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SIGNALS 
 

Brian Skyrms 
 

“Two savages, who had never been taught to speak, but had been brought up 
remote from the societies of men, would naturally begin to form that language by 
which they would endeavor to make their mutual wants intelligible to each other 
…” 

Adam Smith 
Considerations Concerning the First Formation of Languages 

 
 

 
 What is the origin of signaling systems?  Adam Smith suggests that there is 

nothing mysterious about it. Two perfectly ordinary people who did not have a signaling 

system would naturally invent one. In the first century BC, Vitruvius says much the same 

thing: 

 In that time of men when utterance of a sound was purely individual, 
 from daily habits they fixed on articulate words just as they happened 
 to come; then, from indicating by name things in common use, the result 
 was in this chance way they began to talk, and thus originated 
 conversation with one another. 
  

Vitruvius is echoing the view of the great atomist, Democritus, who lived four centuries 

earlier.1 Can it be true? If so, how can it be true?  

 

 The leading alternative view was that some signals, at least originally, had their 

meaning “by nature” – that is, that there was an innate signaling system2. At the time this 

may have seemed like an acceptable explanation, but after Darwin, we must say that it is 
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no explanation at all. Bare postulation of an evolutionary miracle is no more explanatory 

that postulation of a miraculous invention. Either way, some work needs to be done. 

  

 Whatever one thinks of human signals, it must be acknowledged that information 

is transmitted by signaling systems at all levels of biological organization. Monkeys3, 

birds4, bees, and even bacteria5 have signaling systems. Multicellular organisms are only 

possible because internal signals coordinate the actions of their constituents. Some of 

these signaling systems are innate in the strongest sense. 

 

  We now have not one but two questions: How can interacting individuals 

spontaneously learn to signal. How can species spontaneously evolve signaling systems? 

Today, I would like to indicate how we can bring contemporary theoretical tools to bear 

on these questions. 

 

Sender-Receiver 

 In 1969 David Lewis framed the problem in a clean and simple way by 

introducing Sender-Receiver games.   There are two players, the sender and the receiver. 

Nature chooses a state at random and the sender observes the state chosen. The sender 

then sends a signal to the receiver, who cannot observe the state directly but does observe 

the signal. The receiver then chooses an act, the outcome of which affects them both, 

with the payoff depending on the state. Both have pure common interest – they get the 

same payoff – and there exactly one “correct” act for each state. In the correct act-state 

combination they both get positive payoff; otherwise payoff is zero. Lewis discusses only 
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the case where there are as many acts as there are states, and as many signals as there are 

states and acts, and this is where we will begin. 

  

 Signals are not endowed with any intrinsic meaning. If they are to acquire 

meaning, the players must somehow find their way to an equilibrium where information 

is transmitted. When transmission is perfect, so that the act always matches the state and 

the payoff is optimal, Lewis calls the equilibrium a signaling system. It is a virtue of 

Lewis’s formulation that we do not have to endow the sender and receiver with a pre-

existing mental language in order to define a signaling system. 

  

 If we start with a pair of sender and receiver strategies, and switch the messages 

around the same way in both, we get the same payoffs. Permutation of messages takes 

one signaling system equilibrium into another. This fundamental symmetry is what 

makes Lewis signaling games a model in which the meaning of signals is purely 

conventional.6  It also raises in stark form a question that bothered some philosophers 

from ancient times onward. There seems to be no sufficient reason why one signaling 

system rather than another should evolve. 

 

Information in Signals 

 Signals carry information.7 The natural way to measure the information in a signal 

is to measure the extent that the use of that particular signal changes probabilities.8 

Accordingly there are two kinds of information in the signals in Lewis sender-receiver 

games: information about what state the sender has observed and information about what 
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act the receiver will take. The first kind of information measures effectiveness of the 

sender’s use of signals to discriminate states; the second kind measures the effectiveness 

of the signal in changing the receiver’s probabilities of action.9   

  

 Both kinds of information are maximal in a signaling system equilibrium. But this 

does not characterize a signaling system. Both kinds of information can also be maximal 

in a state in which the players mis-coordinate, and the receiver always does an act that is 

wrong for the state. In such a state there is plenty of information of both kinds, but we 

would like to say that no information is transmitted, or better – that misinformation is 

transmitted. 

