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Chapter 1. DATA FILES 
 
A) Opening a Data File 
  
 FsQCA opens with the following window: 

 
 From the menu choose: 

File 
   Open 

 
 In the Open File dialog box, select the file you want to open. 
 
 Click Open. 
 
B) Opening Data Files of Various Formats 
 
Data files come in a wide variety of formats, and the software is designed to handle the 
following: 

• Comma-separated values (*.csv) or comma-delimited file, produced by Excel 
and other spreadsheet software 
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• Space separated (*.txt) space delimited file, can be created in WORD or other 
word processing software and saved as text only 

 
• Tab separated (*.dat) tab delimited file, can be created using SPSS and other 

statistical software packages 
 

• Raw data files (*.raw) generated by Stata (extension can be changed to *.csv if 
saved in the comma-delimited format). 

 
The recommended formats are *.csv (Excel) and *.dat (SPSS). 
 
Please note that fsQCA makes the following assumptions about the structure of *.csv, 
*.dat and *.txt data files. First, and most important, fsQCA assumes that the cells in the 
first row of the spreadsheet contain variable names for their respective columns. Second, 
fsQCA assumes that the data begin in the second row of the spreadsheet and that each 
case is a single row. Finally, fsQCA assumes that each column contains cells of the same 
type of data. Data types can vary across columns, but they must be consistent within 
columns. Please remember to use very simple variables names, using only 
alphanumeric characters with no embedded punctuation or spaces. For example, 
“GNP1990” is OK, but “GNP 1990” and “GNP-1990” are not. 
 
• Opening / Saving data originally created in Excel:  
      Save the Excel file in *.csv (Comma Separated Values) format. Make sure that the         
      first row of the Excel data spreadsheet contains the variable names. Open in fsQCA. 
 
• Opening / Saving data originally created in SPSS: 
      Save the SPSS file in *.dat (tab delimited) format or *.csv (Comma Separated     
      Values) format. SPSS will ask you whether you want to “Write variable names to    
      file.” Do not uncheck this option. 
 
• Opening / Saving data originally created in Stata:  
      Save the Stata file in *.dta format and then go to File, Export, and choose file as     
      Comma-separated data. In the new window, insert the file name for “Write to the      
      file,” then for “Delimiter” choose Comma-separated format, and click Submit. In  
      some versions of Stata you may need to rename the new *.dta file as a *.csv file.  
 
• Opening / Saving data originally created in Word / Notepad: 
      Enter the data delimited by spaces. Make sure that the first line contains the variable     
      names, also separated by spaces. Save the file in a *.txt (Text only) format, TXT   
      (Text with Line Breaks), TXT (MS-DOS), or TXT (MS-DOS with Line Breaks).      
      Open in fsQCA. 
 
 C) Saving File Options 
  
 From the menu choose: 

 File 
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    Save… 
 
 The modified data file is saved, overwriting the previous version of the file of the same 
name and location. 
 
Or:   To save a new data file or save data in a different format, from the menu choose: 
    File 
      Save As… 
 
 The file will save in *.csv (Comma Separated Values) format. 
 
 Enter a filename for the new data file.  
 
D) Opening fsQCA Data in Other Formats 
 
Once you have your data in the fsQCA program and have completed some preliminary 
analyses, you have the option to either edit the data in fsQCA (see Chapter 2), or edit 
your data with the help of software packages you may be more familiar with (e.g., SPSS  
or Excel). Similarly, you can either display the data graphically with the fsQCA program 
(see Chapter 3), or turn to SPSS, Stata or Excel for more elaborate graphical 
representations. If you choose SPSS, Stata or Excel for these operations, you need to save 
the fsQCA file and transfer it to the program of your choice.  
 
SPSS 
 

 In order to open fsQCA data in SPSS, save the fsQCA data spreadsheet in Comma-
separated values (*.csv) or comma-delimited file. Make sure that the string variables 
in the fsQCA data file are written without spaces in between them (no embedded 
spaces are allowed) 

 
 In SPSS choose: 

  File 
          Open 
           Data…   
 
 Open the fsQCA file you have just saved. 
 
 SPSS will ask you several questions regarding your file. Check the following options: 
 
 Does you text file match a predefined format? No 
 How are your variables arranged?   Delimited 
 Are variable names included at the top of your file? Yes 
 Line number that contains variable names                 1 
 What is the decimal symbol?                                      Period 
 The first case of data begins with line number? 2 
 How are your cases represented?   Each line represents a case 
 How many cases do you want to import?  All of the cases 
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 Which delimiters appear between variables?  Comma 
 What is the text qualifier?    None 
 Would you like to save this file format for future Y/N 
 use? 
 Would you like to paste the syntax?   No 
 Then click FINISH 
 You can now edit the data and display it graphically in SPSS. 
 
 In order to transfer the SPSS file back to fsQCA, see Chapter 1) B) SPSS. 
 
Stata 
 In order to open fsQCA data in Stata, save the fsQCA data spreadsheet in Comma-

separated values (*.csv) or comma-delimited file. Make sure that the string variables 
in the fsQCA data file are written without spaces in between them (no embedded 
spaces are allowed) 

 
 In Stata, choose 

        File 
           Import 
               Text data created by a spreadsheet 
 
 In the new window, browse for your *.csv file and, for “Delimiter,” choose 

Comma-delimited data. 
   
 You can now edit and use the data in Stata. 

 
 In order to transfer the Stata file back to fsQCA, see Chapter 1) B) Stata. 

 
Excel 
 

 In order to open fsQCA data in Excel, save the fsQCA data spreadsheet in comma 
separated format (*.csv). Make sure that the string variables in the fsQCA data file are 
written without spaces in between them (no embedded spaces). 

 
 In Excel choose: 
 File 
    Open… 
 
 Open the fsQCA file you have just saved. 
 
 You can now edit the data and display it graphically in Excel. 
 
 In order to transfer the Excel file back to fsQCA, see above. 
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Chapter 2. DATA EDITOR 
 
A) Entering Data (creating a data file from scratch, in fsQCA) 
 
 From the menu choose: 

Variables 
      Add… 
 
 The Add Variable window will open. 

 
 Enter the variable name. The following rules apply to variable names: 

• The length of the name cannot exceed fifteen characters. 
• Each variable name must be unique; duplication is not allowed. 
• Variable names are not case sensitive. The names NEWVAR, NewVAR and 

newvar are all considered identical. 
• Variable names cannot include spaces or hyphens or punctuation. 
• Only alphanumeric characters may be used (0-9, a-Z) 
 

 Add the variable by clicking the OK button. 
 

 In addition to adding new variables, you can delete variables by highlighting the 
variable and clicking  

   Variables  
                Delete… 
 
 Now, from the menu choose:  
  Cases 
            Add…   
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Note: In general, fsQCA is able to process a large number of cases. Yet, a main feature of 
fsQCA is that it deals with combinations of causal conditions; thus, adding more 
variables will influence computational time more than adding more cases. The number of 
possible combinations is 2 to the k power, where k is the number of causal conditions. As 
a rule of thumb, 10 or fewer causal conditions (i.e., 1024 possible combinations) is not a 
problem in terms of computational time. When dealing with more than 10 conditions, it is 
just a matter of the amount of time you are willing to wait for the program to do the 
analyses. Most applications use three to eight causal conditions. 
 
 Enter the number of cases of your data set, press the Ok button, and the Data Sheet 
window will appear: 

 
 Enter the data values. You can enter data in any order. You can enter data by case or 

by variable, for selected areas or individual cells. The active cell is highlighted with a 
darker color. When you select a cell and enter a data value, the value is displayed in 
the cell editor under the menu bar. Values can be numeric or string. Data values are 
not recorded until after you press Enter.  

 
 Before closing the Data Sheet you need to save it in order not to lose the entered 

information. 
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B) Editing Data 

 
Add / Delete Variables 

 
 In order to add variables to an already existing Data Sheet, choose: 

  Variables 
      Add… 

 
 Enter the variable name and press the OK button. 
 
 In order to delete existing variables in the Data Sheet, highlight a cell in the variable 

column you want deleted and choose:  
Variables 

       Delete… 
 

Compute Variables 
 

 In order to compute new variables out of existing ones or numeric or logical 
expressions, choose: 

 Variables 
        Compute… 
 

 The following window will open (with the names of the variables in your data file 
listed in the window on the left). [This chapter will use the example of countries with 
weak class voting from Ragin (2005)]: 
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 Type the name of a single target variable. It can be an existing variable or a new   
    variable to be added to the working data file. Do not use a single letter as a variable 
    name (e.g., “X”). This will cause the compute function to crash. Follow the variable 

name guidelines on page 8. 
 

 To build an expression, either paste components into the Expression field or type  
    directly in the Expression field (the window below the new variable field). 
 
1) Arithmetic Operators 

 
+ Addition.  The preceding term is added to the following term.  

Both terms must be numeric. 
 
- Subtraction.  The following term is subtracted from the preceding 

term.  Both terms must be numeric. 
 
* Multiplication.  The preceding and the following term are 

multiplied.  Both terms must be numeric. 
 
/ Division.  The preceding term is divided by the following term.  

Both terms must be numeric, and the second must not be 0. 
 
  

2) Relational Operators 
 
< Logical Less Than. True (=1) for numeric terms if the preceding 

term is less than the following term. True for string terms if the 
preceding term appears earlier than the following term in the 
collating sequence (in alphabetical order). This operator is 
normally used only in a logical condition. 

 
> Logical Greater Than. True (=1) for numeric terms if the 

preceding term is greater than the following term. True for string 
terms if the preceding term appears later than the following term in 
the collating sequence (in alphabetical order). This operator is 
normally used only in a logical condition. 

 
<= Logical Less Than Or Equal. True (=1) for numeric terms if the 

preceding term is less or equal than the following term. True for 
string terms if the preceding term appears earlier than the 
following term in the collating sequence (in alphabetical order), or 
if the two are equal. This operator is normally used only in a 
logical condition. 

 
>= Logical Greater Than Or Equal. True (=1) for numeric terms if 

the preceding term is greater or equal than the following term. True 
for string terms if the preceding term appears later than the 
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following term in the collating sequence (in alphabetical order), or 
if the two are equal. This operator is normally used only in a 
logical condition. 

 
== Logical Equality. True (=1) for terms that are exactly equal. If 

string terms are of unequal length, the shorter term is padded on 
the right with spaces before the comparison. This operator is 
normally used only in a logical condition. 

 
!= Logical Inequality. True (=1) for terms that are not exactly equal.  

If string terms are of unequal length, the shorter term is padded on 
the right with spaces before the comparison. This operator is 
normally used only in a logical condition. 

 
&& Logical And. True (=1) if both the preceding and the following 

term are logically true. The terms may be logical or numeric; 
numeric terms greater than 0 are treated as true. This operator is 
normally used only in a logical condition. 

 
|| Logical Or. True if either the preceding or the following term are 

logically true. The terms may be logical or numeric; numeric terms 
greater than 0 are treated as true. This operator is normally used 
only in a logical condition.  This operator only works by pasting 
the symbol into the Expression Field. 

 
~ Logical Not. True if the following term is false. 1 – (numeric 

term). This operator is normally used only in a logical condition. 
 
