (or
absent). These two states are represented in base 2: 1 indicates presence; 0 indicates
absence. The typical Boolean-based comparative analysis addresses the presence/absence
of conditions under which a certain outcome is obtained (that is, is true). Thus, in a
Boolean analysis of social data all variables, causal conditions and outcome, must be
nominal-scale measures, preferably binary. Interval-scale measures are transformed into
multi-category nominal-scale measures. Nominal-scale measures with more than two
categories are represented with several binary variables.

2) Boolean negation

In Boolean logic, negation switches membership scores from 1 to 0 and from 0 to 1. The
negation of the crisp set of males, for example, is the crisp set of not males. If a case has
a Boolean score of 1 in the set of males, then it has a Boolean score of 0 in the set of not
males.

3) Use of truth table to represent data

In order to use Boolean algebra as a technique of qualitative comparison, it is necessary
to reconstruct a raw data matrix as a truth table. The idea behind a truth table is simple.
Once the data have been recoded into nominal-scale variables and represented in binary
form (as 1's and 0's), it is necessary only to sort the data into their different combinations
of values on the casual conditions. Each logical combination of values on the causal
conditions is represented as one row of the truth table. Once this part of the truth table is
constructed, each row is assigned an output value (a score of 1 or 0 on the outcome)
based on the scores of the cases which share that combination of input values (that

 Page 28

combination of scores on the causal conditions). Thus, both the different combinations of
input values (causal conditions) and their associated output values (the outcome) are
summarized in a truth table.

Truth tables have as many rows as there are logically possible combinations of values on
the causal conditions. If there are three binary causal conditions, for example, the truth
table will contain 23 = 8 rows, one for each logically possible combination of three
presence/absence conditions. The truth table for a moderate-sized data set with three
binary conditions and one binary outcome (with 1 = present and 0 = absent) is shown in
Table 1. Technically, there is no reason to include the frequency of each combination as
part of the truth table. These values are included in the examples to remind the reader that
each row is not a single case but a summary of all the cases with a certain combination of
input values. In this respect, a row of a truth table is like a cell from a multiway
cross-classification of several categorical independent variables.

Table 1: Hypothetical Truth Table Showing Three Causes of Regime Failure

Condition Regime Failure Number

of
Instances

conflict death cia failure

0
1
0
0
1
1
0
1

0
0
1
0
1
0
1
1

0
0
0
1
0
1
1
1

0
1
1
1
1
1
1
1

9
2
3
1
2
1
1
3

conflict = Conflict between older and younger military officers
death = Death of a powerful dictator
cia = CIA dissatisfaction with the regime

4) Groupings

Just as it is possible to calculate the logically possible number of combinations (2k), it is
also possible to calculate the number of logically possible groupings. The formula is 3k-1,
where k again is the number of attributes (33 -1 = 26). Table 2 shows the 26 logically
possible groupings of the three dichotomies presented in Table 1. Using the formula just
described, the 26 possible groupings are formed as follows: 8 involve combinations of
three attributes, 12 involve combinations of two attributes, and six involve single
attributes.

Table 2: Groupings Using Three Dichotomies (from Table 1)

 Page 29

Initial Configuration
(8 combinations of three

aspects)

Groupings involving
combinations of two aspects

(12)

Groupings evolving a single
aspect (6)

conflict • death • cia
conflict • death • ~cia
conflict • ~death • cia

conflict • ~death • ~cia
~conflict • death • cia

~conflict • ~death • cia
conflict • death • ~cia

~conflict • ~death • ~cia

conflict • death
conflict • ~death

~conflict • ~death
~conflict • death

conflict • cia
conflict • ~cia
~conflict • cia

~conflict • ~cia
death • cia

death • ~cia
~death • cia

~death • ~cia

conflict
~conflict

death
~death

cia
~cia

5) Boolean Addition

In Boolean algebra, if A + B = Z, and A = 1 and B = 1, then Z = 1. In other words, 1 + 1
= 1. The basic idea in Boolean addition is that if any of the additive terms is satisfied
(present), then the outcome is true (occurs). Addition in Boolean algebra is equivalent to
the logical operator OR. (In this discussion uppercase OR is used to indicate logical OR.)
Thus, the above statement A + B = Z becomes: if A equals 1 OR B equals 1, then Z
equals 1.

The best way to think of this principle is in logical terms, not arithmetically. For example,
there might be several things a person could do to lose his or her job. It does not matter
how many of these things the person does. If the employee does any one (or all) of them,
he or she will be fired. Doing two of them will not cause one employee to be more fired
than another employee who does only one of them. Fired is fired, a truly qualitative state.
This example succinctly illustrates the nature of Boolean addition: satisfy any one of the
additive conditions and the expected outcome follows.

Consider the collapse of military regimes. Assume that there are three general conditions
that cause military regimes to fall: sharp conflict between older and younger military
officers (conflict), death of a powerful dictator (death), or CIA dissatisfaction with the
regime (cia). Any one of these three conditions may be sufficient to prompt a collapse.
The truth table for a number of such regimes in different countries is shown in Table 1
(with 1 = present and 0 = absent). Each combination of causes produces either regime
failure or an absence of regime failure – there are no contradictory rows.

The "simplified" Boolean equation

 failure = conflict + death + cia

 Page 30

expresses the relation between the three conditions and regime failure simply and
elegantly for both negative and positive instances. Simply stated: if any one (or any two
or all three) of these conditions obtains, then the regime will fall.

6) Boolean Multiplication

Boolean multiplication differs substantially from normal multiplication. Boolean
multiplication is relevant because the typical social science application of Boolean
algebra concerns the process of simplifying expressions known as "sums of products."
A product is a particular combination of causal conditions. The data on collapsed military
regimes from Table 1 can be represented in "primitive" (that is, unreduced)
sums-of-products form as follows:

 failure = conflict • ~death • ~cia +
 ~conflict • death • ~cia +
 ~conflict • ~death • cia +
 conflict • death • ~cia +
 conflict • ~death • cia +
 ~conflict • death • cia +
 conflict • death • cia

Each of the seven terms represents a combination of causal conditions found in at least
one instance of regime failure. The different terms are products because they represent
intersections of conditions (conjunctures of causes and absences of causes). The equation
shows the different primitive combinations of conditions that are linked to the collapse of
military regimes.

Boolean multiplication, like Boolean addition, is not arithmetic. The expression conflict •
~death • ~cia does not mean that the value of conflict (1) is multiplied by the value of
death (0) and by the value of cia (0) to produce a result value of 0. It means simply that a
presence of conflict is combined with an absence of death and an absence of cia. The
total situation, failure = conflict • ~death • ~cia, occurs in the data twice. This
conjunctural character of Boolean multiplication shapes the interpretation of the primitive
sums-of-products equation presented above: failure (regime failure) occurs if any of
seven combinations of three causes is obtained. In Boolean algebra addition indicates
logical OR and multiplication indicates logical AND. The three causes are ANDed
together in different ways to indicate different empirical configurations. These
intersections are ORed together to form an unreduced, sums-of-products equation
describing the different combinations of the three causes linked to regime collapse.

7) Combinatorial Logic

Boolean analysis is combinatorial by design. In the analysis of regime failures presented
above, it appears from casual inspection of only the first four rows of the truth table
(Table 1) that if any one of the three causes is present, then the regime will collapse.
While it is tempting to take this shortcut, the route taken by Boolean analysis is much

 Page 31

more exacting of the data. This is because the absence of a cause has the same logical
status as the presence of a cause in Boolean analysis. As noted above, Boolean
multiplication indicates that presence and absence conditions are combined, that they
intersect.