 

 To deal with this, you might think that we have to build in a semantic concept of 

information – specifying what the sender intended the signal to mean and what the 

receiver took it to mean. I want to emphasize again that in Lewis signaling games this is 

not necessary. Because of the strong common interest present, the mark that information 

has been successfully transmitted, and that we have a signaling system equilibrium, is 

maximal payoff to sender and receiver.  As Democritus said: 

  The word is the shadow of the act.10 

 

 

Evolution 

 As a simple explicit model of evolution, we start with the replicator dynamics.11 

It has interpretations both for genetic evolution and for cultural evolution. The population 
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is large, and either differential reproduction or differential imitation lead the population 

proportion of strategy A, p(A), to change as: 

  dp(A)/dt = p(A) [U(A) – U] 

where U(A) is the average payoff to strategy A and U is the average payoff in the 

population. 

 

 Evolutionary dynamics could operate on one population of senders and another of 

receivers as in some cases of interspecies communication, or it could operate on a single 

population, where individuals sometimes find themselves in the role of sender and 

sometimes in the role of receiver.  

 

 Consider the two population model for the simplest Lewis signaling game – 2 

states, 2 signals, 2 acts. And for further simplification, suppose the population only has 

senders who send different signals for different states and only receivers who perform 

different acts when they get different signals. There are then only two sender’s strategies: 

 
  S1: State 1 => Signal 1 
       State 2 => Signal 2 
 
 S2: State 1 => Signal 2 
       State 2 => Signal 1 
 
 and only two receiver’s strategies: 

 R1: Signal 1 => Act 1 
        Signal 2 => Act 2 
 
 R2: Signal 1 => Act 2 
        Signal 2 => Act 1 
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The pairs <S1,R1> and <S2,R2> are the signaling system equilibria.   

 

 The population dynamics lives on a square, with p(S2) on the y axis and p(R2) on 

the x axis.  It looks like this: 

   (fig 1 here) 

There are 5 dynamic equilibria -the 4 corners and one in the center of the square - but 

three of them are dynamically unstable. The 2 signaling systems are the only stable 

equilibria, and evolution carries almost every state of the population to either one 

signaling system or another.  

 

 Consider a one-population model where the agent’s contingency plans, if sender... 

and if receiver ..., correspond to the four corners of the model we just considered. The 

dynamics lives on a tetrahedron. It looks like this: 

 

     (figure 2 here) 

 

The vertices are dynamic equilibria, and in addition there is a line of equilibria running 

through the center of the tetrahedron. But again, all the equilibria are unstable except for 

the signaling systems. All states to one side of a plane cutting through the tetrahedron are 

carried to one signaling system; all to the other side to the other signaling system. Almost 

every possible state of the population is carried to a signaling system. 
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 We see here how a symmetric model can be expected to yield an asymmetric 

outcome. In our two examples, the principle of sufficient reason is defeated by 

spontaneous symmetry breaking in the evolutionary dynamics. The population moves to a 

signaling system as if - one might say - guided by an unseen hand.  

 

  

Learning Strategies 

 

 As an simple explicit model of unsophisticated learning, we start with 

reinforcement according to Richard Herrnstein’s matching law – the probability of 

choosing an action is proportional to its accumulated rewards.12 We start with some 

initial weights, perhaps equal, assigned to each action. An act is chosen with probability 

proportional to its weight. The payoff gained is added to the weight for the act that was 

chosen, and the process repeats. As the weights build up, the process slows down in 

accordance with what psychologists call the law of practice. 

 

 Consider repeated interactions between two individuals, one sender and one 

receiver, who learn strategies by this kind of reinforcement. This set-up resembles the 

two population evolutionary model, except that process is not deterministic, but chancy. 

