
Psychological Review
1999, Vol. 106, No. 2, 362-384

Copyright 1999 hy the American Psychological Association, Inc.
0033-295X/99/S3.00

A Stochastic Model of Preference Change and Its Application
to 1992 Presidential Election Panel Data

Michel Regenwetter
Duke University

Jean-Claude Falmagne and Bernard Grofman
University of California, Irvine

The authors present and test a model for the evolution of preferences. Personal preferences are
represented by rankings with possible ties and are posited to change under the influence of "tokens" of
information in the environment. These tokens may not be directly controlled or observed by the
researcher. The authors apply the model to 1992 National Election Study panel data (W. E. Miller, D. R.
Kinder, S. J. Rosenstone, & NES, 1993). The parameter estimates suggest that negative campaigning
played a major role in the information flow. Democrats and Republicans experienced a barrage of
contradicting information about Perot; Democrats, Republicans, and Independents each received or
perceived different information. A shift in the perception of the candidates led the Republicans to
evaluate Bush and Perot less favorably after the election. These results demonstrate the model's potential
to analyze persuasion as a real-time stochastic process and without a media content analysis.

In the vast literature on persuasion and propaganda (see, e.g.,
Anderson, 1971; Latane, 1981; Petty & Cacioppo, 1981; Zaller,
1992), there are few quantitative models of attitude change that
apply to panel data; the best known is the Converse "black and
white" model (Converse, 1964, 1975; Converse & Markus, 1979;
Markus, 1982; McPhee, Andersen, & Milholland, 1962). In a panel
study, the same individuals in a large sample have been questioned
repeatedly about their preference concerning a fixed set of alter-
natives. In addition to these questions, they may also have been
asked more general questions about their social background or
attitudes. Although the standard models for panel data have a
probabilistic component (modeling, e.g., the measurement error),
they typically do not cast such data as a manifestation of a
stochastic process in the specific sense of this term in the theory of
stochastic processes (e.g., Norman, 1972; Parzen, 1994). As a
consequence, detailed temporal predictions cannot be computed.

In this article, we present a stochastic model of preference
change that is an extension of a model developed by Falmagne,
Regenwetter, and Grofman (1997). We also describe an applica-
tion to an important set of data. The model is closely related to
work in mathematical behavioral sciences and combinatorics
(Doignon & Falmagne, 1997; Falmagne, 1996, 1997; Falmagne &
Doignon, 1997; Regenwetter, 1997). The key idea is consistent
with social choice theory in that, at any time, an individual's
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attitude is represented by a preference relation on the set of
alternatives. These preference relations are formalized by "weak
orders"; that is, rankings with possible ties. An individual's current
ranking may be altered by "tokens" of information delivered by the
environment. Each token contains information about a single al-
ternative. The effect of a token is to move that alternative up or
down in the current ranking or, in some circumstances, to leave the
present ranking unchanged. We stress that these tokens are not
necessarily identifiable or controllable by the behavioral scientist.
They are theoretical constructs intended to represent the "parti-
cles" in the barrage of information to which an individual, say a
potential voter in an election, may be submitted. A television
program for example (or a conversation with a neighbor, or a
newspaper article), may be the source of one or more tokens.
Moreover, it is plausible that a Republican voter and his or her
Democrat visitor watching the same television program may per-
ceive different messages. This suggests that, by itself, a content
analysis of the media gives only a partial picture of a marketing
campaign and its effects on the consumers or voters. More specif-
ically, a simple content analysis of the mass media misses the
perceptual filter that individuals use to screen and interpret infor-
mation. It also misses the way in which information flow is
mediated by social interactions, not just by direct mass media
exposure. Moreover, potential selective exposure effects lead dif-
ferent subsets of the population to sample different media sources.

Our model contains parameters that allow for the same message
to be differentially perceived or received by different individuals.
This model formalizes, in the guise of the unobservable tokens, a
very general notion of information, not restricted to either mass
media or social interaction, but rather combining all sources. It is
a tool permitting a detailed statistical analysis of preference evo-
lution in terms of inherently unobservable key psychological fea-
tures of the information flow. The estimated parameters of the
model actually provide a way to quantify the perceived content of
information. We point out that the model is formalized as a
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real-time stochastic process. In our case, that means a stochastic
process in which the changes of preferences can occur at any time
t, where t is any positive real number. The following quotation
from Latane, Nowak and Liu (1994) suggests that the field is ripe
for such a model. They write: "In order to predict an election three
months hence, it is simply not enough to know the proportion of
people favoring each candidate now. People may change their
minds, not only in response to new information, but as a result of
social interaction." Furthermore, they emphasize that "to fully
understand how social systems organize and evolve, we need to
further develop a dynamical view of group processes that fully
takes into account the crucial dimensions of space and time."

We first review some relevant literature. Next, we describe the
data to which the model is applied. An informal outline of the
model follows, with a discussion of some key predictions. We then
turn to the precise technical description of the model in the form of
four axioms. The following sections sketch our statistical methods
and provide the actual data analysis of the 1992 National Election
Study (NES; Miller, Kinder, Rosenstone, & NES, 1993) panel. The
concluding discussion summarizes our work and considers possi-
ble extensions and further applications of the model.

Related Literature

We divide our literature review into two parts. One examines
three different possible mechanisms of persuasion. The other re-
views two time-dependent social process models related to our
own work.

Mechanisms of Persuasion

Theoretical approaches to persuasion fall into three broad cate-
gories. First are those models that focus on the biases in the
information environment of the respondent. In particular, there is
a vast literature in political science on ideological and partisan bias
in the mass media (see, e.g., Ginsberg, 1986). Another very large,
mostly experimental literature studies one-way versus two-way
communication, recency effects, inoculation effects, the power of
repetition, and so on (reviews can be found in McGuire, 1964,
1969, 1985; Zimbardo & Ebbesen, 1970).

