gregate level, is realized. The richness of the evidence drawn upon in modeling firm behavior in MOSES is impressive and represents a giant step toward achievement of objectives which many of us share. A corresponding richness of microlevel evidence needs to be brought to bear in the modeling of household behavior. I also believe that much more work must be done on the sources and uses of funds, before models such as MOSES will be suitable instruments for analysing policies intended to deal with inflation in apparently slack economies. This effort needs also to explore the investments of business in natural resources and location rights that lead to upward price movements and speculation.

Guy H. Orcutt
Yale University, New Haven, CT, USA

Nitzan and Paroush, although they do not use this language, can be thought of as seeking to resuscitate the viability of a notion of a common good which decision makers ought to pursue. They do so by positing a common objective function, and by assuming that evaluations of the values of choices with respect to this function are estimated by voters subject to error. In this framework, voters are posited to differ in their decisional competences, i.e., in their ability to correctly judge which of two choices is, in fact, higher on the given objective function. This approach, originating with Condorcet (1785) and carried on by Poisson (1837), was lost sight of for over a century until rediscovered by Black (1958). It may be contrasted with the usual Arrowian social choice approach in which collective choice is based on some rule for amalgamating diverse individual preferences. In the Arrowian approach preferences are taken as given and voters are not subject to error in judging what is in their interest.

Collective Decision Making integrates and extends a body of work which has appeared previously in some dozen or so journal articles in the 1980s. It represents a major contribution to a nascent subfield of social choice which elsewhere I have labeled 'information pooling and group decision making' [see introduction to Grofman and Owen (1986)]. The central question of the book is the design of optimal decision procedures – procedures which maximize the likelihood that the choice will in fact be highest with respect to the collectively shared objective function. Nitzan and Paroush begin with a very simple model of voter choice under majority rule and then successively relax the assumptions of that model to permit complexities such as a priori
The M-M model is explicit in its treatment of long-term capacity growth, the short-term supply decisions of individual firms, and the dynamics of labor, product and money market processes. The model, as it has developed, is a dynamic economic process model which reflects appropriately the old Stockholm School ideas. I welcome the fact that the model economy is fashioned more in the mode of the thinking of Joseph Schumpeter than of the mainstream of postwar micro- and macroeconomics with its strong attachment to equilibrium analysis. I also appreciate the fact that the M-M micro to macro model has incorporated the Leontief input-output analysis. The model also uses the Stone-type aggregate demand systems, although it is somewhat anomalous that, so far, most of the demand side is treated in a fairly traditional macro fashion. The modeling of firms follows a rules-of-behavior approach and incorporates extensive search behavior, since management is assumed to know only a restricted domain of even its own in-house structure and response patterns. Firms are not represented as optimizing in the short run, but rather as searching for improved ex ante profit positions. Individual firms are always on their way toward individual moving targets which they rarely reach. Considerable slack always exists within and between firms.

There are four genealogical links identified in the development of the M-M model: to an exogenous innovative function in the production system identified with Joseph Schumpeter; to market coordination as represented by the invisible hand of Adam Smith; to an avoidance of static coordination as developed from Smith via Walras to so-called 'modern' comparative equilibrium theory; and to a reinterpretation of Wicksell's cumulative process in a micro setting as a way of entering dynamics into the Walrasian system, making the speed of such endogenous market adjustments a central analytical and empirical focus. By keeping market agents in persistent search for improved positions, a dynamic disequilibrium market process is obtained.

Notwithstanding the absence of an index and some minor drawbacks, stemming from discontinuity resulting from the writing of the book over a period of time, this book merits a careful reading by a broad audience, which surely includes those interested in the understanding and modeling of firm behavior. Furthermore, all modelers of national economies will find much here worthy of their attention, as will those interested in methodological questions of research strategy. Those familiar with Eliasson's ebullient and highly attractive approach to economic research and theory development will be pleased to see it reflected in this, his latest book. Even those who have problems with Eliasson's rather free-wheeling approach should find this book stimulating and thought provoking.