3) Arithmetic Functions 

 
abs (x)  Returns the absolute value of x, which must be numeric. 
 
acos (x) Returns the arc cosine (inverse function of cosine) of radians, 

which must be a numeric value between 0 and 1, measured in 
radians. 

 
asin (x) Returns the arc sine (inverse function of sine) of radians, which 

must be a numeric value between 0 and 1, measured in radians. 
 
atan (x) Returns the arc tangent (inverse function of tangent) of radians, 

which must be a numeric value, measured in radians. 
 
ceil (x) Returns the integer that results from rounding x up (x must be 

numeric). 
 Example:  ceil (2.5) = 3.0 
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calibrate Transforms an interval or ratio scale variable into a fuzzy set; see 
below for details.  

 
cos (x) Return the cosine of radians, which must be a numeric value, 

measured in radians. 
 
cosh (x) Returns the hyperbolic cosine [(ex + e-x)/2] of radians, which must 

be a numeric value, measured in radians. X cannot exceed the 
value of 230.   

 
exp (x) Returns e raised to the power x, where e is the base of the natural 

logarithms and x is numeric. Large values of x (x > 230) produce 
results that exceed the capacity of the machine. 

 
floor (x) Returns the integer that results from rounding x down (x must be 

numeric). 
 Example:  floor (2.5) = 2.0 

 
fmod (x,y) Returns the remainder when x is divided by modulus (y). Both 

arguments must be numeric, and modulus must not be 0.  
 

fuzzyand (x,…,) Returns the minimum of two or more fuzzy sets.   
Example: fuzzyand (1.0, 0.1) = 0.1 

 
fuzzyor (x,…,) Returns the maximum of two or more fuzzy sets. 
   Example: fuzzyor (1.0, 0.1)  = 1.0 
 
fuzzynot (x) Returns the negation (1-x) of fuzzy sets (same as Logical Not ‘~’).  
   Example: fuzzynot (0.8) = 0.2 
 
int (x) Returns the integer part of x. Numbers are rounded down to the 

nearest integer. 
 
log (x) Returns the base-e logarithm of x, which must be numeric and 

greater than 0. 
 
log10 (x) Returns the base-10 logarithm of x, which must be numeric and 

greater than 0. 
 
pow (x,y) Returns the preceding term raised to the power of the following 

term. If the preceding term is negative, the following term must be 
an integer. This operator can produce values too large or too small 
for the computer to process, particularly if the following term (the 
exponent) is very large or very small.  
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round (x) Returns the integer that results from rounding x, which must be 
numeric. Numbers ending in .5 exactly are rounded away from 0. 

 Example:  round (2.5) = 3.0 
 
sin (x) Returns the sine of radians, which must be a numeric value, 

measured in radians. 
 
sinh (x) Returns the hyperbolic sine [(ex - e-x)/2] of radians, which must be 

a numeric value, measured in radians. X cannot exceed the value 
of 230. 

 
square (x)  Returns the square of x, which must be numeric. 
 
sqrt (x) Returns the positive square root of x, which must be numeric and 

not negative. 
 
tan (x) Returns the tangent [sine/cosine] of radians, which must be a 

numeric value, measured in radians. 
 
tanh (x)  Returns the hyperbolic tangent [(ex – e-x) / (ex + e-x)] of radians, 

which must be a numeric value, measured in radians. 
 
4) Other Operators 
 

(  ) Grouping. Operators and functions within parentheses are 
evaluated before operators and functions outside the parentheses. 

 
" Quotation Mark. Used to indicate the values of string variables. 
 Example: Compute if….: Variable == “NA” 
 
SYSMIS System Missing. Used when selecting subsets of cases. 
 Example: Select if...: Variable == SYSMISS   
 
Clear  Deletes the text in the Expression Field. 

 
Recode Variables 
 
You can modify data values by recoding them. This is particularly useful for collapsing 
or combining categories. You can recode the values within existing variables, or you can 
create new variables based on the recorded values of existing variables.  
 
1) Recode Into Same Variables reassigns the values of existing variables or collapses 

ranges of existing values into new values. You can recode numeric and string 
variables. You can recode single or multiple variables – they do not have to be all the 
same type. You can recode numeric and string variables together. 

 
 In order to recode the values of a variable choose: 



 

 Page 12 
 

 

 Variables 
       Recode… 
 
 The following window will open: 
 
 

 
 
 Select the recode existing variables option, a window with your existing variables will 

open. 
 
 Select the variables you want to recode (numeric or string). 
 
 Optionally, you can define a subset of cases to recode.  
 
 You can define values to recode using the Old Values and New Values windows.  
 
Old Value(s). The value(s) to be recoded. You can recode single values, ranges of 

values, and missing values. Ranges cannot be selected for string variables, 
since the concept does not apply to string variables. Ranges include their 
endpoints and any user-missing values that fall within the range. 

 
New Value.  The single value into which each old value or range of values is recoded. 

You can enter a value or assign the missing value. 
 
 Add your specifications to the list on the right.  
 
2) Recode Into Different Variables reassigns the values of existing variables or 

collapses ranges of existing values into new values for a new variable.  
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• You can recode numeric and string variables. 

 
• You can recode numeric variables into string variables and vice versa. 

 
 In order to recode the values of an old variable into a new variable, do the same as 
above and choose: 
 Variables 

       Recode… 
 
 The following window will appear: 
 
 

 
 Select code new variable as well as the existing variable you want to recode from the 

drop-down Based on menu.   
 
 Enter an output (new) variable name. 
 
 Specify how to recode values. 
 
Calibrating Fuzzy Sets 
 
In order to transform conventional ratio and interval scale variables into fuzzy sets, it is 
necessary to calibrate them, so that the variables match or conform to external standards. 
Most social scientists are content to use uncalibrated measures, which simply show the 
positions of cases relative to each other. Uncalibrated measures, however, are clearly 
inferior to calibrated measures. For example, with an uncalibrated measure of democracy 
it is possible to know that one country is more democratic than another or more 
democratic than average, but still not know if it is more a democracy or an autocracy.  
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Fuzzy sets are calibrated using theoretical and substantive criteria external to the data, 
and take into account the researcher’s conceptualization, definition, and labeling of the 
set in question. The end product is the fine-grained calibration of the degree of 
membership of cases in sets, with scores ranging from 0.0 to 1.0. 
 
The researcher must specify the values of an interval-scale variable that correspond to 
three qualitative breakpoints that structure a fuzzy set: the threshold for full membership 
(fuzzy score = 0.95), the threshold for full nonmembership (fuzzy score = 0.05), and the 
cross-over point (fuzzy score = 0.5). These three benchmarks are used to transform the 
original ratio or interval-scale values into fuzzy membership scores, using 
transformations based on the log odds of full membership. 
 
  From the menu choose: 

Variables 
                         Compute… 
 
 The following window will open [This chapter will use the example of countries with 
weak class voting from Ragin (2005)]: 

  
  Name the new variable (using 2-8 standard alphanumeric characters and no spaces, 

dashes, or punctuation) for the fuzzy set. 
 
  Click calibrate(x,n1,n2,n3) in the Functions menu, which will then transfer to the 

Expressions window. 
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  Edit the expression calibrate(,,,), for example, “calibrate(manf,25,10,2).” Here, manf 

is the name of an existing interval or ratio scale variable already in the file, which you 
can transfer from the Variables menu on the left. The first number is the value of 
oldvar that corresponds to the threshold for full membership in the target set (0.95), 
the second number is value of oldvar that corresponds to the cross-over point (0.5) in 
the target set, and the third number is the value of oldvar that corresponds to the 
threshold for nonmembership in the target set (0.05). 

 
  Click “OK.” 
 
  Check the data spreadsheet to make sure the fuzzy scores correspond to the original 

values in the manner intended. It may be useful to sort the variable in descending or 
ascending order, by clicking on the variable name in the column heading. The result is 
a fine-grained calibration of the degree of membership of cases in sets, with scores 
ranging from 0 to 1. 

 
Add / Insert Cases 
 
 In order to add cases into an already existing data sheet, choose: 
 Cases 
     Add… 
 
 The following window will appear: 

  
 Enter the number of cases you want to add to the existing number of cases. The 

additional case(s) will appear at the end (bottom) of the data spreadsheet. 
 
Delete Cases 
 
 In order to delete single cases from an already existing data sheet, highlight the case 

that you want to delete and choose: 
  Cases 
    Delete… 
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 The following window will appear: 

 
 With this function you can only delete one case at a time. 
 
 The program will ask you whether you want to delete the case in which you have 

highlighted a cell in the data sheet. 
 
Select Cases If 
 
Select Cases If provides several methods for selecting a subgroup of cases based on 
criteria that include variables and complex expressions, like: 
 
  - Variable values and ranges 
  - Arithmetic expressions 
  - Logical expressions 
  - Functions 
 
Unselected cases remain in the data file but are excluded from analysis. Unselected cases 
are indicated by a faded appearance in the data spreadsheet. 
 
 In order to select a subset of cases for analysis, choose: 
 Cases 
     Select If… 
 
 The following window will open: 
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 Specify the criteria for selecting cases. 
 
 If the result of a conditional expression is true, the case is selected. If the result of a 

conditional expression is false or missing, the case is not selected. 
 
 Most conditional expressions use one or more of the six relational operators (<, >, 

<=, >=, ==, !=) on the calculator pad. 
 
 Conditional expressions can include variable names, constants, arithmetic operators, 

numeric and other functions, logical variables, and relational operators. 
 
Note: “Select If” works best when it is univariate. For example, if you want to use the 

“Select If” function combining two logical statements, e.g., both a logical AND 
and a logical NOT, try creating a new variable (with compute or recode) that 
reflects your selection criteria and then use the new variable with “Select If.”  

 
 If you want to reverse your selection, choose: 
 Cases 
     Cancel Selection… 
 
C) Working with Output 
 
When you run a procedure, the results are displayed in the fsQCA window. You can use 
scroll up and down the window to browse the results. 



 

 Page 18 
 

 

 
 In order to print output, choose: 
 File 
    Print Results… 
 
 Your computer specific printer options window will appear, in which you can specify 

your printing options. 
 
 The output is written in monospace New Courier (10) in order allow simple transport 

between programs. Therefore, if you open the *.out file in SPSS or some other 
program, the numbers in the tables will be slightly dislocated, unless you specify the 
appropriate font.  

 
 Output may also be copied and pasted into Word, Wordpad, Text, or other files.  
 
 In order to save results, choose: 
  File 

    Save Results... 
 
 fsQCA will save results in *.txt (plain text) format.  
 
 
Chapter 3. BASIC STATISTICS AND GRAPHS 
[This chapter will use the example of countries with weak class voting from Ragin 
(2005).] 
 
Necessary Conditions  
 
The Necessary Conditions procedure produces consistency and coverage scores for 
individual conditions and/or specified substitutable conditions. 
 
 In order to analyze necessary conditions, choose:  
 Analyze 
      Necessary Conditions… 
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 The following window will open…

 
 Select the outcome in the drop-down Outcome menu. Then select a condition from 

the drop-down Add Conditions menu and then transfer it to the Conditions box on the 
right-hand side of the Dialog window. You can specify substitutable necessary 
conditions using logical or (+). 

 
 

 
 Once you’ve entered the specifications, click OK and the analysis will be displayed. 
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In this context, consistency indicates the degree to which the causal condition is a 
superset of the outcome; coverage indicates the empirical relevance of a consistent 
superset. 
 