Consider the second row of the truth table (Table 1), which describes the two instances of
military regime failure linked to causal configuration conflict • ~death • ~cia. Simple
inspection suggests that in this case failure (regime failure) resulted from the first cause,
conflict. But notice that if the investigator had information on only this row of the truth
table, and not on any of the other instances of regime failure, he or she might conclude
that conflict causes failure only if causes death and cia are absent. This is what the
conflict • ~death • ~cia combination indicates. This row by itself does not indicate
whether conflict would cause failure in the presence of death or cia or both. All the
researcher knows from these two instances of conflict • ~death • ~cia is that for conflict
to cause failure, it may be necessary for the other conditions (death and cia) to be absent.
From a Boolean perspective, it is entirely plausible that in the presence of one or both of
these other conditions (say, configuration conflict • ~death • cia), failure may not result.
To return to the original designations, it may be that in the presence of CIA meddling
(cia), conflict between junior and senior officers (conflict) will dissipate as the two
factions unite to oppose the attempt by outsiders to dictate events.

To push this argument further, assume the investigator had knowledge of only the first
four rows of the truth table. The data would support the idea that the presence of any one
of the three conditions causes failure, but again the data might indicate that conflict
causes failure only when death and cia are absent (conflict • ~death • ~cia); death causes
failure only when conflict and cia are absent (~conflict • death • ~cia), and so on. A strict
application of combinatorial logic requires that these limitations be placed on conclusions
drawn from a limited variety of cases.

This feature of combinatorial logic is consistent with the idea that cases, especially their
causally relevant features, should be viewed holistically. The holistic character of the
Boolean approach is consistent with the orientation of qualitative scholars in comparative
social science who examine different causes in context. When the second row of the truth
table (Table 1) is examined, it is not interpreted as instances of failure caused by conflict,
but as instances of failure caused by conflict • ~death • ~cia. Thus, in Boolean-based
qualitative comparison, causes are not viewed in isolation but always within the context
of the presence and absence of other causally relevant conditions.

Minimization

The restrictive character of combinatorial logic seems to indicate that the Boolean
approach simply compounds complexity on top of complexity. This is not the case.
There are simple and straightforward rules for simplifying complexity – for reducing
primitive expressions and formulating more succinct Boolean statements. The most
fundamental of these rules is:

 Page 32

If two Boolean expressions differ in only one causal condition yet produce the same
outcome, then the causal condition that distinguishes the two expressions can be
considered irrelevant and can be removed to create a simpler, combined expression.

Essentially this minimization rule allows the investigator to take two Boolean expressions
that differ in only one term and produce a combined expression. For example, conflict •
~death • ~cia and conflict • death • ~cia, which both produce outcome failure, differ
only in death; all other elements are identical. The minimization rule stated above allows
the replacement of these two terms with a single, simpler expression: conflict • ~cia. In
other words, the comparison of these two rows, conflict • ~death • ~cia and conflict •
death • ~cia, as wholes indicates that in instances of conflict • ~cia, the value of death is
irrelevant. The condition death may be either present or absent; failure will still occur.

The logic of this simple data reduction parallels the logic of experimental design. Only
one causal condition, death, varies and no difference in outcome is detected (because
both conflict • ~death • ~cia and conflict • death • ~cia are instances of failure).
According to the logic of experimental design, death is irrelevant to failure in the
presence of conflict • ~cia (that is, holding these two conditions constant). Thus, the
process of Boolean minimization mimics the logic of experimental design. It is a
straightforward operationalization of the logic of the ideal social scientific comparison.

This process of logical minimization is conducted in a bottom-up fashion until no further
stepwise reduction of Boolean expressions is possible. Consider again the data on
military regime failures presented above. Each of the rows with one cause present and
two absent can be combined with rows with two causes present and one absent because
all these rows have the same outcome (failure) and each pair differs in only one causal
condition:

conflict • ~death • ~cia combines with conflict • death • ~cia to produce conflict • ~cia.
conflict • ~death • ~cia combines with conflict • ~death • cia to produce conflict • ~death.
~conflict • death • ~cia combines with conflict • death • ~cia to produce death • ~cia.
~conflict • death • ~cia combines with ~conflict • death • cia to produce ~conflict • death.
~conflict • ~death • cia combines with conflict • ~death • cia to produce ~death • cia.
~conflict • ~death • cia combines with ~conflict • death • cia to produce ~conflict • cia.

Similarly, each of the rows with two causes present and one absent can be combined with
the row with all three present:

conflict • death • ~cia combines with conflict • death • cia to produce conflict • death.
conflict • ~death • cia combines with conflict • death • cia to produce conflict • cia.
~conflict • death • cia combines with conflict • death • cia to produce death • cia.

Further reduction is possible. Note that the reduced terms produced in the first round can
be combined with the reduced terms produced in the second round to produce even
simpler expressions:

 Page 33

conflict • ~death combines with conflict • death to produce conflict.
conflict • ~cia combines with conflict • cia to produce conflict.
~conflict • death combines with conflict • death to produce death.
death • ~cia combines with death • cia to produce death.
~conflict • cia combines with conflict • cia to produce cia.
~death • cia combines with death • cia to produce cia.

Although tedious, this simple process of minimization produces the final, reduced
Boolean equation:

 failure = conflict + death + cia

True enough, this was obvious from simple inspection of the entire truth table, but the
problem presented was chosen for its simplicity. The example directly illustrates key
features of Boolean minimization. It is bottom-up. It seeks to identify ever wider sets of
conditions (that is, simpler combinations of causal conditions) for which an outcome is
true. And it is experiment-like in its focus on pairs of configurations differing in only one
cause.

1) Use of “prime implicants”

A further Boolean concept that needs to be introduced is the concept of implication. A
Boolean expression is said to imply another if the membership of the second term is a
subset of the membership of the first. For example, a implies a • ~b • ~c because a
embraces all the members of a • ~b • ~c (that is, a • ~b • ~c is a subset of a). This
concept is best understood by example. If a indicates economically dependent countries,
b indicates the presence of heavy industry, and c indicates centrally coordinated
economies, a embraces all dependent countries while a • ~b • ~c embraces all dependent
countries that lack both centrally coordinated economies and heavy industry. Clearly the
membership of a • ~b • ~c is included in the membership of a. Thus, a implies a • ~b •
~c.

The concept of implication, while obvious, provides an important tool for minimizing
primitive sums-of-products expressions. Consider the hypothetical truth table shown in
Table 3, which summarizes data on three causal conditions thought to affect the success
of strikes already in progress (success): a booming market for the product produced by
the strikers (market), the threat of sympathy strikes by workers in associated industries
(threat), and the existence of a large strike fund (fund).

The Boolean equation for success (successful strikes) showing unreduced (primitive)
Boolean expressions is

 success = market • ~threat • fund + ~market • threat • ~fund +

market • threat • ~fund + market • threat • fund

 Page 34

Table 3: Hypothetical Truth Table Showing Three Causes of Successful Strikes

Condition Success Frequency
Market Threat fund success

1
0
1
1
1
0
0
0

0
1
1
1
0
0
1
0

1
0
0
1
0
1
1
0

1
1
1
1
0
0
0
0

6
5
2
3
9
6
3
4

The first step in the Boolean analysis of these data is to attempt to combine as many
compatible rows of the truth table as possible. (Note that this part of the minimization
process uses rows with an output value of 1, strike succeeded.) This first phase of the
minimization of the truth table produces the following partially minimized Boolean
equation, which in effect turns a primitive Boolean equation with four three-variable
terms into an equation with three two-variable terms:

market • threat • fund combines with market • ~threat • fund to produce market • fund.
market • threat • fund combines with market • threat • ~fund to produce market • threat.
market • threat • ~fund combines with ~market • threat • ~fund to produce threat • ~fund.

success = market • fund + market • threat + threat • ~fund

Product terms such as those in the preceding equation which are produced using this
simple minimization rule—combine rows that differ on only one cause if they have the
same output values—are called prime implicants. Usually, each prime implicant covers
(that is, implies) several primitive expressions (rows) in the truth table. In the partially
minimized equation given above, for example, prime implicant market • fund covers two
primitive Boolean expressions listed in the truth table: market • threat • fund and market
• ~threat • fund.