Impressive as the research effort associated with Eliasson has been, it is evident that much remains to be achieved before the dream of combining research results, gleaned at the microlevel, into a powerful system that is useful for prediction, control, experimentation and analyses, on the ag-
long-term capacity growth, firms, and the dynamics of model, as it has developed, reflects appropriately the old that the model economy is Joseph Schumpeter than of economics with its strong the fact that the M–M stiffl input–output analysis, and systems, although it is mand side is treated in a of firms follows a rules-of-search behavior, since 1 domain of even its own are not represented as ring for improved ex ante air way toward individual rable slack always exists

development of the M– the production system ination as represented by of static coordination as lern comparative equi-cumulative process in a the Walrasian system, a central analy-persistent search for process is obtained, e minor drawbacks, of the book over a broad audience, running and modeling of al economies will find crested in methodolog-ith Eliasson’s ebullient nd theory development book. Even those who approach should find this

know ledge, supra-majoritarian rules, and variable group size. Another chapter considers the implications of a focus on judgmental competence for the theory of human capital. The book concludes with a discussion of potential applications of their model to areas as diverse as clinical judgment and stockholder control.

Perhaps the central result in Collective Decision Making is that weighted majority rule, in which each player’s weight is determined by the log odds of that player’s decisional competence, is the optimal rule when the two alternatives being prepared are a priori equally likely. (This result was independently discovered by Shapley and Grofman (1984), and by earlier authors in contexts different from that of social choice.) Nitzan and Paroush (pp. 15–16) present a nice and straightforward proof of this result. They then consider optimal rules when there are costs to decision making and uncertainties about players’ true skill levels. The ‘best’ rule may cost too much; if so, it is no longer the best. Also, that rule which is best for a given set of decisional competences may not be best if players’ weights have been misestimated. Here sensitivity analysis is necessary. Special case results are presented for three-member and four-member panels of experts.

The authors extend the basic model to the case where one alternative is a priori more likely. Here, the optimal rule is a supra-majoritarian weighted voting rule. I reproduce a simple example that shows the power of the basic log-odds result in shaping optimal decisions:

Consider three doctors with a skill vector equal to (0.82, 0.80, 0.78) and a corresponding vector of consulting fees equal to (2, 1, 6). Note that the least qualified charges a rate which is three times higher than the most qualified one, and six times higher than the fee charged by expert 2, the second most qualified. By simple calculation it can be verified that if the net benefit of a correct decision is less than 1.25, no consulting is undertaken; if $1.25 < B < 2.44$, then the second most qualified doctor, who charges the lowest fee, will be taken as the only consultant; if $2.44 < B < 7.81$, the most qualified doctor will be used as the only advisor; but for any value of B such that $7.81 < B$, even the least qualified and the most expensive doctor will be included in the decision group and a decision will be taken by simple majority rule. The probability of a correct decision in the last case is 0.896.

Nitzan and Paroush (p. 55) conclude that, if voters are independent, large decision-making bodies should use majority rule or something very close to it; however, if voters tend to vote in large cohesive blocs, then, since the actual number of decision makers is reduced to the number of factions in the decision-making body, supra-majoritarian decision making can be desirable.
Nitzan and Paroush present the result of an extensive simulation on optimal size of majority as a function of variables such as size of the decision-making body, skill levels of the decision makers, the a priori bias in favor of the status quo, and the ratio between Type I and Type II benefits. Results of simulation suggest that, even for small groups, the most competent member of the group is less likely to make the best choice than is the group majority.

Since I am myself a contributor to the recent rediscovery and elaboration of the Condorcetian judgmental competence approach to social choice, it is not surprising that I am extremely sympathetic to Nitzan and Paroush's orientation to collective decision making. But this book not only starts off with a good idea, it also does an excellent job in developing that idea into a rich body of findings and into usable and practical advice to decision makers.

References

Condorcet, Marquis de, 1785. Essai sur l'application de l'analyse a la probabilité des decisions rendues à le pluralité des voix (Paris).

Bernard Grofman
School of Social Sciences,
University of California, Irvine, USA