In the second category, the respondents are not seen as passive
recipients of propaganda. Rather they filter, categorize, and eval-
uate information in terms of their own values and biases. This
strand of literature is summarized by Jowett and O'Donnell (1992).
Among the classic psychology references are Abelson (1964),
Anderson (1971), and Moscovici (1976, 1985). In political sci-
ence, there are many references on party identification as a kind of
cognitive bias. For example, it has been argued that partisans
distort the information they hear, so as to construe it in a fashion
more favorable to the candidates they support (Grofman, 1985).
Perhaps the most important recent political science reference in
this context is Zaller (1992).

Third, an important stream of research deals with the catalyzing
role of the personal environment and the social context. One of the
earliest works of importance is by Lazarsfeld, Berelson, and Gau-
det (1948), who showed that the communications that people had
with each other could be as important in shaping attitudes as the
direct flow of information from the mass media. In particular, this
research promoted the concept of a "two-step flow of information"

in which "information leaders" act as intermediaries between the
mass public and the mass media. That is, information leaders
partially control the messages that the masses receive. Research
such as that of Latane and his colleagues (Latane, 1981; Latane &
Nida, 1979; Latane, Nowak, & Liu, 1994; Latane & Wolf, 1981;
Nowak, Szamrej, & Latane, 1990) shows how the social networks
in which respondents are embedded can dramatically change the
impact of information on attitudes. For instance, Nowak et al.
(1990) ran computer simulations of the change of attitudes in a
social network based on Latane's (1981) "theory of social impact."
The key variables of social impact theory are the strength, imme-
diacy, and number of other people in the social environment. As
Nowak et al. (1990) phrased it, "social impact theory concerns the
magnitude of the impact that one or more people or groups
(sources) have on an individual, and thus is a static theory of how
social processes operate at the level of the individual at a given
point in time." A comprehensive review of the psychology of
attitudes can be found in Eagly and Chaiken (1993).

Two Time-Dependent Models of Attitude Change

Nowak et al. (1990) extended Latane's theory of social impact
to attitude change by incorporating the individual's persuasive-
ness, that is, the ability to convince others of their own attitude.
Attitude change takes place whenever the impact of individuals
with a different opinion is greater than that of individuals with the
same opinion. The impact of individuals on others also depends on
their distance in the social network in which they are embedded. A
computer simulation of a discrete time process based on these
concepts shows how the distribution of attitudes in the social
network can evolve. This study demonstrates how a microlevel
theory of persuasion can lead to emerging macrolevel patterns,
such as the polarization of attitudes, equilibria between competing
attitudinal groups, and existence of minority subgroups. The mod-
els in these articles give a quantitative expression of the phenom-
enon of attitude changes. In their current formulation, however,
they do not entail a straightforward statistical analysis of data sets,
nor do they predict the evolution of attitudes in real time.

Among the methodologically most sophisticated models capable
of statistical analyses and of sequential predictions is the epidemic
model of the onset of social activities by Rodgers and Rowe
(1993). These models predict the progress of the individual
through a hierarchical stage process (e.g., adolescent sexual be-
havior) in discrete time. The key goal of the methodology is the
prediction and fit of onset data. The model presented here resem-
bles this work in that we specify the detailed statistical procedures
for parameter estimation, and that substantive hypotheses can be
cast as constraints on the parameters of the model.

Our model belongs to a general class studied by Falmagne
(1997). It differs from all previous theorizations of preference
change in two respects: (a) We formalize the information flow and
its effects on the respondents as a real-time stochastic process; (b)
we posit that the changes of preferences are due to tokens of
information, which are inherently unobservable. This last feature is
critical, because it renders the model applicable beyond the labo-
ratory. Indeed, if the data are provided by respondents in their
real-life environment (as in a standard polling situation), there is
no practical way of controlling or measuring the panoply of
messages bombarding them. That is, we cannot literally follow the
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respondent around and record the information flow to which she or
he is exposed. Even if we could, we would still need to model the
interaction between the individual respondent and that information
flow.

Data

We first describe the type of data that the model is intended to
explain. The exemplary data point is a sequence of rankings made
by an individual at times tl, ... ,tn. We suppose that at each time
tj three alternatives have been ranked by each respondent. These
alternatives might be, for example, competing brands of a product,
health plans, schools, music idols, or political candidates, as in the
particular application analyzed here. The only requirement is that
the alternatives can be ranked by the respondents according to the
dimension under study, such as desirability, personal utility, trust-
worthiness, or trendiness. In our study, this dimension is evaluated
by a rating scale measuring "how warm" the respondent feels
toward the candidates (see the Data Analysis).

The model of this article is applied to panel data pertaining to
the 1992 U.S. presidential election, with the three alternatives
being Bush, Clinton, and Perot. There are compelling reasons for
focusing on this case. For one, the NES panel (Miller, Kinder,
Rosenstone, & NES, 1993) provides reliable information about
evaluations of these three candidates for a substantial sample of the
American electorate at two time points (one shortly before and one
shortly after the election). For another, the respondents have clas-
sified themselves as Democrats, Republicans, or Independents, and
this information can be used to investigate the differences between
the three subpopulations. The partition of the general population
into these three classes is based on the concept of party identifi-
cation, which has been standard in the political science literature
for more than 40 years. It can be expected that members of these
three subpopulations receive different information during a cam-
paign, may interpret the same information differently, and may
initially have different evaluations of the candidates. All in all, by
testing our model of preference change on a well-studied election,
we can provide a good assessment of the validity of its substantive
interpretations.