Set Coincidence  
 
The Set Coincidence procedure assesses the degree of overlap of two or more sets.  
 
 In order to analyze the coincidence of two or more sets, choose:  
 Analyze 
       Set Coincidence… 
 
 The following window will open… 
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 Select the conditions you’d like to assess. For example, you can select all of the non-
outcome conditions to assess the degree of overlapping of all possible combinations.  

 

 
 Once you’ve entered the specifications, click OK and the analysis will be displayed. 

 
Subset/Superset Analysis 
 
The Subset/Superset Analysis procedure provides scores of consistency and coverage for 
conditions and configurations of conditions, as well as a combined score (which is 
experimental). It provides a way to examine the sufficiency of a hypothesized causal 
recipe, as well as all subsets of conditions in the given recipe. 
 
 In order to analyze a set of conditions, choose:  
 Analyze 
      Subset/Superset Analysis… 
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 The following window will open: 

 
 Select the outcome variable and click Set. Then choose the causal conditions and 

click Add or Add Negated, depending on your expectations.  

 
 Once you’ve entered the specifications, click OK and the following window will 

open: 
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 Once you’ve run the analysis, you can choose to save the results to a file in *.csv 

format, or send the result to the output window. The following shows the results in 
the output window 

 

 
Descriptives 
 
The Descriptives procedure displays univariate summary statistics for specified 
conditions in a single table. 
 
 In order to obtain descriptive statistics, choose: 
 Analyze 
     Statistics 
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  Descriptives… 
 
 Select one or more conditions from the Variables column and transfer them into the 

Descriptives column. Click Ok. 
 
 The output window will show your descriptive statistics: 

 
 The first line of your output will state the file name and the procedure you have chosen 

(Descriptive Statistics). The columns in the descriptives table indicate the following: 
 

1.  The variable chosen (Variable) 
2.  The mean value (Mean) 
3.  The standard deviation (Std. Dev.)   
4. The lowest value of the variable (Minimum) 
5. The highest value of the variable (Maximum) 
6.  The number of cases (N Cases) 
7.  The number of missing cases (Missing) 

 
Graphs 
 
XY Plot 
 
 In order to produce a XY Plot, choose: 
 Graphs 
            XY Plot... 
 
 The following window will open: 
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 Select a variable to define the values on the X Axis shown in the chart. 
 
 Select a variable to define the values on the Y Axis shown in the chart. 
 
 You can also add more information by choosing a Case ID Variable. This variable 

will not be represented in the graph, but you can determine its value by moving the 
cursor to a particular point in the graph after you’ve plotted the graph. For example, 
the Case ID variable could be a string variable with the names of the countries in the 
data set. Once plotted, it is possible to move the cursor to any point in the plot, and a 
window will appear with the case name and the x and y values of the point.  

 
 Once you have entered the specifications, click the Plot button and the plot will be 

displayed: 
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 The numbers below the “Plot” button show set-theoretic consistency scores. The upper 

line shows the degree to which the data plotted are consistent with X ≤ Y (X is a 
subset of Y). The lower line shows the degree to which the data plotted are consistent 
with X ≥ Y (Y is a subset of X). If one of these two numbers indicates high 
consistency, the other can be interpreted as a coverage score. For example, if the 
number in the upper line is .91 and the number in the lower line is .63, these 
calculations indicate that the data are largely consistent with the argument that X is a 
subset of Y and its coverage of Y is 63%. That is, X accounts for 63% of the sum of 
the memberships in Y. 

 
 You can negate variables in the graph by clicking on the negate option next to the 

variable name. This feature will subtract the fuzzy-set value of this variable from 1.  
Example: Inequality = .4; negation of Inequality = .6. [Same as ‘~’ and ‘fuzzynot(x)’] 

 
 You can copy the graph as an image and paste it into Word, Text, or other files.  
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4. CRISP-SET ANALYSIS 
 
This part of the manual refers to the analysis of dichotomous social data reflecting the 
memberships of cases in conventional, crisp sets. In-depth discussions of this method can 
be found in The Comparative Method (Ragin 1987), in chapter 5 of Fuzzy-Set Social 
Science (Ragin 2000). The data analytic strategy used here is known as qualitative 
comparative analysis, or QCA. QCA is based on Boolean algebra, where a case is either 
in or out of a set, and QCA uses binary-coded data, with 1 indicating membership and 0 
indicating nonmembership. QCA using conventional, crisp sets is also known as csQCA. 
 
A) Basic Concepts  
 

An explicit algebraic basis for qualitative comparison exists in Boolean algebra. Also 
known as the algebra of logic and as the algebra of sets, Boolean algebra was developed 
in the mid-nineteenth century by George Boole. The Boolean principles used in 
qualitative comparative analysis are quite simple. Seven aspects of Boolean algebra are 
essential for the algorithms and are presented here in rough sequence, with more difficult 
concepts following simpler concepts.  
 
1) Use of binary data 
 
There are two conditions or states in Boolean algebra: true (or present) and false (or 
absent). These two states are represented in base 2: 1 indicates presence; 0 indicates 
absence. The typical Boolean-based comparative analysis addresses the presence/absence 
of conditions under which a certain outcome is obtained (that is, is true). Thus, in a 
Boolean analysis of social data all variables, causal conditions and outcome, must be 
nominal-scale measures, preferably binary. Interval-scale measures are transformed into 
multi-category nominal-scale measures. Nominal-scale measures with more than two 
categories are represented with several binary variables. 
 
2) Boolean negation 
 
In Boolean logic, negation switches membership scores from 1 to 0 and from 0 to 1. The 
negation of the crisp set of males, for example, is the crisp set of not males. If a case has 
a Boolean score of 1 in the set of males, then it has a Boolean score of 0 in the set of not 
males. 
 
3) Use of truth table to represent data 
 
In order to use Boolean algebra as a technique of qualitative comparison, it is necessary 
to reconstruct a raw data matrix as a truth table. The idea behind a truth table is simple.  
Once the data have been recoded into nominal-scale variables and represented in binary 
form (as 1's and 0's), it is necessary only to sort the data into their different combinations 
of values on the casual conditions. Each logical combination of values on the causal 
conditions is represented as one row of the truth table. Once this part of the truth table is 
constructed, each row is assigned an output value (a score of 1 or 0 on the outcome) 
based on the scores of the cases which share that combination of input values (that 
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combination of scores on the causal conditions). Thus, both the different combinations of 
input values (causal conditions) and their associated output values (the outcome) are 
summarized in a truth table. 
 
Truth tables have as many rows as there are logically possible combinations of values on 
the causal conditions. If there are three binary causal conditions, for example, the truth 
table will contain 23 = 8 rows, one for each logically possible combination of three 
presence/absence conditions. The truth table for a moderate-sized data set with three 
binary conditions and one binary outcome (with 1 = present and 0 = absent) is shown in 
Table 1. Technically, there is no reason to include the frequency of each combination as 
part of the truth table. These values are included in the examples to remind the reader that 
each row is not a single case but a summary of all the cases with a certain combination of 
input values. In this respect, a row of a truth table is like a cell from a multiway 
cross-classification of several categorical independent variables. 
 
Table 1: Hypothetical Truth Table Showing Three Causes of Regime Failure 
 
Condition Regime Failure Number 

of 
Instances 

    
conflict death cia failure 

     

0 
1 
0 
0 
1 
1 
0 
1 

0 
0 
1 
0 
1 
0 
1 
1 

0 
0 
0 
1 
0 
1 
1 
1 

0 
1 
1 
1 
1 
1 
1 
1 

9 
2 
3 
1 
2 
1 
1 
3 

conflict = Conflict between older and younger military officers 
death  = Death of a powerful dictator 
cia  = CIA dissatisfaction with the regime 
 
4) Groupings 
 
Just as it is possible to calculate the logically possible number of combinations (2k), it is 
also possible to calculate the number of logically possible groupings. The formula is 3k-1, 
where k again is the number of attributes (33 -1 = 26). Table 2 shows the 26 logically 
possible groupings of the three dichotomies presented in Table 1. Using the formula just 
described, the 26 possible groupings are formed as follows: 8 involve combinations of 
three attributes, 12 involve combinations of two attributes, and six involve single 
attributes. 
 
Table 2: Groupings Using Three Dichotomies (from Table 1) 
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Initial Configuration 
(8 combinations of three 

aspects) 

Groupings involving 
combinations of two aspects 

(12) 

Groupings evolving a single 
aspect (6) 

conflict • death • cia 
conflict • death • ~cia 
conflict • ~death • cia 

conflict • ~death • ~cia 
~conflict • death • cia 

~conflict • ~death • cia 
conflict • death • ~cia 

~conflict • ~death • ~cia 
 

conflict • death 
conflict • ~death 

~conflict • ~death 
~conflict • death 

conflict • cia  
conflict • ~cia 
~conflict • cia 

~conflict • ~cia 
death • cia 

death • ~cia 
~death • cia 

~death • ~cia 

conflict 
~conflict 

death 
~death 

cia 
~cia 

 
 
5) Boolean Addition 
 
In Boolean algebra, if A + B = Z, and A = 1 and B = 1, then Z = 1.  In other words, 1 + 1 
= 1.  The basic idea in Boolean addition is that if any of the additive terms is satisfied 
(present), then the outcome is true (occurs). Addition in Boolean algebra is equivalent to 
the logical operator OR. (In this discussion uppercase OR is used to indicate logical OR.)  
Thus, the above statement A + B = Z becomes: if A equals 1 OR B equals 1, then Z 
equals 1. 
 
The best way to think of this principle is in logical terms, not arithmetically. For example, 
there might be several things a person could do to lose his or her job. It does not matter 
how many of these things the person does. If the employee does any one (or all) of them, 
he or she will be fired. Doing two of them will not cause one employee to be more fired 
than another employee who does only one of them. Fired is fired, a truly qualitative state. 
This example succinctly illustrates the nature of Boolean addition: satisfy any one of the 
additive conditions and the expected outcome follows.  
 
Consider the collapse of military regimes. Assume that there are three general conditions 
that cause military regimes to fall: sharp conflict between older and younger military 
officers (conflict), death of a powerful dictator (death), or CIA dissatisfaction with the 
regime (cia). Any one of these three conditions may be sufficient to prompt a collapse. 
The truth table for a number of such regimes in different countries is shown in Table 1 
(with 1 = present and 0 = absent). Each combination of causes produces either regime 
failure or an absence of regime failure – there are no contradictory rows. 

 
The "simplified" Boolean equation 

 
 failure = conflict + death + cia 
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expresses the relation between the three conditions and regime failure simply and 
elegantly for both negative and positive instances. Simply stated: if any one (or any two 
or all three) of these conditions obtains, then the regime will fall. 
 
6) Boolean Multiplication 
 
Boolean multiplication differs substantially from normal multiplication. Boolean 
multiplication is relevant because the typical social science application of Boolean 
algebra concerns the process of simplifying expressions known as "sums of products."   
A product is a particular combination of causal conditions. The data on collapsed military 
regimes from Table 1 can be represented in "primitive" (that is, unreduced) 
sums-of-products form as follows: 
 

 failure =  conflict • ~death • ~cia +  
                   ~conflict • death • ~cia +  
                   ~conflict • ~death • cia +   
                   conflict • death • ~cia + 
                   conflict • ~death • cia +  
                   ~conflict • death • cia +  
                   conflict • death • cia 

 
Each of the seven terms represents a combination of causal conditions found in at least 
one instance of regime failure. The different terms are products because they represent 
intersections of conditions (conjunctures of causes and absences of causes). The equation 
shows the different primitive combinations of conditions that are linked to the collapse of 
military regimes. 
 