This partially reduced Boolean expression illustrates a common finding in Boolean
analysis: often there are more reduced expressions (prime implicants) than are needed to
cover all the original primitive expressions. Prime implicant market • threat implies
primitive terms market • threat • fund and market • threat • ~fund, for example, yet these
two primitive terms are also covered by market • fund and threat • ~fund, respectively.
Thus, market • threat may be redundant from a purely logical point of view; it may not
be an essential prime implicant. In order to determine which prime implicants are
logically essential, a minimization device known as a prime implicant chart is used.
Minimization of the prime implicant chart is the second phase of Boolean minimization.

 Page 35

Briefly stated, the goal of this second phase of the minimization process is to "cover" as
many of the primitive Boolean expressions as possible with a logically minimal number
of prime implicants. This objective derives from a straightforward desire for non-
redundancy. The prime implicant chart maps the links between prime implicants and
primitive expressions. The prime implicant chart describing these links in the data on
strike outcomes is presented in Table 4. Simple inspection indicates that the smallest
number of prime implicants needed to cover all of the original primitive expressions is
two. (For very complex prime implicant charts, sophisticated computer algorithms are
needed; see Mendelson 1970, Roth 1975, and McDermott 1985.) Prime implicants
market • fund and threat • ~fund cover all four primitive Boolean expressions. Analysis
of the prime implicant chart, therefore, leads to the final reduced Boolean expression
containing only the logically essential prime implicants:

 success = market • fund + threat • ~fund

This equation states simply that successful strikes occur when there is a booming market
for the product produced by the workers AND a large strike fund (market • fund) or when
there is the threat of sympathy strikes by workers in associated industries combined with
a low strike fund (threat • ~fund). (Perhaps the threat of sympathy strikes is taken
seriously only when the striking workers badly need the support of other workers.)

Table 4: Prime Implicant Chart Showing Coverage of Original Terms by Prime
 Implicants (Hypothetical Strike Data)

Primitive Expressions

 market •
threat •

fund

market •
~threat •

fund

market •
threat •
~fund

~market •
threat •
~fund

Prime
Implicants

market • fund X X
market • threat X X
threat • ~fund X X

These simple procedures allow the investigator to derive a logically minimal equation
describing the different combinations of conditions associated with an outcome. The
final, reduced equation shows the two (logically minimal) combinations of conditions
that cause successful strikes and thus provides an explicit statement of multiple
conjunctural causation.

2) Use of De Morgan's Law

The application of De Morgan's Law is straightforward. Consider the solution to the
hypothetical analysis of successful strikes presented above: success = market • fund +
threat • ~fund. Elements that are coded present in the reduced equation (say, market in
the term market • fund) are recoded to absent, and elements that are coded absent (say,

 Page 36

~fund in the term threat • ~fund) are recoded to present. Next, logical AND is recoded to
logical OR, and logical OR is recoded to logical AND. Applying these two rules,

 success = market • fund + threat • ~fund

becomes:

 ~success = (~market + ~fund)• (~threat + fund)

 = ~market • ~threat + ~market • fund + ~threat • ~fund

According to this equation, strikes fail when (1) the market for the relevant product is not
booming AND there is no serious threat of sympathy strikes, (2) the market for a product
is not booming AND there is a large strike fund, OR (3) there is no threat of sympathy
strikes AND only a small strike fund. (The combination ~market • fund—nonbooming
market and large strike fund, which seems contradictory—may suggest an economic
downturn after a period of stability. In this situation a shutdown might be welcomed by
management.)

De Morgan’s Law produces the exact negation of a given logical equation. If there are
“remainder” combinations in the truth table and they are used as “don’t cares,” then the
results of the application of De Morgan Law will yield a logical statement that is not the
same as the analysis of the absence of the outcome. Likewise, if the remainders are
defined as “false” in the initial analysis, then the application of De Morgan’s Law to the
solution (of positive cases) will yield a logical statement that embraces not only the
negative cases, but also the remainders.

3) Necessary and Sufficient Causes

A cause is defined as necessary if it must be present for an outcome to occur. A cause is
defined as sufficient if by itself it can produce a certain outcome. This distinction is
meaningful only in the context of theoretical perspectives. No cause is necessary, for
example, independent of a theory that specifies it as a relevant cause. Neither necessity
nor sufficiency exists independently of theories that propose causes.

Necessity and sufficiency are usually considered together because all combinations of the
two are meaningful. A cause is both necessary and sufficient if it is the only cause that
produces an outcome and it is singular (that is, not a combination of causes). A cause is
sufficient but not necessary if it is capable of producing the outcome but is not the only
cause with this capability. A cause is necessary but not sufficient if it is capable of
producing an outcome in combination with other causes and appears in all such
combinations. Finally, a cause is neither necessary nor sufficient if it appears only in a
subset of the combinations of conditions that produce an outcome. In all, there are four
categories of causes (formed from the cross-tabulation of the presence/absence of
sufficiency against the presence/absence of necessity).

 Page 37

The typical application of QCA (crisp or fuzzy) results in a logical statement describing
combinations of conditions that are sufficient for the outcome. The listed combinations
may or may not be exhaustive, that is, they may not explain all instances of the outcome.
It is a good idea to examine both necessity and sufficiency of individual conditions before
the analysis of sufficient combinations of conditions. This can be done by looking at
scatterplots of the outcome by each condition and to make note of which are quasi
supersets (i.e., necessary) and which are quasi subsets (i.e., sufficient) (see also
Subset/Superset Analysis).

B) Data

The following window shows a sample crisp-set data sheet:

caseid abbreviated country name
wealthy high GDP/cap versus not
urban highly urban versus not
literate high level of literacy versus not
industrial high percentage of industrial workers versus not
unstable government instability versus not
survived democracy survived during interwar period versus not

[The example in this section is from Rihoux and Ragin (2008), Configurational
Comparative Analysis.]

C) Analysis

The current version of the fsQCA software (as of this writing, version 3.0, July 2017)
contains one method of conducting crisp-set analysis: the “Truth Table Algorithm.” This
method makes use of the Quine-McCluskey algorithm. The Truth Table Algorithm is
described below.

 Page 38

Truth Table Algorithm

Two important tasks structure the application of the crisp-set truth table algorithm: (1)
The assessment of the distribution of cases across different logically possible
combinations of causal conditions. And (2) the assessment of the consistency of the
evidence for each causal combination with the argument that the cases with this
combination of conditions constitute a subset of the cases with the outcome. That is, they
share the outcome in question

The truth table algorithm involves a two-step analytic procedure. The first step consists of
creating a truth table spreadsheet from the raw data, which primarily involves specifying
the outcome and causal conditions to include in the analysis. The second step consists of
preparing the truth table spreadsheet for analysis, by selecting both a frequency threshold
and a consistency threshold.

 In order to create the truth table spreadsheet, choose:
 Analyze
 Truth Table Algorithm…

The following window will open, listing the variables in your file:

 Identify and highlight the case aspect you want to explain and transfer it into the

Outcome field by clicking Set.