The axioms of the model ensure that detailed testable predic-
tions can be obtained. In particular, we derive an exact expression
for the asymptotic (i.e., long term) probability of any given rank-
ing > (see Theorem 3 in Appendix B). In the context of an
election, this is the probability that a voter, sampled from a
specified population after a long campaign, would rank the alter-
natives according to the relation >. We also compute the joint
probability of observing rankings > and >' at times t and t + S,
respectively, for each pair of rankings > and >' and for large t
(see Theorem 5 in Appendix B). Moreover, the model permits to
estimate, for each subpopulation, the positive and negative "bias"
regarding each alternative. In the model, a particular bias results
from a relative preponderance of certain tokens.

The data to be analyzed consist, for any subpopulation g and any
pair (>,>') of rankings of the alternatives, in the number N( g, >,
>') of respondents in the sample who belong to population g and
have provided ranking > at time t and ranking >' at time t + 5.
Thus, summing over all the subpopulations and all the pairs of
rankings yields the total number of participants (N) in the sample,

N(g, >, >')• (1)

In our empirical example, N = 2,024. There are two basic types
of theoretical results. One concerns the asymptotic probabilities of
the preference relations at a single time point. This result can be
used to predict the number N(g, >) = 2^ N(g, >, >') of
respondents in subpopulation g who have indicated a particular
preference relation > at time t. (This assumes that t is large
enough to justify using the asymptotic result. This assumption was
supported by the data, see Data Analysis, Part 2.) The second type
concerns the joint probability of observing ranking > at time t and
ranking >' at time t + 8 f or any pair (>,>') of rankings and also
for large t. These probabilities are used to predict the numbers
N(g, >, >') in Equation 1. (Predictions involving more than two
time points can obviously also be derived using the methods of this
article; see also Falmagne, 1997, or Falmagne et al., 1997). Both
types of results are expressed in terms of parameters assessing the
density and the type of information delivered by the medium, and
the effects of this information on the preference relations of the
respondents. These results allow us to study differences in the
information flow to different subpopulations and to determine
whether or not the election outcome—or possibly, the reentry of
Perot in the race in October1—had an impact on the electorate's
perception of the candidates.

The analysis of the data supports the following four conclusions:
(a) negative campaigning seems to have played a major role in the
information flow (cf. Ansalobehere, lyengar, Simon, & Valentino,
1994; Garramone, 1985; Skaperdas & Grofman, 1995); (b) be-
tween the first (preelection) and the second (postelection) inter-
views, Democrats and Republicans appear to have been submitted
to a barrage of contradicting information about Perot (negative vs.
not so negative), revealing an. unstable image of this candidate; (c)
Democrats, Republicans, and Independents each received (or per-
ceived) different information; and (d) there was a statistically
significant shift between the two interviews in the evaluations of
the candidates that led the Republicans to evaluate both Bush and
Perot less favorably.

Some of these conclusions may appear trivial to a political
scientist in view of the literature and the common wisdom in the
field. Note, however, that this common wisdom resulted from the
combination of a large number of methods of analysis. By contrast,
we reach the four conclusions solely by reconstructing the infor-
mation flow from the joint evolution of the individual preferences.
In particular, these conclusions are obtained without relying on a
conventional content analysis of the mass media. That we are able
to reach accurate conclusions about perceptual biases, negativity of
information flow, and postelection effects is encouraging. Had our
analysis failed to reveal the volatility in the evaluations of Perot or
failed to find differences in the actual or perceived information
flow of Democratic or Republican partisans, we would have good
reason to regard the model with suspicion.

1 We are grateful to an anonymous reviewer for pointing out that, at the
time of Perot's reentry into the race on October 1, about one third of the
data from the first interviews had already been collected. Therefore, any
difference between the first and the second interviews may be due in part
to that reentry.
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Outline of the Model

As in Falmagne et al. (1997), we write si for the set of alter-
natives. The symbols i, j, k denote variables referring to the
elements of si. In our examples and in the data analysis section, si
= {Bush, Clinton, Perot}. (We will often abbreviate "Bush,"
"Clinton," and "Perot" by B, C, and P, respectively.)

The model presented in this article is built on the following
theoretical constructs: the subpopulations of the respondents, their
latent preferences, their initial state, and the information medium,
which is represented by a stochastic flow of information "tokens."
Our mathematical model will relate these concepts to observable
entities, namely the respondents' evaluation of the alternatives at
time points f , , .. . , tn, and the partition of the sample of respon-
dents into subsamples corresponding to party identification. Note
for further reference that, in our application, the respondents'
evaluations will be derived from the so-called thermometer ratings
(see later discussion), and the partitioning will be based on the
self-classification of the respondents into Democrats, Republicans,
and Independents.

The Subpopulations

We assume that the sample of respondents can be partitioned
into three subsamples corresponding to three subpopulations ac-
cording to party identification (for instance). We suppose that this
information is provided by the respondents (as was the case for the
data analyzed here). It seems reasonable to suppose that the re-
spondents in each subsample have access to possibly different
channels of information and may have different prior evaluative
biases. In the application, we use the three subpopulations: Dem-
ocrats, Republicans, and Independents. We generically refer to
subpopulation g, with g = d, r, u (for Democrat, Republican, and
Uncommitted, respectively). This classification is assumed to be
invariant in the course of the study. In other words, even though
respondents may change their preferences over time, they do not
change their underlying political orientation. (This assumption is
consistent with the fact that our 1992 election data cover only a
time interval of a few months.)

The Latent Preferences

We suppose that the responses of an individual to some ques-
tions of a survey are governed by a latent personal preference
relation, which we call the state of that individual. By a preference
relation on the set si, we mean a binary relation in the usual sense
of set theory (i.e., a set of ordered pairs of elements of si). We
restrict consideration to strict weak orders, that is, rankings with
ties. (A formal definition of the concept of a strict weak order is in
Appendix A.) We write i > j to mean that alternative i is strictly
preferred to alternative j. This family of relations contains as a
special element the empty relation 0, representing the situation in
which no alternative is strictly preferred to any other. The relation
0 is referred to as the neutral state.