Boolean multiplication, like Boolean addition, is not arithmetic. The expression conflict • 
~death • ~cia does not mean that the value of conflict (1) is multiplied by the value of 
death (0) and by the value of cia (0) to produce a result value of 0. It means simply that a 
presence of conflict is combined with an absence of death and an absence of cia. The 
total situation, failure = conflict • ~death • ~cia, occurs in the data twice. This 
conjunctural character of Boolean multiplication shapes the interpretation of the primitive 
sums-of-products equation presented above: failure (regime failure) occurs if any of 
seven combinations of three causes is obtained. In Boolean algebra addition indicates 
logical OR and multiplication indicates logical AND. The three causes are ANDed 
together in different ways to indicate different empirical configurations. These 
intersections are ORed together to form an unreduced, sums-of-products equation 
describing the different combinations of the three causes linked to regime collapse. 
 
7) Combinatorial Logic 
 
Boolean analysis is combinatorial by design. In the analysis of regime failures presented 
above, it appears from casual inspection of only the first four rows of the truth table 
(Table 1) that if any one of the three causes is present, then the regime will collapse.  
While it is tempting to take this shortcut, the route taken by Boolean analysis is much 
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more exacting of the data. This is because the absence of a cause has the same logical 
status as the presence of a cause in Boolean analysis. As noted above, Boolean 
multiplication indicates that presence and absence conditions are combined, that they 
intersect. 
 
Consider the second row of the truth table (Table 1), which describes the two instances of 
military regime failure linked to causal configuration conflict • ~death • ~cia. Simple 
inspection suggests that in this case failure (regime failure) resulted from the first cause, 
conflict. But notice that if the investigator had information on only this row of the truth 
table, and not on any of the other instances of regime failure, he or she might conclude 
that conflict causes failure only if causes death and cia are absent. This is what the 
conflict • ~death • ~cia combination indicates. This row by itself does not indicate 
whether conflict would cause failure in the presence of death or cia or both. All the 
researcher knows from these two instances of conflict • ~death • ~cia is that for conflict 
to cause failure, it may be necessary for the other conditions (death and cia) to be absent.  
From a Boolean perspective, it is entirely plausible that in the presence of one or both of 
these other conditions (say, configuration conflict • ~death • cia), failure may not result.  
To return to the original designations, it may be that in the presence of CIA meddling 
(cia), conflict between junior and senior officers (conflict) will dissipate as the two 
factions unite to oppose the attempt by outsiders to dictate events. 
 
To push this argument further, assume the investigator had knowledge of only the first 
four rows of the truth table. The data would support the idea that the presence of any one 
of the three conditions causes failure, but again the data might indicate that conflict 
causes failure only when death and cia are absent (conflict • ~death • ~cia); death causes 
failure only when conflict and cia are absent (~conflict • death • ~cia), and so on. A strict 
application of combinatorial logic requires that these limitations be placed on conclusions 
drawn from a limited variety of cases.  
 
This feature of combinatorial logic is consistent with the idea that cases, especially their 
causally relevant features, should be viewed holistically. The holistic character of the 
Boolean approach is consistent with the orientation of qualitative scholars in comparative 
social science who examine different causes in context. When the second row of the truth 
table (Table 1) is examined, it is not interpreted as instances of failure caused by conflict, 
but as instances of failure caused by conflict • ~death • ~cia. Thus, in Boolean-based 
qualitative comparison, causes are not viewed in isolation but always within the context 
of the presence and absence of other causally relevant conditions. 
 
Minimization  
 
The restrictive character of combinatorial logic seems to indicate that the Boolean 
approach simply compounds complexity on top of complexity. This is not the case.  
There are simple and straightforward rules for simplifying complexity – for reducing 
primitive expressions and formulating more succinct Boolean statements. The most 
fundamental of these rules is: 
 



 

 Page 32 
 

 

If two Boolean expressions differ in only one causal condition yet produce the same 
outcome, then the causal condition that distinguishes the two expressions can be 
considered irrelevant and can be removed to create a simpler, combined expression. 
 
Essentially this minimization rule allows the investigator to take two Boolean expressions 
that differ in only one term and produce a combined expression. For example, conflict • 
~death • ~cia and conflict • death • ~cia, which both produce outcome failure, differ 
only in death; all other elements are identical. The minimization rule stated above allows 
the replacement of these two terms with a single, simpler expression: conflict • ~cia. In 
other words, the comparison of these two rows, conflict • ~death • ~cia and conflict • 
death • ~cia, as wholes indicates that in instances of conflict • ~cia, the value of death is 
irrelevant. The condition death may be either present or absent; failure will still occur. 
 
The logic of this simple data reduction parallels the logic of experimental design. Only 
one causal condition, death, varies and no difference in outcome is detected (because 
both conflict • ~death • ~cia and conflict • death • ~cia are instances of failure).  
According to the logic of experimental design, death is irrelevant to failure in the 
presence of conflict • ~cia (that is, holding these two conditions constant). Thus, the 
process of Boolean minimization mimics the logic of experimental design. It is a 
straightforward operationalization of the logic of the ideal social scientific comparison. 
 
This process of logical minimization is conducted in a bottom-up fashion until no further 
stepwise reduction of Boolean expressions is possible. Consider again the data on 
military regime failures presented above. Each of the rows with one cause present and 
two absent can be combined with rows with two causes present and one absent because 
all these rows have the same outcome (failure) and each pair differs in only one causal 
condition: 
 
conflict • ~death • ~cia combines with conflict • death • ~cia to produce conflict • ~cia. 
conflict • ~death • ~cia combines with conflict • ~death • cia to produce conflict • ~death. 
~conflict • death • ~cia combines with conflict • death • ~cia to produce death • ~cia. 
~conflict • death • ~cia combines with ~conflict • death • cia to produce ~conflict • death. 
~conflict • ~death • cia combines with conflict • ~death • cia to produce ~death • cia. 
~conflict • ~death • cia combines with ~conflict • death • cia to produce ~conflict • cia. 
 
Similarly, each of the rows with two causes present and one absent can be combined with 
the row with all three present: 
 
conflict • death • ~cia combines with conflict • death • cia to produce conflict • death. 
conflict • ~death • cia combines with conflict • death • cia to produce conflict • cia. 
~conflict • death • cia combines with conflict • death • cia to produce death • cia. 
 
Further reduction is possible. Note that the reduced terms produced in the first round can 
be combined with the reduced terms produced in the second round to produce even 
simpler expressions: 



 

 Page 33 
 

 

 
conflict • ~death combines with conflict • death to produce conflict. 
conflict • ~cia combines with conflict • cia to produce conflict. 
~conflict • death combines with conflict • death to produce death. 
death • ~cia combines with death • cia to produce death. 
~conflict • cia combines with conflict • cia to produce cia. 
~death •  cia combines with death • cia to produce cia. 
 
Although tedious, this simple process of minimization produces the final, reduced 
Boolean equation: 
 
 failure = conflict + death + cia 
 
True enough, this was obvious from simple inspection of the entire truth table, but the 
problem presented was chosen for its simplicity. The example directly illustrates key 
features of Boolean minimization. It is bottom-up. It seeks to identify ever wider sets of 
conditions (that is, simpler combinations of causal conditions) for which an outcome is 
true. And it is experiment-like in its focus on pairs of configurations differing in only one 
cause. 
 
1) Use of “prime implicants” 
 
A further Boolean concept that needs to be introduced is the concept of implication. A 
Boolean expression is said to imply another if the membership of the second term is a 
subset of the membership of the first. For example, a implies a • ~b • ~c because a 
embraces all the members of a • ~b • ~c (that is, a • ~b • ~c is a subset of a). This 
concept is best understood by example. If a indicates economically dependent countries, 
b indicates the presence of heavy industry, and c indicates centrally coordinated 
economies, a embraces all dependent countries while a • ~b • ~c embraces all dependent 
countries that lack both centrally coordinated economies and heavy industry. Clearly the 
membership of a • ~b • ~c is included in the membership of a. Thus, a implies a • ~b • 
~c. 
 
The concept of implication, while obvious, provides an important tool for minimizing 
primitive sums-of-products expressions. Consider the hypothetical truth table shown in 
Table 3, which summarizes data on three causal conditions thought to affect the success 
of strikes already in progress (success): a booming market for the product produced by 
the strikers (market), the threat of sympathy strikes by workers in associated industries 
(threat), and the existence of a large strike fund (fund). 
 
The Boolean equation for success (successful strikes) showing unreduced (primitive) 
Boolean expressions is 
 
 success =  market • ~threat • fund + ~market • threat • ~fund +  

market • threat • ~fund + market • threat • fund 
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Table 3: Hypothetical Truth Table Showing Three Causes of Successful Strikes 
 

Condition Success Frequency 
Market Threat fund success  

1 
0 
1 
1 
1 
0 
0 
0 

0 
1 
1 
1 
0 
0 
1 
0 

1 
0 
0 
1 
0 
1 
1 
0 

1 
1 
1 
1 
0 
0 
0 
0 

6 
5 
2 
3 
9 
6 
3 
4 

 
 
The first step in the Boolean analysis of these data is to attempt to combine as many 
compatible rows of the truth table as possible. (Note that this part of the minimization 
process uses rows with an output value of 1, strike succeeded.) This first phase of the 
minimization of the truth table produces the following partially minimized Boolean 
equation, which in effect turns a primitive Boolean equation with four three-variable 
terms into an equation with three two-variable terms: 
 
market • threat • fund combines with market • ~threat • fund to produce market • fund. 
market • threat • fund combines with market • threat • ~fund to produce market • threat. 
market • threat • ~fund combines with ~market • threat • ~fund to produce threat • ~fund. 

 

success = market • fund + market • threat + threat • ~fund 

 
Product terms such as those in the preceding equation which are produced using this 
simple minimization rule—combine rows that differ on only one cause if they have the 
same output values—are called prime implicants. Usually, each prime implicant covers 
(that is, implies) several primitive expressions (rows) in the truth table. In the partially 
minimized equation given above, for example, prime implicant market • fund covers two 
primitive Boolean expressions listed in the truth table: market • threat • fund and market 
• ~threat • fund. 
 