 Select a preliminary list of causal conditions by highlighting one at a time and clicking

Add to move them over one by one to the Causal Conditions field.

 Check the box next to “Show solution cases in output” and choose the variable that is

your caseID.

 Page 39

 Click on the Okay button and the following window containing the full truth table will
appear:

 The truth table will have 2k rows (where k represents the number of causal conditions),

reflecting all possible combinations of causal conditions (scroll down to see all
possible combinations). The 1s and 0s represent full membership and zero
membership for each condition, respectively. For each row, a value for each of the
following variables is created:

number the number of cases displaying the combination of conditions
raw consist. the proportion of cases in each truth table row that display the outcome.
PRI consist. an alternative measure of consistency (developed for fuzzy sets) based on

a quasi proportional reduction in error calculation. In crisp set analyses
this will be equal to raw consist.

SYM consist. an alternative measure of consistency for fuzzy sets based on a
symmetrical version of PRI consistency.

Note that the column labeled as the outcome (survived in this example) is blank. It is up
to the investigator to determine the outcome for each configuration using the following
procedure.

 The researcher must begin by developing a rule for classifying some combinations

(rows) as relevant and others as irrelevant, based on their frequency. This is
accomplished by selecting a frequency threshold based on the number of cases in each
row, shown in the number column. When the total number of cases in an analysis is
relatively small, the frequency threshold should be 1 or 2. When the total N is large,

 Page 40

however, a more substantial threshold should be used. It is very important to examine
the distribution of cases across causal combinations.

 Configurations (rows) can be sorted by their frequency (descending or ascending) by

clicking the heading of the number column.

 After sorting rows and selecting a frequency threshold, delete all rows that do not meet

the threshold. If the cases have been sorted in a descending order according to number,
click on the first case that falls below the threshold then select

 Edit
 Delete current row to last row…

 If cases have not been sorted then those cases that do not meet the threshold can
 be deleted individually by selecting the row the choosing
 Edit
 Delete current row…

 The next step is to distinguish configurations that are subsets of the outcome from

those that are not. For crisp sets, this determination is made using the measure of set-
theoretic consistency reported in the raw consist column. Values below 0.75 indicate
substantial inconsistency. It is useful to sort the consistency scores in descending order
to evaluate their distribution (this should be done after removing rows that fail to
meet the frequency threshold). Sorting is accomplished by clicking the raw consist.
column label.

 Identify any gaps in the upper range of consistency that might be useful for

establishing a consistency threshold. Keep in mind that it is always possible to
examine several different thresholds and assess the consequences of lowering
and raising the consistency cut-off.

 It is now necessary to indicate which configurations can be considered subsets of the

outcome and which cannot (see also alternative method below). Input a 1 in the
outcome column (survived in this example) for each configuration whose consistency
level meets and/or exceeds the threshold. Input a 0 in the outcome column for each
configuration whose consistency level does not meet the consistency threshold.

 Alternatively, one can use the “Delete and code” function to automate this process.

Select:
 Edit
 Delete and code…

In the first field, the frequency threshold is selected. The default number of cases is 1, but
may be changed by typing the selected frequency threshold into the field. In the second
field, the consistency threshold is selected. The default consistency is 0.8, but this may be
changed by typing the selected consistency threshold into the field.

 Page 41

 Click “OK.” The program will delete rows where the frequency threshold is not
 met, and will code the outcome as 0 or 1 depending on the selected consistency
 threshold.

 The following window displays the truth table that would appear after

1. applying a frequency threshold of 1 to the data and eliminating configurations that
do not have any observations (6 configurations)

2. selecting a consistency threshold of 0.9 and placing a 1 in the survived column for
configurations with 0.90 consistency or greater (4 configurations) and a 0 for
cases with lower consistency (6 configurations)

From here, there are two possibilities for the analysis: specifying a single analysis versus
deriving the three “standard” analyses (complex, parsimonious, and intermediate).
Clicking the “Standard Analyses” button (which gives the three solutions) is the
recommended procedure.

i) Specify Analysis Option

 Once the truth table is constructed (before clicking “Standard Analyses”) select

Specify Analysis to bring up the Truth Table Analysis Window.

 In the Specify panel setting Positive cases to “True” and all the others to “False” will

yield the “most complex” solution. This window appears as:

 Page 42

 To derive the most parsimonious solution, set Positive cases to “True,” Negative Cases

to “False”, and Remainders to “Don’t Cares.”

 Please note: When the algorithm for selecting prime implicants cannot fully reduce the

truth table, the Prime Implicant Window will appear and the user must select the prime
implicants to be used, based on theoretical and substantive knowledge. This window is
most likely to pop open when the program is deriving the parsimonious solution, but
could happen for all three solutions. (See below in Fuzzy-Set Analysis for a
description of how this window operates.)

 To perform the analysis, click the Okay button and the output will appear in the output

window.

ii) Standard Analyses Option

 Once the truth table is fully constructed, select Standard Analyses. Standard Analyses

automatically provides the user with the complex, parsimonious, and intermediate
solutions. “Standard Analyses” is the recommended procedure, as this is the only
way to derive the intermediate solution. To derive the intermediate solution, the
software conducts counterfactual analyses based on information about causal
conditions supplied by the user.

Limited Diversity and Counterfactual Analysis

One of the most challenging aspects of comparative research is the simple fact that
researchers work with relatively small Ns. Investigators often confront "more variables than
cases," a situation that is greatly complicated the fact that comparativists typically focus on
combinations of case aspects – how aspects of cases fit together configurationally. For
example, a researcher interested in a causal argument specifying an intersection of four
causal conditions ideally should consider all sixteen logically possible combinations of these

 Page 43

four conditions in order to provide a thorough assessment of this argument. Naturally
occurring social phenomena, however, are profoundly limited in their diversity. The
empirical world almost never presents social scientists all the logically possible
combinations of causal conditions relevant to their arguments (as shown with hypothetical
data in Table 1 below). While limited diversity is central to the constitution of social and
political phenomena, it also severely complicates their analysis.

Table 1: Truth table with four causal conditions (A, B, C, and D) and one outcome (Y)

A B C D Y*
no no no no no
no no no yes ?
no no yes no ?
no no yes yes ?
no yes no no no
no yes no yes no
no yes yes no ?
no yes yes yes no
yes no no no ?
yes no no yes ?
yes no yes no ?
yes no yes yes ?
yes yes no no yes
yes yes no yes yes
yes yes yes no ?
yes yes yes yes ?

* Rows with "?" in the Y column lack cases – the outcome cannot be determined.

As a substitute for absent combinations of causal conditions, comparative researchers often
engage in "thought experiments" (Weber [1905] 1949). That is, they imagine counterfactual
cases and hypothesize their outcomes, using their theoretical and substantive knowledge to
guide their assessments. Because QCA uses truth tables to assess cross-case patterns, this
process of considering counterfactual cases (i.e., absent combinations of causal conditions)
is explicit and systematic. In fact, this feature of QCA is one of its key strengths. However,
the explicit consideration of counterfactual cases and the systematic incorporation of the
results of such assessments into statements about cross-case patterns are relatively new to
social science. The specification of best practices with respect to QCA and counterfactual
analysis, therefore, is essential.

Consider an example (not based on Table 1 above). A researcher postulates, based on
existing theory, that causal conditions A, B, C, and D are all linked in some way to outcome
Y. That is, it is the presence of these conditions, not their absence, which should be linked to
the presence of the outcome. The empirical evidence indicates that many instances of Y are
coupled with the presence of causal conditions A, B, and C, along with the absence of
condition D (i.e., A⋅B⋅C⋅d Y). The researcher suspects, however, that all that really
matters is having the first three causes, A, B and C. In order for A⋅B⋅C to generate Y, it is

 Page 44

not necessary for D to be absent. However, there are no observed instances of A, B, and C
combined with the presence of D (i.e., no observed instances of A⋅B⋅C⋅D). Thus, the
decisive empirical case for determining whether the absence of D is an essential part of the
causal mix (with A⋅B⋅C) simply does not exist.