In the case of si = {B, C, P}, there are 13 possible states. The
set of all states will be denoted by y. These 13 states are repre-
sented by their graphs in the 13 rectangles of Figure 1. Notice that
the neutral state is represented by the empty rectangle in the
middle of the figure. (Ignore for the moment the arrows in the

Figure 1. Three-dimensional transition diagram of the random walk on
the set y of states (strict weak orders). The positive or negative tokens
producing a transition are marked along the arrows of the diagram. Note,
for further reference, that parallel arrows pointing in the same direction
correspond to the same token. To simplify the graph, only the centrifugal
transitions (i.e., away from the neutral state) are indicated. The centripetal
transitions can be obtained by reversing the arrows and by capping the
symbols representing the tokens by tildes. Note that the probabilities of the
transitions depend on the subpopulation. B = Bush; C = Clinton; P =
Perot.

figure and the reference to the random walk in the caption.)
Figure 1 is designed so as to facilitate the visualization of the
process in three dimensions, each of which corresponds to one of
the candidates. The third dimension (Perot's dimension) is cap-
tured by representing elements in the background (i.e., Perot at the
bottom) smallest and elements at the foreground (i.e., Perot at the
top) largest.

The Initial State

At the beginning of the process, any individual of the population
of reference is in some state, which may be the indifference
relation or some other state. In our empirical example, this initial
state may be thought of as the preference ranking of an individual
when first informed about the list of presidential candidates. For
instance, Democrats might start more favorable to Clinton and
Republicans more favorable to Bush. Here, we simply assume that
an initial distribution on the set of states exists, which may depend
on party identification. For data collected early enough in the
process, the initial distribution can, in principle, be reconstructed
(i.e., the parameters can be estimated). In the data analysis pre-
sented here, however, this initial distribution only plays a technical
role because we assume (and also test) that the respondents have
reached asymptote at the time of the first evaluation.
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The Stochastic Environment

Starting from the initial state, successive transformations may
take place over time. Specifically, we assume that the individual is
immersed in a stochastic environment delivering at certain random
times t,,..., tn, ... "tokens" of information regarding the alter-
natives. These tokens represent events occurring in the environ-
ment and having a positive or negative connotation regarding
particular alternatives. We assume that the stochastic environment
of respondents in different subpopulations may be different, either
because the information they sample is different or because they
evaluate information differently. For instance, a television report
that depicts Bush as a "true Republican" may be positive infor-
mation for most Republicans but negative information for most
Democrats. Thus, both the sources and the interpretation of infor-
mation from the same source may differ between subpopulations.
People in different subpopulations may nevertheless overlap in
their sources of information. All these notions are operationalized
by assuming that both the rate of occurrence of the tokens and their
nature may differ depending on the subpopulation to which a
respondent belongs. An important feature of the analysis is that the
density of the tokens and their respective probabilities can be
estimated for each subpopulation. These estimates can be com-
pared, and may reveal critical differences among Democrats, Re-
publicans, and Independents concerning the exposure to the infor-
mation available in the medium.

Many studies of persuasion use an experimental or quasiexperi-
mental design (lyengar & Kinder, 1987; lyengar, Peters, & Kinder,
1982). In our model, however, the occurrence of the tokens need
not be either observed or controlled by the social scientist in order
for the model to apply. Rather, we infer statistical properties of the
token flow from the application of the model to the observed data
on preferences and preference changes. This aspect of the model
makes it applicable to nonexperimental settings.

The Tokens and Their Effects on the State .

As indicated, the particular tokens delivered by the environment
are not recorded or controlled by the social scientist and thus are
not identified in the model.2 Nevertheless, the following list is
suggestive of the possible sources of tokens: television programs,
newspaper articles, campaign ads, conversations with acquain-
tances, and so on. In the model discussed here, four types of tokens
are considered for each alternative: A token can be positive or
negative, and to each of these two cases corresponds its opposite
token. For convenience, we refer to the class of tokens providing
positive information about (' as "token [i]." We assume that each
token of a given type about some alternative is equivalent in effect
to any other token of the same type and about the same alternative.
Thus, in our example [B] denotes any positive token for Bush.

Table 1 shows the four possible types of tokens and the notation
used for each. The occurrence of a particular token does not
necessary modify the state of an individual. For example, a posi-
tive token [i] has no effect if there already exists a unique best
alternative in the current state or if alternative i is currently viewed
as the unique worst. Otherwise, the positive token [i] modifies the
current state so as to move alternative i to the top position of the
strict weak order, that is, the position in which i strictly dominates
the two other alternatives. There are three such states in which i is
the unique best ((-Best), namely

Table 1
The Four Types of Tokens and Their Notation

Types of tokens

Alternative (' is the best
(' is not the best
( is the worst
( is not the worst

Representing symbol

[i]
M

(~'}

[i>j,i>k],[i>k> j], and [i >j>k].

(The notation should be self-explanatory. For example, [i > j, i >
k] denotes the preference relation of a person who prefers i to both
j and k but is indifferent between the latter two.3) An individual in
state [i > k, j > k]—that is, preferring both i and j to k—and
perceiving token [i] would end up in state [i > j > k]. This
transition is represented by the upward arrow in the upper right
corner of Figure 2.

All the possible transitions are represented in this figure. This
generic graph will be useful for the rest of this section. For each
preference relation, we indicate the subpopulation g of the respon-
dent.4 The reader should also keep in mind that the processes
described here are taking place according to the same mechanism
in different subpopulations, but possibly with different token fre-
quency patterns among subpopulations.