This partially reduced Boolean expression illustrates a common finding in Boolean 
analysis: often there are more reduced expressions (prime implicants) than are needed to 
cover all the original primitive expressions.  Prime implicant market • threat implies 
primitive terms market • threat • fund and market • threat • ~fund, for example, yet these 
two primitive terms are also covered by market • fund and threat • ~fund, respectively. 
Thus, market • threat may be redundant from a purely logical point of view; it may not 
be an essential prime implicant. In order to determine which prime implicants are 
logically essential, a minimization device known as a prime implicant chart is used.  
Minimization of the prime implicant chart is the second phase of Boolean minimization. 
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Briefly stated, the goal of this second phase of the minimization process is to "cover" as 
many of the primitive Boolean expressions as possible with a logically minimal number 
of prime implicants. This objective derives from a straightforward desire for non-
redundancy. The prime implicant chart maps the links between prime implicants and 
primitive expressions. The prime implicant chart describing these links in the data on 
strike outcomes is presented in Table 4. Simple inspection indicates that the smallest 
number of prime implicants needed to cover all of the original primitive expressions is 
two. (For very complex prime implicant charts, sophisticated computer algorithms are 
needed; see Mendelson 1970, Roth 1975, and McDermott 1985.) Prime implicants 
market • fund and threat • ~fund cover all four primitive Boolean expressions. Analysis 
of the prime implicant chart, therefore, leads to the final reduced Boolean expression 
containing only the logically essential prime implicants: 

 
 success = market • fund + threat • ~fund 
 

This equation states simply that successful strikes occur when there is a booming market 
for the product produced by the workers AND a large strike fund (market • fund) or when 
there is the threat of sympathy strikes by workers in associated industries combined with 
a low strike fund (threat • ~fund). (Perhaps the threat of sympathy strikes is taken 
seriously only when the striking workers badly need the support of other workers.) 
 
Table 4: Prime Implicant Chart Showing Coverage of Original Terms by Prime  
              Implicants (Hypothetical Strike Data) 
 
 

Primitive Expressions 
 

  market • 
threat • 

fund 

market • 
~threat • 

fund 

market • 
threat • 
~fund 

~market • 
threat • 
~fund 

 

Prime 
Implicants 

market • fund X X    
market • threat X  X   
threat • ~fund   X X  

 
These simple procedures allow the investigator to derive a logically minimal equation 
describing the different combinations of conditions associated with an outcome. The 
final, reduced equation shows the two (logically minimal) combinations of conditions 
that cause successful strikes and thus provides an explicit statement of multiple 
conjunctural causation. 
 
 
2) Use of De Morgan's Law 
 
The application of De Morgan's Law is straightforward. Consider the solution to the 
hypothetical analysis of successful strikes presented above: success = market • fund + 
threat • ~fund. Elements that are coded present in the reduced equation (say, market in 
the term market • fund) are recoded to absent, and elements that are coded absent (say, 
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~fund in the term threat • ~fund) are recoded to present. Next, logical AND is recoded to 
logical OR, and logical OR is recoded to logical AND. Applying these two rules, 
 
 success = market • fund + threat • ~fund  
 
becomes: 
 
 ~success  = (~market + ~fund)• (~threat + fund) 

    = ~market • ~threat + ~market • fund + ~threat • ~fund 

 
According to this equation, strikes fail when (1) the market for the relevant product is not 
booming AND there is no serious threat of sympathy strikes, (2) the market for a product 
is not booming AND there is a large strike fund, OR (3) there is no threat of sympathy 
strikes AND only a small strike fund. (The combination ~market • fund—nonbooming 
market and large strike fund, which seems contradictory—may suggest an economic 
downturn after a period of stability.  In this situation a shutdown might be welcomed by 
management.) 
 
De Morgan’s Law produces the exact negation of a given logical equation. If there are 
“remainder” combinations in the truth table and they are used as “don’t cares,” then the 
results of the application of De Morgan Law will yield a logical statement that is not the 
same as the analysis of the absence of the outcome. Likewise, if the remainders are 
defined as “false” in the initial analysis, then the application of De Morgan’s Law to the 
solution (of positive cases) will yield a logical statement that embraces not only the 
negative cases, but also the remainders. 
 
3) Necessary and Sufficient Causes 
 
A cause is defined as necessary if it must be present for an outcome to occur. A cause is 
defined as sufficient if by itself it can produce a certain outcome. This distinction is 
meaningful only in the context of theoretical perspectives. No cause is necessary, for 
example, independent of a theory that specifies it as a relevant cause. Neither necessity 
nor sufficiency exists independently of theories that propose causes. 
 
Necessity and sufficiency are usually considered together because all combinations of the 
two are meaningful. A cause is both necessary and sufficient if it is the only cause that 
produces an outcome and it is singular (that is, not a combination of causes). A cause is 
sufficient but not necessary if it is capable of producing the outcome but is not the only 
cause with this capability. A cause is necessary but not sufficient if it is capable of 
producing an outcome in combination with other causes and appears in all such 
combinations. Finally, a cause is neither necessary nor sufficient if it appears only in a 
subset of the combinations of conditions that produce an outcome. In all, there are four 
categories of causes (formed from the cross-tabulation of the presence/absence of 
sufficiency against the presence/absence of necessity). 
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The typical application of QCA (crisp or fuzzy) results in a logical statement describing 
combinations of conditions that are sufficient for the outcome. The listed combinations 
may or may not be exhaustive, that is, they may not explain all instances of the outcome. 
It is a good idea to examine both necessity and sufficiency of individual conditions before 
the analysis of sufficient combinations of conditions. This can be done by looking at 
scatterplots of the outcome by each condition and to make note of which are quasi 
supersets (i.e., necessary) and which are quasi subsets (i.e., sufficient) (see also 
Subset/Superset Analysis). 
 
B) Data 
 
The following window shows a sample crisp-set data sheet: 

 
caseid  abbreviated country name 
wealthy  high GDP/cap versus not 
urban  highly urban versus not 
literate  high level of literacy versus not 
industrial high percentage of industrial workers versus not 
unstable  government instability versus not 
survived  democracy survived during interwar period versus not 
 
[The example in this section is from Rihoux and Ragin (2008), Configurational 
Comparative Analysis.] 
 
C) Analysis 
 
The current version of the fsQCA software (as of this writing, version 3.0, July 2017) 
contains one method of conducting crisp-set analysis: the “Truth Table Algorithm.” This 
method makes use of the Quine-McCluskey algorithm. The Truth Table Algorithm is 
described below. 
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Truth Table Algorithm 
 
Two important tasks structure the application of the crisp-set truth table algorithm: (1) 
The assessment of the distribution of cases across different logically possible 
combinations of causal conditions. And (2) the assessment of the consistency of the 
evidence for each causal combination with the argument that the cases with this 
combination of conditions constitute a subset of the cases with the outcome. That is, they 
share the outcome in question 
 
The truth table algorithm involves a two-step analytic procedure. The first step consists of 
creating a truth table spreadsheet from the raw data, which primarily involves specifying 
the outcome and causal conditions to include in the analysis. The second step consists of 
preparing the truth table spreadsheet for analysis, by selecting both a frequency threshold 
and a consistency threshold.  
 
 In order to create the truth table spreadsheet, choose: 
 Analyze 
     Truth Table Algorithm… 
 
The following window will open, listing the variables in your file: 

 
 Identify and highlight the case aspect you want to explain and transfer it into the 

Outcome field by clicking Set. 
 
 Select a preliminary list of causal conditions by highlighting one at a time and clicking 

Add to move them over one by one to the Causal Conditions field. 
 
 Check the box next to “Show solution cases in output” and choose the variable that is 

your caseID. 
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 Click on the Okay button and the following window containing the full truth table will 
appear: 

 

 
 
 The truth table will have 2k rows (where k represents the number of causal conditions), 

reflecting all possible combinations of causal conditions (scroll down to see all 
possible combinations). The 1s and 0s represent full membership and zero 
membership for each condition, respectively. For each row, a value for each of the 
following variables is created: 

 
number the number of cases displaying the combination of conditions 
raw consist. the proportion of cases in each truth table row that display the outcome. 
PRI consist. an alternative measure of consistency (developed for fuzzy sets) based on 

a quasi proportional reduction in error calculation. In crisp set analyses 
this will be equal to raw consist. 

SYM consist. an alternative measure of consistency for fuzzy sets based on a 
symmetrical version of PRI consistency. 

 
Note that the column labeled as the outcome (survived in this example) is blank. It is up 
to the investigator to determine the outcome for each configuration using the following 
procedure. 
 
 The researcher must begin by developing a rule for classifying some combinations 

(rows) as relevant and others as irrelevant, based on their frequency. This is 
accomplished by selecting a frequency threshold based on the number of cases in each 
row, shown in the number column. When the total number of cases in an analysis is 
relatively small, the frequency threshold should be 1 or 2. When the total N is large, 
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however, a more substantial threshold should be used. It is very important to examine 
the distribution of cases across causal combinations.   

 
 Configurations (rows) can be sorted by their frequency (descending or ascending) by 

clicking the heading of the number column. 
 
 After sorting rows and selecting a frequency threshold, delete all rows that do not meet 

the threshold. If the cases have been sorted in a descending order according to number, 
click on the first case that falls below the threshold then select 

  Edit 
     Delete current row to last row… 
 
 If cases have not been sorted then those cases that do not meet the threshold can 
 be deleted individually by selecting the row the choosing 
  Edit 
    Delete current row… 
 
 The next step is to distinguish configurations that are subsets of the outcome from 

those that are not. For crisp sets, this determination is made using the measure of set-
theoretic consistency reported in the raw consist column. Values below 0.75 indicate 
substantial inconsistency. It is useful to sort the consistency scores in descending order 
to evaluate their distribution (this should be done after removing rows that fail to 
meet the frequency threshold). Sorting is accomplished by clicking the raw consist. 
column label. 

 
 Identify any gaps in the upper range of consistency that might be useful for 

establishing a consistency threshold. Keep in mind that it is always possible to 
examine several different thresholds and assess the consequences of lowering 
and raising the consistency cut-off. 

 
 It is now necessary to indicate which configurations can be considered subsets of the 

outcome and which cannot (see also alternative method below). Input a 1 in the 
outcome column (survived in this example) for each configuration whose consistency 
level meets and/or exceeds the threshold. Input a 0 in the outcome column for each 
configuration whose consistency level does not meet the consistency threshold.  

 
 Alternatively, one can use the “Delete and code” function to automate this process. 

Select: 
                     Edit 
   Delete and code… 
 
In the first field, the frequency threshold is selected. The default number of cases is 1, but 
may be changed by typing the selected frequency threshold into the field. In the second 
field, the consistency threshold is selected. The default consistency is 0.8, but this may be 
changed by typing the selected consistency threshold into the field. 
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 Click “OK.” The program will delete rows where the frequency threshold is not 
 met, and will code the outcome as 0 or 1 depending on the selected consistency 
 threshold. 
 
 The following window displays the truth table that would appear after  

1. applying a frequency threshold of 1 to the data and eliminating configurations that 
do not have any observations (6 configurations) 

2. selecting a consistency threshold of 0.9 and placing a 1 in the survived column for 
configurations with 0.90 consistency or greater (4 configurations) and a 0 for 
cases with lower consistency (6 configurations) 
 

 
From here, there are two possibilities for the analysis: specifying a single analysis versus 
deriving the three “standard” analyses (complex, parsimonious, and intermediate).  
Clicking the “Standard Analyses” button (which gives the three solutions) is the 
recommended procedure. 
 
i) Specify Analysis Option 
 
 Once the truth table is constructed (before clicking “Standard Analyses”) select 

Specify Analysis to bring up the Truth Table Analysis Window.   
 
 In the Specify panel setting Positive cases to “True” and all the others to “False” will 

yield the “most complex” solution. This window appears as: 
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 To derive the most parsimonious solution, set Positive cases to “True,” Negative Cases 

to “False”, and Remainders to “Don’t Cares.”  
 