Through counterfactual analysis (i.e., a thought experiment), the researcher could declare
this hypothetical combination (A⋅B⋅C⋅D) to be a likely instance of the outcome (Y). That is,
the researcher might assert that A⋅B⋅C⋅D, if it existed, would lead to Y. This counterfactual
analysis would allow the following logical simplification:

 A⋅B⋅C⋅d + A⋅B⋅C⋅D Y
 A⋅B⋅C⋅(d + D) Y
 A⋅B⋅C Y

How plausible is this simplification? The answer to this question depends on the state of
the relevant theoretical and substantive knowledge concerning the connection between D
and Y in the presence of the other three causal conditions (A⋅B⋅C). If the researcher can
establish, on the basis of existing knowledge, that there is every reason to expect that the
presence of D should contribute to outcome Y under these conditions (or conversely, that
the absence of D should not be a contributing factor), then the counterfactual analysis just
presented is plausible. In other words, existing knowledge makes the assertion that
A⋅B⋅C⋅D Y an "easy" counterfactual, because it involves the addition of a redundant
cause (D) to a configuration which is believed to be linked to the outcome (A⋅B⋅C).

One strength of QCA is that it not only provides tools for deriving the two endpoints of
the complexity/parsimony continuum, it also provides tools for specifying intermediate
solutions. Consider the truth table presented in Table 1, which uses A, B, C, and D as
causal conditions and Y as the outcome. Assume, as before, that existing theoretical and
substantive knowledge maintains that it is the presence of these causal conditions, not
their absence, which is linked to the outcome. The results of the analysis barring
counterfactuals (i.e., the complex solution) reveals that combination A⋅B⋅c explains Y.
The analysis of this same evidence permitting any counterfactual that will yield a more
parsimonious result (i.e., the parsimonious solution) is that A by itself accounts for the
presence of Y. Conceive of these two results as the two endpoints of the
complexity/parsimony continuum, as follows:

 A⋅B⋅c A

Observe that the solution privileging complexity (A⋅B⋅c) is a subset of the solution
privileging parsimony (A). This follows logically from the fact that both solutions must
cover the rows of the truth table with Y present; the parsimonious solution also
incorporates some of the remainders as counterfactual cases and thus embraces additional
rows. Along the complexity/parsimony continuum are other possible solutions to this
same truth table, for example, the combination A⋅B. These intermediate solutions are
produced when different subsets of the remainders used to produce the parsimonious
solution are incorporated into the results. These intermediate solutions constitute subsets

 Page 45

of the most parsimonious solution (A in this example) and supersets of the solution
allowing maximum complexity (A⋅B⋅c). The subset relation between solutions is
maintained along the complexity/parsimony continuum. The implication is that any
causal combination that uses at least some of the causal conditions specified in the
complex solution (A⋅B⋅c) is a valid solution of the truth table as long as it contains all the
causal conditions specified in the parsimonious solution (A). It follows that there are two
valid intermediate solutions to the truth table:

 A⋅B
 A⋅B⋅c A⋅c A

Both intermediate solutions (A⋅B) and (A⋅c) are subsets of the solution privileging
parsimony and supersets of the solution privileging complexity. The first (A⋅B) permits
counterfactuals A⋅B⋅C⋅D and A⋅B⋅C⋅d as combinations linked to outcome Y. The second
permits counterfactuals A⋅b⋅c⋅D and A⋅b⋅c⋅d.

The relative viability of these two intermediate solutions depends on the plausibility of
the counterfactuals that have been incorporated into them. The counterfactuals
incorporated into the first intermediate solution are "easy" because they are used to
eliminate c from the combination A⋅B⋅c, and in this example, existing knowledge
supports the idea that it is the presence of C, not its absence, which is linked to outcome
Y. The counterfactuals incorporated into the second intermediate solution, however, are
"difficult" because they are used to eliminate B from A⋅B⋅c. According to existing
knowledge the presence of B should be linked to the presence of outcome Y. The
principle that only easy counterfactuals should be incorporated supports the selection of
A⋅B as the optimal intermediate solution. This solution is the same as the one that a
conventional case-oriented researcher would derive from this evidence, based on a
straightforward interest in combinations of causal conditions that are (1) shared by the
positive cases (or at least a subset of the positive cases), (2) believed to be linked to the
outcome, and (3) not displayed by negative cases.

 After Standard Analysis is selected, a window for guiding the derivation of the

intermediate solution will appear. Here, the researcher must select how each causal
condition should theoretically contribute to the outcome, as described above. If the
condition should contribute to the outcome when present, select “Present.” If the
condition should contribute to the outcome when absent, select “Absent.” If the
condition could contribute to the outcome when it is present OR absent, select
“Present or Absent.” If all conditions are coded “Present of Absent” then the
intermediate solution will be identical to the complex solution.

 Page 46

 Please note: When the algorithm for selecting prime implicants cannot fully reduce the

truth table, the Prime Implicant Window will appear and the user must select the prime
implicants to be used, based on theoretical and substantive knowledge. This window is
most likely to pop open when the program is deriving the parsimonious solution, but
could happen for all three solutions. (See below in Fuzzy-Set Analysis for a
description of how this window operates.)

 To perform the analysis, click OK and the complex, intermediate, and parsimonious

solutions will appear in the output window. The output window will clearly label each
of the solutions, and begin with complex, then parsimonious, and then intermediate.

5. FUZZY-SET ANALYSIS

This part of the manual addresses the use of fuzzy sets, discussed in depth in Fuzzy-Set
Social Science (Ragin, 2000) and Redesigning Social Inquiry (Ragin, 2008). Instead of
allowing only two mutually exclusive states, membership and nonmembership, fuzzy sets
extend crisp sets by permitting membership scores in the interval between 0 and 1. There
are many ways to construct fuzzy sets. Three common ways are:

 four-value fuzzy sets (0, .33, .67, 1)
 six-value fuzzy sets (0, .2, .4, .6, .8, 1)
 and continuous fuzzy sets (any value ≥ 0 and ≤ 1)

 Page 47

There is one fuzzy-set algorithm, the “truth table” algorithm, which has proven to be the
most robust approach. The truth table algorithm is described in Redesigning Social
Inquiry (Ragin 2008) and also in Configurational Comparative Methods (Rihoux and
Ragin 2008).

A) Operations on Fuzzy Sets

The logical operations AND and OR are used in the fuzzy-set algorithms but are different
from the use in crisp-sets. What follows is an introduction of the common operations:
logical AND, logical OR and negation.

Logical AND. With fuzzy sets, logical AND is accomplished by taking the minimum
membership score of each case in the sets that are intersected. For example, if a country’s
membership in the set of poor countries is .34 and its membership in the set of
democratic countries is .91, its membership in the set of countries that are poor and
democratic is the smaller of these two scores, .34.

Logical OR. Two or more sets also can be joined through logical OR – the union of sets.
For example, a researcher might be interested in countries that are “developed” OR
“democratic” based on the conjecture that these two conditions might offer equivalent
bases for some outcome (e.g., bureaucracy-laden government). Conventionally, crisp
categories would be used to compile a complete list of countries that are “developed or
democratic” (i.e., countries that have one or both characteristics). With fuzzy sets, the
researcher focuses on the maximum of each case’s memberships in the component sets.
That is, membership in the set formed from the union of two or more component sets is
the maximum value of the case’s memberships in the component sets. Thus, if a country
has a score of .15 in the set of democratic countries and a score of .93 in the set of
developed countries, it has a score of .93 in the set of countries that are “democratic or
developed.”