We previously indicated that a positive token [i] has no effect
on the current state if a unique best alternative already exists, or if
alternative i is regarded as the unique worst. Similarly, a negative
token [ —i] has no effect if there already exists a unique worst
alternative or if alternative i is currently viewed as the unique best.
Otherwise, the effect of a negative token [ — i] is to move alterna-
tive i to the bottom of the weak order. The opposite of a positive
token [('], denoted by [i], has an effect only if i is currently viewed
as the unique best. As indicated in Figure 2, the occurrence of such
a token will modify the current state by removing alternative i
from its top position. Two instances of such a transition occur in
Figure 2, namely, the two counterclockwise downward arrows.
The downward arrow in the lower left corner represents, for
instance, the transition from the state [i > j, i > k] to the neutral
state_._Similarly, the opposite of a negative token [ — i] is denoted
by [—('] and removes i from the bottom position if i was there. Note
that the opposite tokens, when they are effective, always transform
a state into one nearer the neutral state.

Tokens play such a crucial role in the stochastic mechanism we
posit as responsible for the evolution of preferences that they

2 The possibility of such an identification is discussed in the last section
of this article.

3 Note the convenient abuse of notation committed in (-Best: Because
each of the three formulas specifies a different strict weak order, different
symbols (e.g., >, >' and >") should have been used. Our convention
simplifies the writing and will be used whenever the context makes clear
what is intended.

4 We only have the information concerning party membership at the time
of the first interview. We assume that the respondents did not change
parties in the time period covered by this study. If the party identification
had been asked at each interview, the model could have been elaborated to
cover this case.
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[i]

Figure 2. Effects of the tokens on the various possible states of the
respondents in subpopulation g. Six different instances of this graph are
found in Figure 1, obtained by setting i, j, and k equal to B (Bush), C
(Clinton), and P (Perot) in the six possible ways.

deserve close attention. There are various reasons motivating the
particular choice of token types made in this article.5 These tokens
formalize the concept of an atomic unit of information concerning
a single alternative. They capture the natural intuition that an item
of information can be either favorable or unfavorable toward a
given alternative. Note that we allow for intensity of message in
that we distinguish between a positive token [j] which says that i
is the best, and a token [ —i], which says that i is not the worst (and
similarly for the other two tokens). In the framework of a weak
order representation of preferences, the effects of the types of
tokens used here have a convenient geometric interpretation that,
in turn, induces a particular form of asymptotic probability distri-
bution on the states. These aspects will be laid out later. A key
feature is that the effect of a single token on an individual's
preference state critically depends on that individual's current
state. In particular, the transition mechanisms that we postulate
instantiate the intuition that dramatic changes of preference cannot
be caused by single items of information (see Mackelprang, Grof-
man, & Thomas, 1975, in this connection).

Indeed, the states are endowed with some rigidity in the sense
that (as already mentioned) a token is not always effective. For
example, the occurrence of token [('] has no effect on state [j >
k > i] because each of the three states having i in the top position
(the states in i-Best) is far removed from [j > k > i]. In general,
transformations only take place between adjacent states (i.e., states
linked by an arrow in Figure 2).

The effect of a token f on a state > will be captured by an
operation O, which is defined by the graph of Figure 2. Thus, the
operation O maps the pair (>, £) to some strict weak order >' =
> O £. In other terms, an individual in state > and receiving the
token £ ends up in state >'. (Note that in some cases, > and >'
may denote the same state, i.e., the token need not always have an
effect.) We shall make this more concrete and illustrate the basic
concepts with a hypothetical token sequence involving the 1992
presidential candidates. This is depicted in Figure 3.

The time axis is in the first column, flowing from the top to the
bottom of the figure. The horizontal bars mark the occurrence of
the tokens. The tokens themselves are indicated in the second

column. The current state is pictured in the third column by its
graph (the Hasse diagram of combinatoric theory). The respondent
in this example is a Republican. We suppose that, at Time 0, the
respondent prefers Bush to the other two between whom she or he
is indifferent. The respondent remains in that state until the occur-
rence of the first token [B] at time /,. This token may arise, for
instance, from a newspaper article depicting Bush as a "true
Republican," which the respondent understands as a positive token
about Bush. (Note that the same newspaper article may generate a
negative token [-B] from the viewpoint of a Democrat.) This
token does not change the respondent's preferences, as it is already
in line with the current state. Thus,

[B > C, B > P] = [B > C, B > P]O[B].

Next comes the negative token [—C] at time ?2 (e.g., a token that
sheds negative light on Clinton). Its effect is to move alternative C
to the bottom of the preference relation, resulting in the state

[B > P > C] = [B > C, B > P]O[-C].

Token [B] occurs at time t3, say, in a television report that shows
Bush in confrontation with some fellow Republicans. The respon-
dent in our example does not agree with Bush and displaces him
from the top position, moving to a preference state closer to the
neutral state

[B > C, P > C] = [B > P > C]O[B].

The token [C] occurring at time t4, has no effect on the current
state [B > C, P > C]. The reason is that changing that state into
a state having alternative C in the top position would be a major
transformation, which cannot be realized by a single token. (An
interpretation is that this positive token [C], being in conflict with
the individual's current state, is discarded as propaganda; cf.
Zaller, 1992.) We leave it to the reader to verify the effects of
tokens [—C] and [B] occurring at times t5 and t6. In particular,

0 = 0O[B].

At first blush, the opposite tokens may appear superfluous.
Intuitively, it may perhaps seem that their role could be reas-
signed—by some appropriate modification of the rules of the
model—to the positive and negative tokens. However, they were
introduced to give the model some flexibility in capturing impor-
tant effects. For example, a prevalence of opposite tokens in the
environment would induce a high probability of the neutral state.
In particular, in a political campaign, a high proportion of opposite
tokens of the types [i] or [—i] could yield a large number of
undecided voters. It may also seem that the principles of the model
preclude a drastic change of state in a small amount of time. Such
a change is, in fact, feasible as a result of a volley of tokens, an
event of relatively low probability.