 Please note: When the algorithm for selecting prime implicants cannot fully reduce the 

truth table, the Prime Implicant Window will appear and the user must select the prime 
implicants to be used, based on theoretical and substantive knowledge. This window is 
most likely to pop open when the program is deriving the parsimonious solution, but 
could happen for all three solutions. (See below in Fuzzy-Set Analysis for a 
description of how this window operates.) 

 
 To perform the analysis, click the Okay button and the output will appear in the output 

window. 
 
ii) Standard Analyses Option 
 
 Once the truth table is fully constructed, select Standard Analyses. Standard Analyses 

automatically provides the user with the complex, parsimonious, and intermediate 
solutions. “Standard Analyses” is the recommended procedure, as this is the only 
way to derive the intermediate solution. To derive the intermediate solution, the 
software conducts counterfactual analyses based on information about causal 
conditions supplied by the user. 

 
Limited Diversity and Counterfactual Analysis 
 
One of the most challenging aspects of comparative research is the simple fact that 
researchers work with relatively small Ns. Investigators often confront "more variables than 
cases," a situation that is greatly complicated the fact that comparativists typically focus on 
combinations of case aspects – how aspects of cases fit together configurationally. For 
example, a researcher interested in a causal argument specifying an intersection of four 
causal conditions ideally should consider all sixteen logically possible combinations of these 
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four conditions in order to provide a thorough assessment of this argument. Naturally 
occurring social phenomena, however, are profoundly limited in their diversity. The 
empirical world almost never presents social scientists all the logically possible 
combinations of causal conditions relevant to their arguments (as shown with hypothetical 
data in Table 1 below). While limited diversity is central to the constitution of social and 
political phenomena, it also severely complicates their analysis. 
 
Table 1: Truth table with four causal conditions (A, B, C, and D) and one outcome (Y) 

A B C D Y* 
no no no no no 
no no no yes ? 
no no yes no ? 
no no yes yes ? 
no yes no no no 
no yes no yes no 
no yes yes no ? 
no yes yes yes no 
yes no no no ? 
yes no no yes ? 
yes no yes no ? 
yes no yes yes ? 
yes yes no no yes 
yes yes no yes yes 
yes yes yes no ? 
yes yes yes yes ? 

* Rows with "?" in the Y column lack cases – the outcome cannot be determined. 
 
As a substitute for absent combinations of causal conditions, comparative researchers often 
engage in "thought experiments" (Weber [1905] 1949). That is, they imagine counterfactual 
cases and hypothesize their outcomes, using their theoretical and substantive knowledge to 
guide their assessments. Because QCA uses truth tables to assess cross-case patterns, this 
process of considering counterfactual cases (i.e., absent combinations of causal conditions) 
is explicit and systematic. In fact, this feature of QCA is one of its key strengths. However, 
the explicit consideration of counterfactual cases and the systematic incorporation of the 
results of such assessments into statements about cross-case patterns are relatively new to 
social science. The specification of best practices with respect to QCA and counterfactual 
analysis, therefore, is essential. 
 
Consider an example (not based on Table 1 above).  A researcher postulates, based on 
existing theory, that causal conditions A, B, C, and D are all linked in some way to outcome 
Y. That is, it is the presence of these conditions, not their absence, which should be linked to 
the presence of the outcome. The empirical evidence indicates that many instances of Y are 
coupled with the presence of causal conditions A, B, and C, along with the absence of 
condition D (i.e., A⋅B⋅C⋅d  Y).  The researcher suspects, however, that all that really 
matters is having the first three causes, A, B and C. In order for A⋅B⋅C to generate Y, it is 
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not necessary for D to be absent.  However, there are no observed instances of A, B, and C 
combined with the presence of D (i.e., no observed instances of A⋅B⋅C⋅D). Thus, the 
decisive empirical case for determining whether the absence of D is an essential part of the 
causal mix (with A⋅B⋅C) simply does not exist. 
 
Through counterfactual analysis (i.e., a thought experiment), the researcher could declare 
this hypothetical combination (A⋅B⋅C⋅D) to be a likely instance of the outcome (Y). That is, 
the researcher might assert that A⋅B⋅C⋅D, if it existed, would lead to Y. This counterfactual 
analysis would allow the following logical simplification: 
 
 A⋅B⋅C⋅d + A⋅B⋅C⋅D  Y 
 A⋅B⋅C⋅(d + D)  Y 
 A⋅B⋅C  Y 
 
How plausible is this simplification? The answer to this question depends on the state of 
the relevant theoretical and substantive knowledge concerning the connection between D 
and Y in the presence of the other three causal conditions (A⋅B⋅C).  If the researcher can 
establish, on the basis of existing knowledge, that there is every reason to expect that the 
presence of D should contribute to outcome Y under these conditions (or conversely, that 
the absence of D should not be a contributing factor), then the counterfactual analysis just 
presented is plausible. In other words, existing knowledge makes the assertion that 
A⋅B⋅C⋅D  Y an "easy" counterfactual, because it involves the addition of a redundant 
cause (D) to a configuration which is believed to be linked to the outcome (A⋅B⋅C). 
 
One strength of QCA is that it not only provides tools for deriving the two endpoints of 
the complexity/parsimony continuum, it also provides tools for specifying intermediate 
solutions. Consider the truth table presented in Table 1, which uses A, B, C, and D as 
causal conditions and Y as the outcome. Assume, as before, that existing theoretical and 
substantive knowledge maintains that it is the presence of these causal conditions, not 
their absence, which is linked to the outcome. The results of the analysis barring 
counterfactuals (i.e., the complex solution) reveals that combination A⋅B⋅c explains Y. 
The analysis of this same evidence permitting any counterfactual that will yield a more 
parsimonious result (i.e., the parsimonious solution) is that A by itself accounts for the 
presence of Y. Conceive of these two results as the two endpoints of the 
complexity/parsimony continuum, as follows: 
 
  A⋅B⋅c                                                  A 
 
Observe that the solution privileging complexity (A⋅B⋅c) is a subset of the solution 
privileging parsimony (A). This follows logically from the fact that both solutions must 
cover the rows of the truth table with Y present; the parsimonious solution also 
incorporates some of the remainders as counterfactual cases and thus embraces additional 
rows. Along the complexity/parsimony continuum are other possible solutions to this 
same truth table, for example, the combination A⋅B. These intermediate solutions are 
produced when different subsets of the remainders used to produce the parsimonious 
solution are incorporated into the results. These intermediate solutions constitute subsets 
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of the most parsimonious solution (A in this example) and supersets of the solution 
allowing maximum complexity (A⋅B⋅c). The subset relation between solutions is 
maintained along the complexity/parsimony continuum. The implication is that any 
causal combination that uses at least some of the causal conditions specified in the 
complex solution (A⋅B⋅c) is a valid solution of the truth table as long as it contains all the 
causal conditions specified in the parsimonious solution (A). It follows that there are two 
valid intermediate solutions to the truth table: 
 
                                 A⋅B 
  A⋅B⋅c                    A⋅c                           A 
 
Both intermediate solutions (A⋅B) and (A⋅c) are subsets of the solution privileging 
parsimony and supersets of the solution privileging complexity. The first (A⋅B) permits 
counterfactuals A⋅B⋅C⋅D and A⋅B⋅C⋅d as combinations linked to outcome Y. The second 
permits counterfactuals A⋅b⋅c⋅D and A⋅b⋅c⋅d. 
 
The relative viability of these two intermediate solutions depends on the plausibility of 
the counterfactuals that have been incorporated into them. The counterfactuals 
incorporated into the first intermediate solution are "easy" because they are used to 
eliminate c from the combination A⋅B⋅c, and in this example, existing knowledge 
supports the idea that it is the presence of C, not its absence, which is linked to outcome 
Y.  The counterfactuals incorporated into the second intermediate solution, however, are 
"difficult" because they are used to eliminate B from A⋅B⋅c. According to existing 
knowledge the presence of B should be linked to the presence of outcome Y. The 
principle that only easy counterfactuals should be incorporated supports the selection of 
A⋅B as the optimal intermediate solution. This solution is the same as the one that a 
conventional case-oriented researcher would derive from this evidence, based on a 
straightforward interest in combinations of causal conditions that are (1) shared by the 
positive cases (or at least a subset of the positive cases), (2) believed to be linked to the 
outcome, and (3) not displayed by negative cases. 
 
 After Standard Analysis is selected, a window for guiding the derivation of the 

intermediate solution will appear. Here, the researcher must select how each causal 
condition should theoretically contribute to the outcome, as described above. If the 
condition should contribute to the outcome when present, select “Present.” If the 
condition should contribute to the outcome when absent, select “Absent.” If the 
condition could contribute to the outcome when it is present OR absent, select 
“Present or Absent.” If all conditions are coded “Present of Absent” then the 
intermediate solution will be identical to the complex solution. 
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 Please note: When the algorithm for selecting prime implicants cannot fully reduce the 

truth table, the Prime Implicant Window will appear and the user must select the prime 
implicants to be used, based on theoretical and substantive knowledge. This window is 
most likely to pop open when the program is deriving the parsimonious solution, but 
could happen for all three solutions. (See below in Fuzzy-Set Analysis for a 
description of how this window operates.) 

 
 To perform the analysis, click OK and the complex, intermediate, and parsimonious 

solutions will appear in the output window. The output window will clearly label each 
of the solutions, and begin with complex, then parsimonious, and then intermediate.  

 
 
5. FUZZY-SET ANALYSIS 
 
This part of the manual addresses the use of fuzzy sets, discussed in depth in Fuzzy-Set 
Social Science (Ragin, 2000) and Redesigning Social Inquiry (Ragin, 2008). Instead of 
allowing only two mutually exclusive states, membership and nonmembership, fuzzy sets 
extend crisp sets by permitting membership scores in the interval between 0 and 1.  There 
are many ways to construct fuzzy sets. Three common ways are:  
 

 four-value fuzzy sets (0, .33, .67, 1) 
 six-value fuzzy sets (0, .2, .4, .6, .8, 1) 
 and continuous fuzzy sets (any value ≥ 0 and ≤ 1) 
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There is one fuzzy-set algorithm, the “truth table” algorithm, which has proven to be the 
most robust approach. The truth table algorithm is described in Redesigning Social 
Inquiry (Ragin 2008) and also in Configurational Comparative Methods (Rihoux and 
Ragin 2008).  
 
A) Operations on Fuzzy Sets 
 
The logical operations AND and OR are used in the fuzzy-set algorithms but are different 
from the use in crisp-sets. What follows is an introduction of the common operations: 
logical AND, logical OR and negation. 
 
Logical AND. With fuzzy sets, logical AND is accomplished by taking the minimum 
membership score of each case in the sets that are intersected. For example, if a country’s 
membership in the set of poor countries is .34 and its membership in the set of 
democratic countries is .91, its membership in the set of countries that are poor and 
democratic is the smaller of these two scores, .34.   
 
Logical OR. Two or more sets also can be joined through logical OR – the union of sets.  
For example, a researcher might be interested in countries that are “developed” OR 
“democratic” based on the conjecture that these two conditions might offer equivalent 
bases for some outcome (e.g., bureaucracy-laden government). Conventionally, crisp 
categories would be used to compile a complete list of countries that are “developed or 
democratic” (i.e., countries that have one or both characteristics). With fuzzy sets, the 
researcher focuses on the maximum of each case’s memberships in the component sets.  
That is, membership in the set formed from the union of two or more component sets is 
the maximum value of the case’s memberships in the component sets. Thus, if a country 
has a score of .15 in the set of democratic countries and a score of .93 in the set of 
developed countries, it has a score of .93 in the set of countries that are “democratic or 
developed.” 
 