Negation. As with crisp sets, fuzzy sets can be negated. In crisp set logic, negation
switches membership scores from 1 to 0 and from 0 to 1. This simple mathematical
principle holds in fuzzy algebra as well. The relevant numerical values are not restricted
to the Boolean values 0 and 1 but extend to values between 0 and 1 as well. To calculate
the membership of a case in the negation of fuzzy set A, simply subtract its membership
in set A from 1, as follows:

Fuzzy membership in set not A = 1 – fuzzy membership in set A.

This can be displayed as ~Ai = 1 – Ai, where the subscript “i” indicates the “ith” case, the
set “not A” is represented as ~A, and the symbol “~” denotes negation. Thus, for
example, if the United States has a membership score of .79 in the set of “democratic
countries,” it has a score of .21 in the set of “not democratic countries.”

B) Fuzzy Sets, Necessity, and Sufficiency (Fuzzy Subset Relation)

 Page 48

Subset principle and arithmetic relationship between membership scores in CRISP
sets. Consider the example of state breakdown being a necessary but not sufficient
condition of social revolution (p. 211 in Fuzzy Set Social Science). It follows logically
that if a condition is necessary but not sufficient for an outcome, then instances of the
outcome will constitute a subset of instances of the cause. Another way to understand the
subset relationship is in terms of the arithmetic relationship between crisp-set
membership scores (1s and 0s). If instances of the outcome are a subset of instances of
the cause, then the Boolean value of the outcome (1 versus 0) will be less than or equal to
the Boolean value of the cause.

Subset principle and arithmetic relationship between membership scores in FUZZY
sets. With fuzzy sets it would be difficult to “select” countries with the outcome (the
usual first step in the crisp-set analysis of necessary conditions) because countries vary in
their degree of membership in the set displaying social revolution. Likewise, it would be
very difficult to evaluate cases’ agreement with respect to the relevant causal condition
(state breakdown) because they vary in their membership in this set as well.

Fortunately, the subset principle and the arithmetic relationship between membership
scores holds for fuzzy sets as well. With fuzzy sets, set A is a subset of set B if the
membership scores of cases in set A are less than or equal to their respective membership
scores in set B. Furthermore, when fuzzy membership scores in the outcome are less than
or equal to fuzzy membership in the cause, then it is possible to argue that instances of
the outcome are a subset of instances of the cause. Figure 1 displays this arithmetic
relationship in two dimensions. When researchers find this pattern, could cite this
evidence as support for an argument of causal necessity.

Figure 1: Plot of “social revolution” against “state breakdown”

Membership in Set of "state breakdown"

1.0.8.6.4.20.0

M
em

be
rs

hi
p

in
 S

et
 o

f "
so

ci
al

re
vo

lu
tio

n"

1.0

.8

.6

.4

.2

0.0

 Page 49

The evaluation of sufficiency can be seen as a test of whether the cases displaying the
causal conditions form a subset of the cases displaying the outcome. As shown above,
another way to understand the subset relationship is in terms of the arithmetic relation
between membership scores. In order to argue that a cause or causal combination is a
sufficient for the outcome, the fuzzy membership scores in the cause should be less than
or equal to the fuzzy membership scores in the outcome.

Consider the following example taken from Fuzzy-Set Social Science, p. 236ff. Figure 2
displays the arithmetic relationship between the sufficient causal combinations (~cross-
class • ~multiracial) against the outcome (ideological conflict). The upper-triangular plot
shown in Figure 2 is a direct reflection of the fact that membership scores in the fuzzy set
“race and class homogeneity” are less than or equal to membership scores in the fuzzy set
“ideological conflict.”

Note the important difference between the application of the subset principle to the
assessment of sufficiency and its applications to the assessment of necessity. To
demonstrate necessity the researcher must show that the outcome is a subset of the cause.
To support an argument of sufficiency, the researcher must demonstrate that the cause is
a subset of the outcome.

 Figure 2: Plot of “ideological conflict” against “race and class homogeneity”

Membership in "rac e and class homogeneity"

1.0.8.6.4.20.0

M
em

bs
er

sh
ip

 in
 "i

do
el

og
ic

al
co

nf
lic

t"

1.0

.8

.6

.4

.2

0.0

 Page 50

C) Using the Fuzzy Truth Table Algorithm

This method for analyzing fuzzy sets using Truth Tables was introduced in version 2.0 of
fsQCA. It is described in detail in Ragin’s (2008) Redesigning Social Inquiry: Fuzzy Sets
and Beyond and in Rihoux and Ragin’s (2008) Configurational Comparative Methods:
Qualitative Comparative Analysis (QCA) and Related Techniques.

The fuzzy truth table algorithm can be conceptualized as a bridge with three pillars. The
first pillar is the direct correspondence that exists between the rows of a crisp truth table
and the coordinates of the corners of the vector space defined by fuzzy set causal
conditions (see Ragin 2000). The second pillar is the assessment of the distribution of
cases across different logically possible combinations of causal conditions (or sectors of
the vector space). Some sectors of the vector space may have many cases with strong
membership while other sectors may have cases with only weak membership. The third
pillar is the assessment of the consistency of the evidence for each causal combination
with the argument that it is a fuzzy subset of the outcome. The truth table algorithm
involves establishing these three pillars to construct a crisp truth table, at which point the
analysis proceeds similar to the crisp algorithm. This section will explain the steps
involved in recording the results of multiple fuzzy set analyses in a crisp truth table and
then analyzing that table.

Data

Fuzzy set data can be imported from other programs or created in fsQCA, as described in
Chapters 1 and 2. This chapter will use the example of countries with weak class voting
from Ragin (2005). The table below depicts the data sheet:

ID Country Identifier

 Page 51

affluent Affluent
inequality Substantial Income Inequality
manufacturing Strong Manufacturing Sector
unions Strong Unions
weakcv Weak Class Voting

Interval and ratio scale data can be converted to fuzzy set membership scores using the
“calibrate” procedure described in Chapter 2 of the manual (Data Editor) and in Ragin
(2008).

Analysis

The truth table algorithm incorporates a two-stage analytic procedure. The first step
consists of creating a truth table from the fuzzy data, which includes specifying the
outcome for each configuration and determining which configurations to include in the
analysis. The second step involves specifying the causal conditions and outcomes to
minimize. These steps must be performed in conjunction and both must be performed for
each separate analysis.

 In order to specify the sets to be used in the analysis, choose:
 Analyze
 Truth Table Algorithm…

The following window will open:

 Page 52

 Identify and highlight the variable you want to use as the outcome and transfer it into
the Outcome field by clicking Set.

 Choose causal conditions one at a time and click them over to the Causal Conditions

field by clicking Add.

 Check the box next to “Show solution cases in output” and choose the variable that

signifies your caseIDs.

 Click on the Okay button and the following window containing the truth table will

appear:

 The truth table will have 2k rows (where k represents the number of causal conditions),

reflecting all possible combinations of causal conditions. The 1s and 0s indicate the
different corners of the vector space defined by the fuzzy set causal conditions. For
each row, a value for each of the following variables is created:

number the number of cases with greater than 0.5 membership in that corner of the
 vector space. Shown in parentheses is the cumulative percentage of cases,
 beginning with the most populated sector of the vector space

 Page 53

raw consist. the degree to which membership in that corner of the vector space is a
consistent subset of membership in the outcome. (For crisp sets, this is the
proportion of cases in a given crisp truth table row that display the
outcome.)