The mechanisms of attitude change depicted in Figure 2 as a
function of tokens of information are assumed identical for all
respondents (i.e., even though different subpopulations may be

5 In other models based on similar principles but relying on different
representations of the preferences (total orders in Falmagne, 1996; semi-
orders and other relations in Falmagne & Doignon, 1997), the tokens are of
a comparative nature (e.g., "i is better than/').
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the initial state

token [B] occurs at

time 11

token [-C] occurs at

time t2

token [B] occurs at

time t3

token [C] occurs at

time t4 and is ignored

token [-C] occurs at time t,

token [B] occurs attime t6

Figure 3. Illustrative hypothetical sequence of tokens occurring at times tt, .. . , t6, . .. and the resulting
preference relations. The hypothetical respondent is a Republican. This is illustrated by the label r under each
state. B = Bush; C = Clinton; P = Perot.

exposed to the same type of token with different probabilities, the
effect of a given type of token is the same for everyone regardless
of his or her subpopulation). This assumption is not shocking
because, as indicated earlier, the same physical piece of informa-
tion may, for individuals belonging to different subpopulations,
translate into different tokens.

Finally, unless specified otherwise, we suppose that the delivery
of the tokens is a stable process in the sense that the probabilities
of occurrence of the tokens in any interval of time [t, t + 8],
t > 0, d > 0 do not vary with t. (However, these probabilities are
allowed to differ among subpopulations.) Note that this temporal
stability is only critical for the short-term aspects of our predic-
tions (see the remark after Theorem 3 in Appendix B).

An important consequence of the axioms stated later is that the
temporal succession of states for respondents in any given sub-
population g is a homogeneous random walk on the family of all
states; the transition probabilities are governed by the parameters
corresponding to channel g. The graph in Figure 1 displays the
transitions of this random walk. To simplify the graph, only the
centrifugal transitions (i.e., away from the neutral state) are indi-
cated. The centripetal transitions can be obtained by reversing the
arrows and capping each of the symbols representing tokens by a

sign. To understand the functioning of the random walk, it may
be useful to reexamine the sequence in Figure 3, and follow the
transitions between the states on the graph of Figure 1.

One interpretation for the transformations illustrated by Fig-
ures 1 and 2 is that the alternatives are implicitly evaluated by
the respondents on a 3 -point scale having — 1 , 0 , and +1 as
possible values, with 0 serving as a reference point. Equivalent
alternatives are always rated 0. The value 1 corresponds to the
top position of the state, when only one alternative occupies that
position (cf. alternative i in /-Best). A value of - 1 corresponds
to the bottom position, with the same proviso. For example, a
value of — 1 on the third dimension corresponds to Perot being
at the bottom of the ranking. The value 0 given to some
alternative j corresponds to the neutral state and any of the
following three pairs of cases, namely:

The effect of a positive (negative) token is to add (subtract) 1
to (from) the value of an alternative if the present value is 0 and
no other alternative presently has value 1 (—1). The effect of an
opposite of a positive (negative) token is to subtract (add) 1
from (to) the value of an alternative if the present value is 1
(—1) . An arrow between adjacent elements in Figure 1 corre-
sponds to adding or subtracting 1 to or from the value of one of
the alternatives.
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Sketch of Some Mathematical Results

One important feature of the random walk is that asymptotic
results can be obtained. In particular, it can be shown that the
asymptotic probabilities of the states satisfy the following regu-
larity condition (Invariance of Ratios), which follows easily from
results in Falmagne et al. (1997; see Theorem 3 in Appendix B and
the comments that follow it). In words,

The asymptotic probabilities of two distinct adjacent states
> and >Of differ by a factor that depends on the token £
and on the subpopulation g, but not on the state >.

In other words, the ratio of these two probabilities does not depend
on the state >. Let us write ir(g, >) to denote the long-term
probability of sampling an individual that belongs to subpopula-
tion g and is in state >. As an illustration of the Invariance of
Ratios property, consider the three transitions of Figure 1, which
are marked by an arrow pointing to the upper right corner. All
three transitions result from the occurrence of the same token
[—P]. According to the Invariance of Ratios property, the follow-
ing three ratios must be equal:

ir(g, [B>C> P])

ir(g, [B>C,B> P])

ir(g, [B>P,C> P])

ir(g, 0)

ir(g, [OB> P])
ir(g, [0 B, 0 P])

(2)

The last inequality defines the quantity 9^[—P], which may be
estimated from the data and may be regarded as an index measur-
ing the "bias" against Perot in subpopulation g (i.e., the tendency,
in that subpopulation g, to rank Perot last6). Similarly, the three
arrows marked [B] pointing toward the right in Figure 1 yield

it(g, [B>P> C]) ir(g, [B>C,B> P])

ir(g, [B>C,P> C]) 7T(g, 0)

7T(g, [B > 0 P])

7T(g, [ B > P , O P ] )

(3)

with the index 28g[B] reflecting the bias favoring Bush in sub-
population g. More generally, for any subpopulation g, any state
>, and any token £ such that > =£ >Of, we have

ff(g,
(4)

We indicate, in passing, an immediate consequence of Equa-
tion 4 marking a trade-off between the tendencies of judging an
alternative best, or worst, and their respective opposites. If >' =
>Of, then >'O£ = (>Of) O ? = >, and if > and >' are distinct
states, then

T(g, 7T(g, >0f) 1

(Note that we use the convention: l~ f for any token £.) The bias
indices have an interesting relationship to the probabilities of the
tokens and their opposites. Writing 0g(f) for the probability of
token f in subpopulation g, we have

(see Theorem 4 in Appendix B). The two ratios

play an important role in the model and will be referred to as the
positive bias (ratio) and the negative bias (ratio) concerning
alternative i in subpopulation g. For example, the positive bias
toward Clinton for a Democrat is represented by

ej[C\'
The invariance condition described by the Invariance of Ratios
property and symbolized by Equations 2 and 3 is a consequence
of the particular form of the asymptotic probabilities of the
states, which we indicate here by three examples, in terms of the
function 2/3.