Negation. As with crisp sets, fuzzy sets can be negated. In crisp set logic, negation 
switches membership scores from 1 to 0 and from 0 to 1. This simple mathematical 
principle holds in fuzzy algebra as well. The relevant numerical values are not restricted 
to the Boolean values 0 and 1 but extend to values between 0 and 1 as well. To calculate 
the membership of a case in the negation of fuzzy set A, simply subtract its membership 
in set A from 1, as follows: 
 
Fuzzy membership in set not A = 1 – fuzzy membership in set A. 
 
This can be displayed as ~Ai = 1 – Ai, where the subscript “i” indicates the “ith” case, the 
set “not A” is represented as ~A, and the symbol “~” denotes negation. Thus, for 
example, if the United States has a membership score of .79 in the set of “democratic 
countries,” it has a score of .21 in the set of “not democratic countries.”   
 
B) Fuzzy Sets, Necessity, and Sufficiency (Fuzzy Subset Relation) 
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Subset principle and arithmetic relationship between membership scores in CRISP 
sets. Consider the example of state breakdown being a necessary but not sufficient 
condition of social revolution (p. 211 in Fuzzy Set Social Science). It follows logically 
that if a condition is necessary but not sufficient for an outcome, then instances of the 
outcome will constitute a subset of instances of the cause. Another way to understand the 
subset relationship is in terms of the arithmetic relationship between crisp-set 
membership scores (1s and 0s). If instances of the outcome are a subset of instances of 
the cause, then the Boolean value of the outcome (1 versus 0) will be less than or equal to 
the Boolean value of the cause. 
 
Subset principle and arithmetic relationship between membership scores in FUZZY 
sets. With fuzzy sets it would be difficult to “select” countries with the outcome (the 
usual first step in the crisp-set analysis of necessary conditions) because countries vary in 
their degree of membership in the set displaying social revolution. Likewise, it would be 
very difficult to evaluate cases’ agreement with respect to the relevant causal condition 
(state breakdown) because they vary in their membership in this set as well. 
 
Fortunately, the subset principle and the arithmetic relationship between membership 
scores holds for fuzzy sets as well. With fuzzy sets, set A is a subset of set B if the 
membership scores of cases in set A are less than or equal to their respective membership 
scores in set B. Furthermore, when fuzzy membership scores in the outcome are less than 
or equal to fuzzy membership in the cause, then it is possible to argue that instances of 
the outcome are a subset of instances of the cause. Figure 1 displays this arithmetic 
relationship in two dimensions. When researchers find this pattern, could cite this 
evidence as support for an argument of causal necessity. 
 
Figure 1:  Plot of “social revolution” against “state breakdown” 
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The evaluation of sufficiency can be seen as a test of whether the cases displaying the 
causal conditions form a subset of the cases displaying the outcome. As shown above, 
another way to understand the subset relationship is in terms of the arithmetic relation 
between membership scores.  In order to argue that a cause or causal combination is a 
sufficient for the outcome, the fuzzy membership scores in the cause should be less than 
or equal to the fuzzy membership scores in the outcome. 
 
Consider the following example taken from Fuzzy-Set Social Science, p. 236ff. Figure 2 
displays the arithmetic relationship between the sufficient causal combinations (~cross-
class • ~multiracial) against the outcome (ideological conflict). The upper-triangular plot 
shown in Figure 2 is a direct reflection of the fact that membership scores in the fuzzy set 
“race and class homogeneity” are less than or equal to membership scores in the fuzzy set 
“ideological conflict.” 
 
Note the important difference between the application of the subset principle to the 
assessment of sufficiency and its applications to the assessment of necessity. To 
demonstrate necessity the researcher must show that the outcome is a subset of the cause.  
To support an argument of sufficiency, the researcher must demonstrate that the cause is 
a subset of the outcome. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                 Figure 2: Plot of “ideological conflict” against “race and class homogeneity” 
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C) Using the Fuzzy Truth Table Algorithm 
 
This method for analyzing fuzzy sets using Truth Tables was introduced in version 2.0 of 
fsQCA. It is described in detail in Ragin’s (2008) Redesigning Social Inquiry: Fuzzy Sets 
and Beyond and in Rihoux and Ragin’s (2008) Configurational Comparative Methods: 
Qualitative Comparative Analysis (QCA) and Related Techniques.  
 
The fuzzy truth table algorithm can be conceptualized as a bridge with three pillars. The 
first pillar is the direct correspondence that exists between the rows of a crisp truth table 
and the coordinates of the corners of the vector space defined by fuzzy set causal 
conditions (see Ragin 2000). The second pillar is the assessment of the distribution of 
cases across different logically possible combinations of causal conditions (or sectors of 
the vector space).  Some sectors of the vector space may have many cases with strong 
membership while other sectors may have cases with only weak membership. The third 
pillar is the assessment of the consistency of the evidence for each causal combination 
with the argument that it is a fuzzy subset of the outcome. The truth table algorithm 
involves establishing these three pillars to construct a crisp truth table, at which point the 
analysis proceeds similar to the crisp algorithm. This section will explain the steps 
involved in recording the results of multiple fuzzy set analyses in a crisp truth table and 
then analyzing that table. 
 
 
Data 
 
Fuzzy set data can be imported from other programs or created in fsQCA, as described in 
Chapters 1 and 2. This chapter will use the example of countries with weak class voting 
from Ragin (2005). The table below depicts the data sheet: 

 
ID    Country Identifier 
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affluent   Affluent 
inequality   Substantial Income Inequality 
manufacturing   Strong Manufacturing Sector 
unions         Strong Unions 
weakcv   Weak Class Voting 
 
Interval and ratio scale data can be converted to fuzzy set membership scores using the 
“calibrate” procedure described in Chapter 2 of the manual (Data Editor) and in Ragin 
(2008). 
 
Analysis 
 
The truth table algorithm incorporates a two-stage analytic procedure. The first step 
consists of creating a truth table from the fuzzy data, which includes specifying the 
outcome for each configuration and determining which configurations to include in the 
analysis. The second step involves specifying the causal conditions and outcomes to 
minimize. These steps must be performed in conjunction and both must be performed for 
each separate analysis. 
 
 In order to specify the sets to be used in the analysis, choose: 
 Analyze 
         Truth Table Algorithm… 
 
The following window will open: 
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 Identify and highlight the variable you want to use as the outcome and transfer it into 
the Outcome field by clicking Set. 

 
 Choose causal conditions one at a time and click them over to the Causal Conditions 

field by clicking Add. 
 
 Check the box next to “Show solution cases in output” and choose the variable that 

signifies your caseIDs. 
 
 Click on the Okay button and the following window containing the truth table will 

appear: 
 

 
 The truth table will have 2k rows (where k represents the number of causal conditions), 

reflecting all possible combinations of causal conditions. The 1s and 0s indicate the 
different corners of the vector space defined by the fuzzy set causal conditions. For 
each row, a value for each of the following variables is created: 

 
number the number of cases with greater than 0.5 membership in that corner of the 
  vector space. Shown in parentheses is the cumulative percentage of cases, 
  beginning with the most populated sector of the vector space 
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raw consist. the degree to which membership in that corner of the vector space is a 
consistent subset of membership in the outcome. (For crisp sets, this is the 
proportion of cases in a given crisp truth table row that display the 
outcome.) 

PRI consist. an alternative measure of consistency for fuzzy sets based on a quasi 
proportional reduction in error calculation. (In crisp sets this will be equal 
to raw consist). 

SYM consist. an alternative measure of consistency for fuzzy sets based on a 
symmetrical version of PRI consistency.  

 
Note that the column labeled as the outcome (weakcv in this example) is blank. It is up to 
the investigator to determine the outcome for each configuration and to enter it into the 
spreadsheet using the following procedure. 
 
 The researcher must begin by developing a rule for classifying some configurations 

(vector spaces corners) as relevant and others as irrelevant, based on the number of 
cases residing in each sector of the vector space defined by the causal conditions. This 
is accomplished by selecting a frequency threshold based on the number of cases with 
greater than 0.5 membership in each configuration, as shown in the number column.  
When the total N (number of cases) is relatively small, the frequency threshold should 
be 1 or 2. When the total N is large, a more substantial threshold should be used. It is 
very important to examine the distribution of cases across conditions, to identify the 
most populated sectors of the vector space. In general, the configurations selected 
should capture at least 75-80% of the cases. 

 
 Cases can be sorted by their frequency (ascending or descending) by clicking on the 

number column heading. 
   
 After sorting and selecting a threshold, delete all rows that do not meet the threshold.  

If the cases have been sorted in a descending order according to number, click on the 
first case that falls below the threshold and then choose: 

  Edit 
     Delete current row to last row… 
 
 If cases have not been sorted then those cases that do not meet the threshold can 
 be deleted individually by selecting the row and then choosing: 
  Edit 
     Delete current row… 
 
 The next step is to distinguish configurations that are consistent subsets of the outcome 

from those that are not. This determination is made using the measures of set-theoretic 
consistency reported in the raw consist, PRI, and/or SYM columns. Values below 0.80 
in the raw consist column indicate substantial inconsistency. It is useful to sort the 
consistency scores in descending order to evaluate their distribution (this should be 
done after removing rows that fail to meet the frequency threshold). Sorting is 
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accomplished by clicking on the raw consist, PRI, or SYM column heading (make sure 
the arrow, which appears when you click on the column heading, is pointing down). 

 
 Identify any gaps in the upper range of consistency that might be useful for 
 establishing a consistency threshold. Keep in mind that it is always possible to 
 examine several different thresholds and assess the consequences of lowering 
 and raising the consistency cut-off. 
 
 It is now necessary to indicate which configurations exhibit the outcome and which do 

not. Place a 1 in the outcome column (weakcv in this example) for each configuration 
whose consistency level meets and/or exceeds the threshold. Place a 0 in the outcome 
column for each configuration whose consistency level does not meet the consistency 
threshold.  

 
 Alternatively, use the “Delete and code” function to automate this process.  Select: 
  Edit 
      Delete and code… 
 
 In the first field, the frequency threshold is selected. The default number of cases 
 is 1, but may be changed by typing the selected frequency threshold into the field. 
 In the second field, the consistency threshold (raw consist.) is selected. The 
 default consistency is 0.8, but this may be changed by typing the selected
 consistency threshold into the field. 
 
 Click “OK.” The program will delete rows where the frequency threshold is not 
 met, and will code the outcome as 0 or 1 depending on the selected consistency 
 threshold. 
 
 The following window displays the truth table that would appear after 

1. applying a frequency threshold of 1 to the data and eliminating configurations 
 that do not have any observations (8 configurations) 
2. selecting a consistency threshold of 0.8 and placing a 1 in the weakcv column for 
 configurations with 0.8 consistency or greater (5 configurations) and a 0 for cases 

with lower consistency (3 configurations) 
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From this point in the procedure, there are two possibilities for analysis: specifying the 
analysis versus selecting “Standard Analyses.” “Standard Analyses” is the 
recommended choice because this is the only way to generate the “intermediate” 
solution. 
 