PRI consist. an alternative measure of consistency for fuzzy sets based on a quasi
proportional reduction in error calculation. (In crisp sets this will be equal
to raw consist).

SYM consist. an alternative measure of consistency for fuzzy sets based on a
symmetrical version of PRI consistency.

Note that the column labeled as the outcome (weakcv in this example) is blank. It is up to
the investigator to determine the outcome for each configuration and to enter it into the
spreadsheet using the following procedure.

 The researcher must begin by developing a rule for classifying some configurations

(vector spaces corners) as relevant and others as irrelevant, based on the number of
cases residing in each sector of the vector space defined by the causal conditions. This
is accomplished by selecting a frequency threshold based on the number of cases with
greater than 0.5 membership in each configuration, as shown in the number column.
When the total N (number of cases) is relatively small, the frequency threshold should
be 1 or 2. When the total N is large, a more substantial threshold should be used. It is
very important to examine the distribution of cases across conditions, to identify the
most populated sectors of the vector space. In general, the configurations selected
should capture at least 75-80% of the cases.

 Cases can be sorted by their frequency (ascending or descending) by clicking on the

number column heading.

 After sorting and selecting a threshold, delete all rows that do not meet the threshold.

If the cases have been sorted in a descending order according to number, click on the
first case that falls below the threshold and then choose:

 Edit
 Delete current row to last row…

 If cases have not been sorted then those cases that do not meet the threshold can
 be deleted individually by selecting the row and then choosing:
 Edit
 Delete current row…

 The next step is to distinguish configurations that are consistent subsets of the outcome

from those that are not. This determination is made using the measures of set-theoretic
consistency reported in the raw consist, PRI, and/or SYM columns. Values below 0.80
in the raw consist column indicate substantial inconsistency. It is useful to sort the
consistency scores in descending order to evaluate their distribution (this should be
done after removing rows that fail to meet the frequency threshold). Sorting is

 Page 54

accomplished by clicking on the raw consist, PRI, or SYM column heading (make sure
the arrow, which appears when you click on the column heading, is pointing down).

 Identify any gaps in the upper range of consistency that might be useful for
 establishing a consistency threshold. Keep in mind that it is always possible to
 examine several different thresholds and assess the consequences of lowering
 and raising the consistency cut-off.

 It is now necessary to indicate which configurations exhibit the outcome and which do

not. Place a 1 in the outcome column (weakcv in this example) for each configuration
whose consistency level meets and/or exceeds the threshold. Place a 0 in the outcome
column for each configuration whose consistency level does not meet the consistency
threshold.

 Alternatively, use the “Delete and code” function to automate this process. Select:
 Edit
 Delete and code…

 In the first field, the frequency threshold is selected. The default number of cases
 is 1, but may be changed by typing the selected frequency threshold into the field.
 In the second field, the consistency threshold (raw consist.) is selected. The
 default consistency is 0.8, but this may be changed by typing the selected
 consistency threshold into the field.

 Click “OK.” The program will delete rows where the frequency threshold is not
 met, and will code the outcome as 0 or 1 depending on the selected consistency
 threshold.

 The following window displays the truth table that would appear after

1. applying a frequency threshold of 1 to the data and eliminating configurations
 that do not have any observations (8 configurations)
2. selecting a consistency threshold of 0.8 and placing a 1 in the weakcv column for
 configurations with 0.8 consistency or greater (5 configurations) and a 0 for cases

with lower consistency (3 configurations)

 Page 55

From this point in the procedure, there are two possibilities for analysis: specifying the
analysis versus selecting “Standard Analyses.” “Standard Analyses” is the
recommended choice because this is the only way to generate the “intermediate”
solution.

“Specify Analysis” Option
 Once the truth table is constructed select Specify Analysis to bring up the Truth Table

Analysis (Dialog) Window.
 In the Specify panel set Positive cases to True and all the others to False to yield the

most complex solution. This window appears as follows:

 To derive the most parsimonious solution, set Positive cases to True, Negative Cases

to False, and Remainders to Don’t Cares.

 Page 56

 Please note: When the algorithm for selecting prime implicants cannot fully reduce the
truth table, the Prime Implicant Window will appear and the user must select the prime
implicants to be used, based on theoretical and substantive knowledge. This window is
most likely to pop open when the program is deriving the parsimonious solution, but
could happen for all three solutions. (See below in Standard Analysis for a description
of how this window operates.)

“Standard Analyses” Option

 Once the truth table is constructed select “Standard Analyses.” This procedure

automatically provides the user with the complex, intermediate, and parsimonious
solutions. “Standard Analyses” is recommended over “Specify Analysis.”

Please refer back to the discussion of the “Standard Analyses” procedure for crisp sets.
The fuzzy set procedure is parallel. Three solutions are derived, the complex, the
parsimonious and the intermediate. Each solution is based on a different treatment of the
remainder combinations:

 Complex: remainders are all set to false; no counterfactuals;

 Parsimonious: any remainder that will help generate a logically simpler
 solution is used, regardless of whether it constitute an “easy” or
 a “difficult” counterfactual case;

 Intermediate: only remainders that are “easy” counterfactual cases are allowed
 to be incorporated into the solution. The designation of “easy” versus
 “difficult” is based on user-supplied information regarding the connection
 between each causal condition and the outcome.

When the algorithm for selecting prime implicants cannot fully reduce the truth table, the
Prime Implicant Window will appear and the user must select the prime implicants to be
used, based on theoretical and substantive knowledge. The window will appear as
follows:

 Page 57

Prime implicants (PIs) are product terms that are produced using minimization rules (e.g.
rules that combine rows that differ on only one cause if they have the same output value).
For example: ABC combines with AbC to produce AC. AC, therefore, is the prime
implicant that covers the two primitive Boolean expressions ABC and AbC. In other
words, ABC and AbC are subsets of AC, or AC implies ABC and AbC.

Often, though, there are more reduced prime implicants than are needed to cover all the
original primitive expressions and the user has the option to choose from among those
that are “logically tied” using the prime implicant chart. (For a more comprehensive
discussion of the use of Prime Implicants, refer to The Comparative Method page 95.)

 To choose prime implicants (PIs), the program employs an algorithm that
attempts to reduce the table until no further simplification is possible, beginning
with essential PIs (which uniquely cover specific rows in the truth table) that must
appear in the solution. If the algorithm is run and the table cannot be fully
reduced, the user may select the PIs to be used, based on theoretical and
substantive knowledge.

 The Prime Implicant Chart tab displays the possible prime implicants for the
user to choose. Each column in the chart represents a different truth table row that
is covered by more than one prime implicant. The “Data” field across the top
displays the truth table row in question (the one that needs to be covered).

 The “Prime” field on the left-hand side describes the PI that the user may
select. Each row in the chart represents one PI that may be selected. A PI is
selected by clicking on the cell in the first column.

 After clicking on the desired cell or cells, press OK to run the analysis.

D) Output for “Specify Analysis” Option

Once the truth table has been minimized, the main window will show you the following
output. The output shown is for the most complex solution, obtained by using the
“Specify Analysis” option as described above.

 Page 58

The first part of the output describes the data of the Truth Table Analysis. The first two
rows indicate the file directory and the model you specified. Then, the output displays
what kind of algorithm you used.

The last part of the output shows the Truth Table Solution of your analysis. First,
frequency and consistency cutoffs are listed. This is followed by the solution(s). When
the “Specify Analysis” option is selected, there will be one Truth Table Solution section.
When “Standard Analyses” is selected, three solution sections will be provided (complex,
parsimonious and intermediate). In this example, the solution for the most complex
solution was reported, with weak class voting as a product of three configurations.