Let us write K( g) for the probability that a randomly sampled
respondent is a member of subpopulation g. With Tr(g, >) as in
Equations 2 to 4, we obtain for the asymptotic probability that a
randomly sampled respondent is a Democrat who likes Bush best,
Clinton second best, and Perot least:

ir(d, [B>C>P]) =
Ktf)

Qt
(6)

where Qd is a normalizing factor. Notice that the functional form
of the right side is very suggestive: Equation 6 can be put into
words as stating the probability that "the respondent is a Democrat
with a positive bias toward Bush and a negative bias against
Perot." Similarly, the asymptotic probability of a randomly sam-
pled respondent to be an Independent and to be indifferent between
Bush and Clinton, but to prefer both to Perot, is

7r(«, [B>P, 0 />]) = (7)

with Qu a normalization factor. In words, the event is as follows:
"the respondent is an Independent whose sole bias is negative and
against Perot." Finally, the probability that a randomly sampled
respondent is a Republican with no biases toward any of the three
candidates has the form

ir(r, 0) =
Qr

(8)

yielding

6 A rule of thumb concerning notation is that the variable g representing
the subpopulation is indicated as an index for conditional probabilities or
quantities related to such probabilities, and otherwise in parentheses.
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with Qr a normalizing factor. These results are special cases of
Theorem 3 in Appendix B. We see in the data analysis that this
type of prediction fits the data of the first interview (i.e., shortly
before the election) very well. Because the number of parameters
is large relative to the number of degrees of freedom in the data,
this favorable result may not strike the reader as impressive (de-
spite the large number of respondents).

Another type of result deals with two successive polls separated
by a time interval 8 and makes more serious demands on the
model. This result is too technical to state here (see Theorems 2
and 5 in Appendix B). It gives an exact expression for the joint
probability that a randomly sampled respondent belongs to popu-
lation g and is in state > at time t and state >' at time t + 8, for
large / and for any pair of preference states >, >'. This type of
result provides a quantitative prediction of the effect of the passage
of time on the correlation between successive judgments given by
the same individuals.

It should be pointed out that this model is only one of a large
class based on similar ideas. In all these models, the successive
preference relations of an individual are seen as a realization of a
stochastic process. The models differ by the type of tokens con-
sidered, by the particular type of preference relations adopted for
the states, and by the transformations of the states induced by the
tokens (i.e., the operation O of this article). Even though all these
models are conceptually related, the technical differences between
them are not trivial. We chose to present the strict weak order case
in view of its successful fit to important data. A different model,
centered on semiorders (cf. Falmagne & Doignon, 1997; see also
Doignon & Falmagne, 1997) was applied to the same data but
proved less successful (see the discussion section).

There are two differences between the model presented here and
that in Falmagne et al. (1997). First, the present model does not
assume that all respondents begin the process indifferent among
the alternatives. This difference is a minor one because the initial
distribution on the set of states plays no role in the predictions
tested here. (In our data set, the first interview took place late in the
campaign.) Second, more importantly, the model of this paper
allows for different subpopulations to be exposed to different
information and/or to interpret the same information differently.

These modifications are important despite the increase of the
number of parameters that they entail because they also increase
the explanatory potential of the model.7 In many important set-
tings, the information delivery varies among subpopulations.
Moreover, different subpopulations may start with different prior
evaluations of the alternatives and may also interpret the same
information from a different perspective. We wanted our model to
be capable of accounting for such factors.

We will see that these conjectures concerning the differences
between populations were confirmed by the analysis of the data.
We now turn to the technical presentation of the model.

Formal Statement of the Model

Basic Concepts

We consider four basic sets. We recall that ^J denotes the set of
alternatives (i.e., in our application si = {B, C, P}). We denote
by <S the set of subpopulations (constituencies, partisanships),
which are identified with their corresponding channels of infor-

mation (i.e., in the application *%= {d, u, r]). Each of the 13 strict
weak orders on si is a possible state of an individual, and we write
y for the set of all such states. The set of tokens (cf. Table 1) is
represented by thejsymbol 9", where £ €E 9" means that £ is either
[«], U], [-'], or [~i], for some i G {B, C, P}. The effect of a
token £ on a state > is captured by the operation >O£ = >'
already encountered and defined by the graph of Figure 2.

We suppose that there exists a probability distribution K : g >->
K(g), with «(g) > 0 on the set of subpopulations. That is, an
individual sampled from the population at large will belong to
subpopulation g with a probability equal to «(g).

We also assume that the occurrence of the tokens is monitored
by two related probabilistic mechanisms: one concerning the times
of occurrence of the tokens and the other concerning their nature.
The times of occurrence of tokens in channel g, regardless of their
nature, are governed by a Poisson process with intensity Ag (see
Axiom T). Thus, if Ag is large, there will be many tokens delivered
to subpopulation g. As to the nature of the tokens, it is controlled
by three probability distributions Bg: £ >-» 0S(Q (g G <S), with 9g

> 0 on the set 9" of all tokens: If a token is delivered at any time
t in channel g, then this token is equal to f with probability Og(£).

The model is cast in terms of random variables. We write:

G = g to signify that a randomly sampled individual be-
longs to subpopulation g.

(We recall that party identification is assumed to be constant
through the study).

The stochastic part of the model is expressed in terms of several
collections of random variables indexed by the time of the event
under consideration. We write:

S, = > to specify that > is the state at time t s 0 of the
sampled individual.