“Specify Analysis” Option 
 Once the truth table is constructed select Specify Analysis to bring up the Truth Table 

Analysis (Dialog) Window.   
 In the Specify panel set Positive cases to True and all the others to False to yield the 

most complex solution. This window appears as follows: 

 
 To derive the most parsimonious solution, set Positive cases to True, Negative Cases 

to False, and Remainders to Don’t Cares.  
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 Please note: When the algorithm for selecting prime implicants cannot fully reduce the 
truth table, the Prime Implicant Window will appear and the user must select the prime 
implicants to be used, based on theoretical and substantive knowledge. This window is 
most likely to pop open when the program is deriving the parsimonious solution, but 
could happen for all three solutions. (See below in Standard Analysis for a description 
of how this window operates.) 

 
“Standard Analyses” Option 
 
 Once the truth table is constructed select “Standard Analyses.” This procedure 

automatically provides the user with the complex, intermediate, and parsimonious 
solutions. “Standard Analyses” is recommended over “Specify Analysis.” 

 
Please refer back to the discussion of the “Standard Analyses” procedure for crisp sets. 
The fuzzy set procedure is parallel. Three solutions are derived, the complex, the 
parsimonious and the intermediate. Each solution is based on a different treatment of the 
remainder combinations: 
 
 Complex: remainders are all set to false; no counterfactuals; 
 
 Parsimonious: any remainder that will help generate a logically simpler  
  solution is used, regardless of whether it constitute an “easy” or 
  a “difficult” counterfactual case; 
 
 Intermediate: only remainders that are “easy” counterfactual cases are allowed 
  to be incorporated into the solution. The designation of “easy” versus 
  “difficult” is based on user-supplied information regarding the connection 
  between each causal condition and the outcome. 
 
When the algorithm for selecting prime implicants cannot fully reduce the truth table, the 
Prime Implicant Window will appear and the user must select the prime implicants to be 
used, based on theoretical and substantive knowledge. The window will appear as 
follows:  
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Prime implicants (PIs) are product terms that are produced using minimization rules (e.g. 
rules that combine rows that differ on only one cause if they have the same output value). 
For example: ABC combines with AbC to produce AC. AC, therefore, is the prime 
implicant that covers the two primitive Boolean expressions ABC and AbC. In other 
words, ABC and AbC are subsets of AC, or AC implies ABC and AbC. 
 
Often, though, there are more reduced prime implicants than are needed to cover all the 
original primitive expressions and the user has the option to choose from among those 
that are “logically tied” using the prime implicant chart. (For a more comprehensive 
discussion of the use of Prime Implicants, refer to The Comparative Method page 95.) 
 

 To choose prime implicants (PIs), the program employs an algorithm that 
attempts to reduce the table until no further simplification is possible, beginning 
with essential PIs (which uniquely cover specific rows in the truth table) that must 
appear in the solution. If the algorithm is run and the table cannot be fully 
reduced, the user may select the PIs to be used, based on theoretical and 
substantive knowledge. 
 
 The Prime Implicant Chart tab displays the possible prime implicants for the 
user to choose. Each column in the chart represents a different truth table row that 
is covered by more than one prime implicant. The “Data” field across the top 
displays the truth table row in question (the one that needs to be covered).  
 
 The “Prime” field on the left-hand side describes the PI that the user may 
select. Each row in the chart represents one PI that may be selected. A PI is 
selected by clicking on the cell in the first column.  

 
 After clicking on the desired cell or cells, press OK to run the analysis. 

 
D) Output for “Specify Analysis” Option 
 
Once the truth table has been minimized, the main window will show you the following 
output. The output shown is for the most complex solution, obtained by using the 
“Specify Analysis” option as described above. 
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The first part of the output describes the data of the Truth Table Analysis. The first two 
rows indicate the file directory and the model you specified. Then, the output displays 
what kind of algorithm you used.  

 
The last part of the output shows the Truth Table Solution of your analysis. First, 
frequency and consistency cutoffs are listed. This is followed by the solution(s). When 
the “Specify Analysis” option is selected, there will be one Truth Table Solution section. 
When “Standard Analyses” is selected, three solution sections will be provided (complex, 
parsimonious and intermediate). In this example, the solution for the most complex 
solution was reported, with weak class voting as a product of three configurations.  

 
The first two lines list the frequency and consistency cutoffs.  The consistency cutoff will 
list the lowest consistency value above the cut-off value specified by the user. Here, 0.8 
was given as the consistency cutoff, and the lowest actual value above 0.8 was 0.823529. 
 
The solution provides a line for each separate path to the outcome (in this example three 
paths exist). The output also computes the consistency and coverage for each solution 
term and the solution as a whole (these computations are discussed below). 
 
The output for the most parsimonious solution of this same truth table is: 
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The solution indicates three paths to weak class voting. Countries with membership in the 
set of countries with not-strong unions, or in the set of countries that are not affluent, or 
in the set of countries with high income inequality and not strong manufacturing sectors, 
all exhibit weak class voting. 
 
E) Output for “Standard Analyses” Option 
 
Output for the Standard Analysis will look slightly different: 

 
Most notably, the complex, intermediate, and parsimonious solutions will be displayed.  
Depicted here is the intermediate solution.  The “Assumptions” portion of the output 
display the options previously selected in the “Intermediate Solution” window (see page 
46); here, each was selected such that when present, the condition should contribute to 
the outcome. 
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In this solution, weak class voting is a product of three pathways – high membership in 
the set of affluent countries and weak membership in the set of countries with strong 
unions; weak membership in the set of affluent countries, high membership in the set of 
unequal countries, and high membership in the set of countries with strong unions; as 
well as high membership in the set of affluent countries, high membership in the set of 
unequal countries, and weak membership in the set of manufacturing countries.  
 
F) Consistency and Coverage 
 
The output includes measures of coverage and consistency for each solution term and for 
the solution as a whole. Consistency (with sufficiency) measures the degree to which 
solution terms and the solution as a whole are subsets of the outcome.  Coverage 
measures how much of the outcome is covered (or explained) by each solution term and 
by the solution as a whole.  These measures are computed by examining the original 
fuzzy data set in light of the solution (composed of one or more solution terms).  The 
degree to which cases in the original dataset have membership in each solution term and 
in the outcome form the basis of consistency and coverage measures.  More specifically, 
consider the following data table with three causal conditions (A, B, and C) and an 
outcome (Y) all measured as fuzzy sets. 
 
Causal 
Condition 
Membership 

Outcome 
Membership Solution Membership Consistency Calculations 

A B C Y A*B A*C A*B + A*C CA*B CA*C CA*B + A*C 

.8 .9 .8 .9 .8 .8 .8 .8 .8 .8 

.6 .7 .4 .8 .6 .4 .6 .6 .4 .6 

.6 .7 .2 .7 .6 .2 .6 .6 .2 .6 

.6 .6 .3 .7 .6 .3 .6 .6 .3 .6 

.8 .3 .7 .8 .3 .7 .7 .3 .7 .7 

.6 .1 .7 .9 .1 .6 .6 .1 .6 .6 

.7 .4 .2 .3 .4 .2 .4 .3 .2 .3 

.2 .9 .9 .1 .2 .2 .2 .1 .1 .1 

.1 .6 .2 .2 .1 .1 .1 .1 .1 .1 

.2 .1 .7 .3 .1 .2 .2 .1 .2 .2 

.3 .1 .3 .3 .1 .3 .3 .1 .3 .3 

.1 .2 .3 .2 .1 .1 .1 .1 .1 .1 
Sum: 6.2 4.0 4.1 5.2 3.8 4.0 5.0 

 
The relevant output for this analysis is shown below.  The solution is comprised of two 
terms: A*B + A*C.  To calculate consistency and coverage, several intermediate values 
must be calculated first.  Membership in the outcome (ΣY) is the sum of outcome 
membership scores across all cases in the data.  A case’s membership in each solution 
term is computed as the minimum of the cases membership in each causal condition of 
the term.  Membership in the first solution term (ΣA*B) is the sum of membership in that 
solution term across all cases.  Similarly, membership in the second solution term (ΣA*C) 
is the sum of membership in that solution term across all cases.  Membership in the 
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solution (Σ (A*B + A*C) is defined as the maximum of a case’s membership across the 
solution terms. 
 
   
            raw        unique  
          coverage    coverage   consistency  
         ----------  ----------  -----------  
A*B+     0.612903    0.161290    0.950000  
A*C      0.645161    0.193548    0.975610  
solution coverage: 0.806452  
solution consistency: 0.961538  

 
 
Consistency measures the degree to which membership in each solution term is a subset 
of the outcome.  Consistency is computed by first computing the consistency of each 
case.  For any solution term, a case is consistent if membership in the solution term is less 
than or equal to membership in the outcome.  If a case’s membership in the solution term 
is greater than its membership in the outcome (i.e., it is inconsistent), then the case is 
given a score that equals its membership in the outcome. These scores are then summed 
(yielding Σ CA*B) and divided by the sum of memberships in the solution term (ΣA*B).  
Thus, consistency for the first solution term is Σ CA*B / ΣA*B = 3.8/4 = .95 and for the 
second solution term is 4.0/4.1 = .976. 
 
Solution Consistency measures the degree to which membership in the solution (the set of 
solution terms) is a subset of membership in the outcome.  The maximum of each case’s 
membership across solution terms max(A*B + A*C) is compared to membership in the 
outcome.  If membership in the solution is less than or equal to membership in the 
outcome, then the case is given a score that equals its membership in the solution term.  If 
membership in the solution term if greater than membership in the outcome (i.e., if it is 
inconsistent), then the case is given the outcome scores (the lower of the two scores). 
These scores are summed and then divided by the sum of memberships in the solution 
term (Σ C(A*B + A*C) / Σ(A*B + A*C).  The consistency for the solution in this example is 
5.0/5.2 = .962. 
 
Solution coverage measures the proportion of memberships in the outcome that is 
explained by the complete solution.  The consistent membership scores are summed 
across cases and then divided by the sum of the membership in the outcome: 
(ΣC(A*B + A*C) / ΣY) = 5/6.2 = .806. 
 
Raw coverage measures the proportion of memberships in the outcome explained by each 
term of the solution.  Raw coverage is computed for each solution term from the original 
data by dividing the sum of consistent membership in the solution term by the sum of 
membership in the outcome.  Raw coverage for the first solution term is ΣCA*B / ΣY = 
3.8/6.2 = .613 and for the second term is 4.0/6.2 = .645. 
 
Unique coverage measures the proportion of memberships in the outcome explained 
solely by each individual solution term (memberships that are not covered by other 
solution terms).  This is computed by first removing the term from the solution and 
computing solution coverage.  In this example, solution coverage after removing the first 
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solution term (ΣCA*B) is simply ΣCA*C (with n solution terms the reduced solution will 
contain n-1 solution terms).  The reduced coverage term is then divided by the full 
solution coverage and subtracted from the raw coverage to give the unique coverage for 
the omitted solution term.  For the first solution term (ΣCA*B) unique coverage equals: 
(ΣC(A*B + A*C) / ΣY) - (ΣCA*C / ΣY) = (5.0/6.2) – (4.0/6.2) = .161.  Unique coverage for the 
second term equals (5.0/6.2) – (3.8/6.2) = .194. 
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