The first two lines list the frequency and consistency cutoffs. The consistency cutoff will
list the lowest consistency value above the cut-off value specified by the user. Here, 0.8
was given as the consistency cutoff, and the lowest actual value above 0.8 was 0.823529.

The solution provides a line for each separate path to the outcome (in this example three
paths exist). The output also computes the consistency and coverage for each solution
term and the solution as a whole (these computations are discussed below).

The output for the most parsimonious solution of this same truth table is:

 Page 59

The solution indicates three paths to weak class voting. Countries with membership in the
set of countries with not-strong unions, or in the set of countries that are not affluent, or
in the set of countries with high income inequality and not strong manufacturing sectors,
all exhibit weak class voting.

E) Output for “Standard Analyses” Option

Output for the Standard Analysis will look slightly different:

Most notably, the complex, intermediate, and parsimonious solutions will be displayed.
Depicted here is the intermediate solution. The “Assumptions” portion of the output
display the options previously selected in the “Intermediate Solution” window (see page
46); here, each was selected such that when present, the condition should contribute to
the outcome.

 Page 60

In this solution, weak class voting is a product of three pathways – high membership in
the set of affluent countries and weak membership in the set of countries with strong
unions; weak membership in the set of affluent countries, high membership in the set of
unequal countries, and high membership in the set of countries with strong unions; as
well as high membership in the set of affluent countries, high membership in the set of
unequal countries, and weak membership in the set of manufacturing countries.

F) Consistency and Coverage

The output includes measures of coverage and consistency for each solution term and for
the solution as a whole. Consistency (with sufficiency) measures the degree to which
solution terms and the solution as a whole are subsets of the outcome. Coverage
measures how much of the outcome is covered (or explained) by each solution term and
by the solution as a whole. These measures are computed by examining the original
fuzzy data set in light of the solution (composed of one or more solution terms). The
degree to which cases in the original dataset have membership in each solution term and
in the outcome form the basis of consistency and coverage measures. More specifically,
consider the following data table with three causal conditions (A, B, and C) and an
outcome (Y) all measured as fuzzy sets.

Causal
Condition
Membership

Outcome
Membership Solution Membership Consistency Calculations

A B C Y A*B A*C A*B + A*C CA*B CA*C CA*B + A*C

.8 .9 .8 .9 .8 .8 .8 .8 .8 .8

.6 .7 .4 .8 .6 .4 .6 .6 .4 .6

.6 .7 .2 .7 .6 .2 .6 .6 .2 .6

.6 .6 .3 .7 .6 .3 .6 .6 .3 .6

.8 .3 .7 .8 .3 .7 .7 .3 .7 .7

.6 .1 .7 .9 .1 .6 .6 .1 .6 .6

.7 .4 .2 .3 .4 .2 .4 .3 .2 .3

.2 .9 .9 .1 .2 .2 .2 .1 .1 .1

.1 .6 .2 .2 .1 .1 .1 .1 .1 .1

.2 .1 .7 .3 .1 .2 .2 .1 .2 .2

.3 .1 .3 .3 .1 .3 .3 .1 .3 .3

.1 .2 .3 .2 .1 .1 .1 .1 .1 .1
Sum: 6.2 4.0 4.1 5.2 3.8 4.0 5.0

The relevant output for this analysis is shown below. The solution is comprised of two
terms: A*B + A*C. To calculate consistency and coverage, several intermediate values
must be calculated first. Membership in the outcome (ΣY) is the sum of outcome
membership scores across all cases in the data. A case’s membership in each solution
term is computed as the minimum of the cases membership in each causal condition of
the term. Membership in the first solution term (ΣA*B) is the sum of membership in that
solution term across all cases. Similarly, membership in the second solution term (ΣA*C)
is the sum of membership in that solution term across all cases. Membership in the

 Page 61

solution (Σ (A*B + A*C) is defined as the maximum of a case’s membership across the
solution terms.

 raw unique
 coverage coverage consistency
 ---------- ---------- -----------
A*B+ 0.612903 0.161290 0.950000
A*C 0.645161 0.193548 0.975610
solution coverage: 0.806452
solution consistency: 0.961538

Consistency measures the degree to which membership in each solution term is a subset
of the outcome. Consistency is computed by first computing the consistency of each
case. For any solution term, a case is consistent if membership in the solution term is less
than or equal to membership in the outcome. If a case’s membership in the solution term
is greater than its membership in the outcome (i.e., it is inconsistent), then the case is
given a score that equals its membership in the outcome. These scores are then summed
(yielding Σ CA*B) and divided by the sum of memberships in the solution term (ΣA*B).
Thus, consistency for the first solution term is Σ CA*B / ΣA*B = 3.8/4 = .95 and for the
second solution term is 4.0/4.1 = .976.

Solution Consistency measures the degree to which membership in the solution (the set of
solution terms) is a subset of membership in the outcome. The maximum of each case’s
membership across solution terms max(A*B + A*C) is compared to membership in the
outcome. If membership in the solution is less than or equal to membership in the
outcome, then the case is given a score that equals its membership in the solution term. If
membership in the solution term if greater than membership in the outcome (i.e., if it is
inconsistent), then the case is given the outcome scores (the lower of the two scores).
These scores are summed and then divided by the sum of memberships in the solution
term (Σ C(A*B + A*C) / Σ(A*B + A*C). The consistency for the solution in this example is
5.0/5.2 = .962.

Solution coverage measures the proportion of memberships in the outcome that is
explained by the complete solution. The consistent membership scores are summed
across cases and then divided by the sum of the membership in the outcome:
(ΣC(A*B + A*C) / ΣY) = 5/6.2 = .806.

Raw coverage measures the proportion of memberships in the outcome explained by each
term of the solution. Raw coverage is computed for each solution term from the original
data by dividing the sum of consistent membership in the solution term by the sum of
membership in the outcome. Raw coverage for the first solution term is ΣCA*B / ΣY =
3.8/6.2 = .613 and for the second term is 4.0/6.2 = .645.

Unique coverage measures the proportion of memberships in the outcome explained
solely by each individual solution term (memberships that are not covered by other
solution terms). This is computed by first removing the term from the solution and
computing solution coverage. In this example, solution coverage after removing the first

 Page 62

solution term (ΣCA*B) is simply ΣCA*C (with n solution terms the reduced solution will
contain n-1 solution terms). The reduced coverage term is then divided by the full
solution coverage and subtracted from the raw coverage to give the unique coverage for
the omitted solution term. For the first solution term (ΣCA*B) unique coverage equals:
(ΣC(A*B + A*C) / ΣY) - (ΣCA*C / ΣY) = (5.0/6.2) – (4.0/6.2) = .161. Unique coverage for the
second term equals (5.0/6.2) – (3.8/6.2) = .194.

	USER’S GUIDE TO
	Fuzzy-Set / Qualitative Comparative Analysis
	CONTENTS

	 Chapter 1. Data Files
	 Chapter 3. Basic Procedures, Descriptive Statistics, and Graphs
	Condition
	Primitive Expressions

	Chapter 1. DATA FILES
	File

	Chapter 2. DATA EDITOR
	Variables
	Compute…
	Recode Variables

	Analyze
	4. CRISP-SET ANALYSIS

	Table 3: Hypothetical Truth Table Showing Three Causes of Successful Strikes
	B) Data
	C) Analysis

	5. FUZZY-SET ANALYSIS
	A) Operations on Fuzzy Sets
	C) Using the Fuzzy Truth Table Algorithm