As an example let us focus on the 2 state, 2 signal, 2 act signaling game of the last section 

in the special case where Sender has only strategies S1 and S2, and Receiver has only 

strategies R1 and R2.13  You can think of this as a model of the situation where sender 
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and receiver both want the information to be transmitted, but don’t know each other’s 

strategies.  

 

 Using known results of stochastic approximation theory14, we can prove that 

reinforcement learning converges to a signaling system with probability one. Computer 

simulations show that learning is reasonably fast. 

 

Learning Actions 

 

 We helped the emergence of signaling in the foregoing model by letting 

reinforcement work on complete strategies in the signaling game –on functions from 

input to output. Essentially, the modeler has done some of the work for the learners. I 

take this as contrary to the spirit of Democritus, according to which the learners should 

not have to conceive of the problem strategically. Let us reconceptualize the problem by 

reinforcement work on single actions and see if we still get the same result. 

 

  To implement this for the simplest Lewis signaling game, the sender has separate 

reinforcements for each state. You can think of it as an urn for state 1, with red balls for 

signal 1 and black balls for signal 2; and another such urn for state 2. The receiver also 

has two urns, one for each signal received, and each containing balls for the two acts. 

Reinforcement for a successful act, is like adding a ball of the color drawn to the sender 

and receiver urn just sampled. The individuals are being reinforced for “what to do on 
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this sort of occasion”. We then ask what happens when these occasions fit together to 

form a signaling game.  

 

  For this model, known results of stochastic approximation theory do not suffice. 

A complete analysis does not quite yet exist. But in simulations, individuals always learn 

to signal. 

 

States, Acts and Signals 

 

 In Lewis signaling games, the number of states, acts and signals are assumed to be 

the same. Why should this be so? What if there is a mismatch?  There may be extra 

signals, or too few signals, of not enough acts. All of these possibilities raise questions 

that are interesting both philosophically and mathematically. 

 

 Suppose there are too many signals. Do synonyms persist, or do some signals fall 

out of use until only the number required to identify the states remain in use? Suppose 

there are too few signals. Then there is, of necessity, an information bottleneck. Does 

efficient signaling evolve; do the players learn to do as well as possible? Suppose there 

are lots of states, but not many acts. How do the acts affect how the signaling system 

partitions the states? 

 

 If we have 2 states, 2 acts and 3 signals, we could imagine that the third signal 

gets in the way of efficient signaling, or that one signal falls out of use and one ends up 
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with essentially a 2 signal system, or that one signal comes to stand for one state and the 

other two persist as synonyms for the other state.  Simulations of the learning process of 

the last section always produce efficient signaling, often with the persistence of 

synonyms. Learning is about as fast as in the case where there are only 2 signals. 

 

 If we have 3 states, 3 acts and only 2 signals, there is an information bottleneck. 

The best that the players could do is to get it right 2/3 of the time. This could be managed 

in various ways. The sender might use signals deterministically to partition the states – 

for example, send signal 1 in state 1 and signal 2 otherwise. An optimal receiver’s 

strategy in reply would be to do act 1 when receiving signal 1, and to randomize between 

acts 2 and 3 with any probability. This identifies a line of equilibria. Alternatively, the 

receiver could be deterministic – for example, doing act 1 for signal 1 and act 2 for signal 

2. If so, an optimal senders strategy to pair with this would always do sending signal 1 in 

state 1 and signal 2 in state 2, but randomizing in state 3. This identifies another line of 

efficient equilibria. 15 There are, of course, also lots of inefficient equilibria. Simulations 

always deliver efficient equilibria. They are always of the first kind, not the second. That 

is to say the signaling system always partitions the states.  Learning is still fast. 

 

 If we have 3 states, but only 2 signals and 2 acts, we can have act 1 right for state 

1, and act 2 right for state 3, and then vary the payoffs for state 2: 

 
Payoffs State 1 State 2 State 3 
Act 1 1 1-e 0 
Act 2 0 e 1 
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If e>.5 it is best to have one signal (which elicits act 1) sent in both state 1 and state 2; 

and the other signal (which elicits act 2) sent in state 3. If e> .5 an efficient equilibrium 

lumps states 2 and 3 together. The optimal payoff possible depends on e: 2/3 for e = .5 

and 1 for e = 0 or e = 1. For the whole range of values, optimal signaling emerges. 

Learning is just as fast as in previous cases. 

 

 

Signaling Networks 

 Signaling is not restricted to the simple 1-sender, 1-receiver case discussed so far. 

Alarm calls usually involve one sender and many receivers, perhaps with some of the 

receivers being eavesdroppers from other species. Quorum signaling in bacteria has many 

individuals playing the role of both sender and receiver. The brain continually receives 

and dispatches multiple signals, as do many of its constituents. Most natural signaling 

occurs in networks. A signaling network can be thought of as a directed graph, with an 

edge directed from node A to node B signifying that A sends signals to B. All out 

examples so far have been instantiations of the simplest possible case; one sender sends 

signals to one receiver.  

   •→• 

 There are other simple topologies that are of interest. One that I discussed 

elsewhere16 involved multiple senders and one receiver. I imagined two senders who 

observed different partitions of the possible states.   

   •→•←• 
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In the context of alarm calls, if one sender observes a snake or leopard is present, and 

another observes that there is no snake, a receiving monkey might be well-advised to take 

the action appropriate to evade a leopard. Multiple senders who transmit different 

information leave the receiver with a problem of logical inference. It is not simply the 

problem of drawing a correct inference, but rather the problem of drawing the correct 

inference relevant to his decision problem.  For instance, suppose sender 1 observes the 

truth value of p and then sends signal A or signal B, and sender 2 observes the truth value 

of q and sends C or D. Maximum specificity is required where the receiver has 4 acts, 

one right for each combination of truth values. But a different decision problem might 

require the receiver to compute the truth value (p exclusive or q) and of one act if true 

and another if false. 

 

 Senders may observe different aspects of nature by chance, but they might also be 

able to choose what they observe. Nature may present receivers with different decision 

problems. Thus, a receiver might be in a situation where he would like to ask a sender to 

make the right observation. This calls for a dialogue, where information flows in both 

directions. 

   •↔• 

Nature flips a coin and presents player 2 with one or another decision problem. Player 2 

sends one of two signals to player 1. Player 1 selects one of two partitions of the state of 

nature to observe. Nature flips a coin and presents player one with the true state. Player 

one sends one of two signals to player 2. Player 2 chooses one of two acts. Here a 
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question and answer signaling system can guarantee that player 2 always does the right 

thing. 

 

 A sender may distribute information to several receivers. 

    •←•→• 

One instance is the case of eavesdropping, where a third individual listens in to a two-

person sender-receiver game, with the act of the third person having payoff consequences 

for himself, but not for the other two.17  In a somewhat more demanding setup, the sender 

sends separate signals to multiple receivers who then have to perform complementary 

acts for everyone to get paid. For instance, each receiver must choose one of two acts, 

and the sender observes one of four states of nature and sends one of two signals to each 

receiver. Each combination of acts pays off in exactly one state. 

   

 Signalers may form chains, where information is passed along. 

   •→•→• 

In one scenario, the first individual observes the state and signals the state, and the 

second observes the signal and signals the third, which must perform the right act to 

ensure a common payoff. There is no requirement that the second individual sends the 

same signal that she receives. She might function as a translator from one signaling 

system to another. 
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 For all these networks, computer simulations show reinforcement learning always 

converging to signaling systems – although a full mathematical analysis remains to be 

done. It is remarkable that such an unsophisticated form of learning can arrive at optimal 

solutions to these various problems.  

 

 These networks are the simplest examples of large classes on phenomena of 

general interest. They also can be thought of as modules, which appear as constituents of 

more complex and interesting networks that process and transmit information. It is 

possible for modules to be learned in simple signaling interactions, and then assembled 

into complex networks by either reinforcement or some more sophisticated form of 

learning. The analogous process operates in evolution. 

 

Conclusion 

 

 How do these results generalize? This is not so much as single question as an 

invitation to explore an emerging field. Even the simplest extensions of the models I have 

shown here are full of surprising and interesting phenomena.18    The dynamics could be 

varied. On the evolutionary side, we can move from the large population, deterministic 

model of the replicator dynamics to a small population stochastic model. The 

mathematical structure of one natural stochastic model of differential reproduction is 

remarkably similar to our model of reinforcement learning.19 On the learning side, we 

could consider more sophisticated types of learning. One might expect more sophisticated 

learners to learn to signal more easily, but the matter needs to be investigated. 
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 We started with a fundamental question. Suppose we start without pre-existing 

meaning. Is it possible that, under favorable conditions, unsophisticated learning 

dynamics can spontaneously generate meaningful signaling?    The answer is affirmative. 

The parallel question for evolution turns out to be not so different, and is answered in the 

same way. The adaptive dynamics achieves meaning by breaking symmetry. Democritus 

was right. It remains to explore all the ways in which he was right. 
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 figure 1: Replicator Dynamics, Two Populations 
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  figure 2: Replicator Dynamics, One Population 
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Notes: 

                                                 
1 Another echo is to be found in Diodorus of Sicily: 
 
 The sounds they made had no sense and were confused; but gradually 
 they articulated their expressions, and by establishing symbols among 
 themselves for every sort of object they came to express themselves on 
 all matters in a way intelligible to one another. Such groups came into 
 existence throughout the inhabited world, and not all men had the same 
 language, since each group organized their expressions as chance had it. 
 [translation from Barnes (2001) 221.] 
 
See also Verlinski (2005) and the passage on Democritus from Proclus’ commentary on 
the Cratylus in Barnes (2001) 223. 
 
2 I am, of necessity, oversimplifying the ancient debate here. 
 
3 Cheney and Seyfarth (1990). 
 
4 See Charrier and Sturdy (2005) for an avian signaling systems with syntactical rules, 
and Marler (1999) for shadings of “innateness” in sparrow songs. 
  
5 See the review article of Taga and Bassler (2003). 
  
6 Some signaling interactions may not have this strong symmetry and then signals may 
not be perfectly conventional.  There may be some natural salience for a particular 
signaling system. Here we are addressing the worst case for the spontaneous emergence 
of signaling. 
 
7 I follow Dretske (1981) in taking the transmission of information as one of the 
fundamental issues of epistemology. 
 
8 This can be measured in a principled way using the discrimination information of 
Kullback and Leibler (1951), Kullback (1959). 
 
9 Corresponding to these two types of information, we can talk about two types of content 
of a signal. See Russell (1921), Millikan (1984), Harms (2004). 
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10 Barnes (1982) 468. 
 
11 For a canonical reference, see Hofbauer and Sigmund (1998). 
 
12 First proposed in Herrnstein (1970 ) as a quantification of Thorndike’s law of effect, 
later used by Roth and Erev (1995) to model experimental human data on learning in 
games, by Othmer and Stevens (1997) to model chemotaxis in social bacteria, and by 
Skyrms and Pemantle (2000) to model social network formation. 
 
13 That is, we exclude “babbling” strategies where the sender ignores the state and always 
send the same message, or where the receiver ignores the message and always does the 
same act. 
 
14 See Pemantle (1990), Benaim (1999) and Hopkins and Posch (2005).  Notice that 
although the facts generically true for partnership games that are used in Hopkins and 
Posch Th. 4 can be verified in this example, they are usually not fulfilled in signaling 
games. In most signaling games the set of equilibria is not finite, but rather there are 
continua of equilibria – as shown, for example, in figure 2.  
 
15 Notice that these 2 lines share a point. If we consider all the lines of efficient equilibria, 
we have a cycle.  
 
16  Skyrms (2000), (2004). 
 
17 There are also more complicated forms of eavesdropping, where the third party’s 
actions have consequences for the signalers and there is conflict of interest. For a 
fascinating instance, where plants eavesdrop on bacteria, see Bauer and Mathesius 
(2004). 
 
18 For a further exploration of Lewis signaling games see Huttegger. 
 
19 Schreiber (2001), Benaim, Schreiber and Tarres (2004).  
 
 