The values of the random variables Sr are governed by other
random variables describing the occurrence of the tokens in the
three channels. We write:

N,,,+a = k to mean that k tokens have occurred during the
(half open) interval of time ]t, t + 8], with t > 0.
Note that for simplicity, we use the abbreviation
N, = NO.,-

We also write:

T, = f to indicate that f was the last token presented before
or at time t. We set T, = 0 if no tokens were
presented (i.e., if N, = 0).

Thus, S, takes its values in the set y of states, each value of
N,,+s is a nonnegative integer, and each value of T, is in 9" U {0}.
It turns out that if we conditionalize by the subpopulation g (in
other terms, given G = g), N, is the "counting random variable"
of a Poisson process for channel g, specifying the number of
Poisson events occurring in g during the interval [0, t]. The first
axiom that follows specifies the probability that a respondent
belongs to subpopulation g. The three remaining axioms recur-

7 From a statistical viewpoint, the increase in the number of parameters
goes hand in hand with an increase in the number of degrees of freedom in
the data.
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sively define, for each channel g, a stochastic process (N,, T,, S,;
g ) . The parameters of the model are the probabilities «(g) of the
channels, the densities A^ of three Poisson processes governing the
occurrence of the tokens in the three channels, and the probabilities
6g(£) of the tokens £ in channel g. We denote by %, any arbitrarily
chosen history of the process before time t > 0; *ig0 stands for the
empty history.

Axioms

[G] (Subpopulations). The probability that a sampled individ-
ual belongs to subpopulation g in <S is equal to P(G = g) = «(g).
Thus, «(g) > 0, 2ge<g K(g) = 1. In fact, we assume that »c(g)
> 0.

/I/ (Initial state). The initial states of the individuals are
governed by some probability distribution (which we leave un-
specified). An individual remains in his or her initial state until the
occurrence of the first token of information, that is,

X P(So =>) = !,

p(s, = > IN, = o, s0 = >, «„ G = g)

= p(s,= > |N, = 0, s0 = >) = i.
/Ty (Occurrence of the tokens). The occurrence of the tokens

in each channel g is governed by a homogeneous Poisson process
of intensity A^. When a Poisson event is realized, the token £
occurs with probability Og(£), regardless of past events. Thus, for
any nonnegative integer k, any real numbers t > 0 and 8 > 0, any
channel g and any history '&,,

P(N,,,+S = *!«„ G = g) = •
k!

P(T,+ 8=£|N, , ,+ 6=l ,« , ,G = g)

= P(T,+6 = f|N,,,+8 = 1, G = g) = 0,(£).

/Ly (Change of state). If an individual in subpopulation g is in
state > at time r, and a single token £ arises in channel g between
times t and t + S, then the individual will be in state > O f at time
t + S, regardless of past events before time t. Formally,

P(Sr+6 = >'|T,+8 = f , N,,,+8 = 1, S, = >, «„ G = g)

= P(S,+8 = >'|T,+8 = (, N,,,+8 = 1, S, = >)

1 if >' = > O £ ,

0 if >' * > O f.

The implications of Axioms G, I, T, and L are contained in five
theorems that are stated precisely in Appendix B. The intuitive
content of Theorems 1, 3, and 4 has been discussed in Sketch of
Some Mathematical Results. Theorem 2 describes the transition
probabilities between states as a homogeneous Markov process
(essentially a random walk on the set of strict weak orders).
Theorem 5 provides the key result needed for our analysis, namely,
the asymptotic (i.e., for t —> °o) joint probabilities of observing
state > at time f and state >' at time t + S. Thus, these

probabilities are asymptotic in t but not in S. In practice, 8 could
be very small (i.e., a few days).8

Data Analysis

The data analyzed here are from the 1992 NES (Miller et al,
1993). More specifically, we will use the sampled respondents'
self-evaluation on a partisanship scale (strong Democrat, weak
Democrat, independent Democrat, independent Independent, inde-
pendent Republican, weak Republican, or strong Republican) plus
their Feeling Thermometer ratings of Bush, Clinton, and Perot at
two time points: one shortly before and one shortly after the
election. In the so-called Feeling Thermometer, the respondents
are asked to rate on a scale ranging from 0 to 100 how "warm"
they feel toward the candidates; 50 represents "indifference," 100
is equivalent to "very warm," and 0 is equivalent to "very cold."
Thus, each respondent's data consist of a septuple (o, <£B, <f>c, <j>P,
4>'B, </>c> <£/•)> where o is their stated political orientation on the
7-point scale and </>,-, </>,' E {0, 1, . .. , 100} are the Feeling
Thermometer ratings of candidate i E {B, C, P] before and after
the election, respectively. We call Democrats those respondents
who rated themselves as strong or weak Democrats, Republicans
those who rated themselves as strong or weak Republicans, and
Independents those who rated themselves as independent Demo-
crats, independent Independents, or independent Republicans. (In
our analysis, a partition into more than three subpopulations would
require a much larger sample.) Those who did not rate themselves
on the partisanship scale, approximately 40 of 2,064 respondents,
are left out of our analysis.

We indulge in some idealizations by assuming that each of the
two interviews was simultaneous for all the respondents.9 Each
person's data vector is receded in a straightforward fashion as a
triple (g, >, >') representing their political orientation and their
pre- and postelection preferences through the assignment

8 =

O o E-{strong Democrat, weak Democrat}
O o E {independent Democrat, independent

Independent, independent Republican}
r O o E {weak Republican, strong Republican}

The raw data are reported in Figures El, E2, and E3. The set of
respondents to the panel are being viewed as a random sample of
size N = 2,024 from the population.

The statistical tests reported in Table 2 support the conclusion
that, at the time of the first interview, the distribution of prefer-
ences among the electorate has stabilized. In contrast, for the data
of the second (postelection) interview, the hypothesis that the

8 Note that similar predictions can be obtained for small t, at the cost of
extra parameters representing some initial distribution on the set of states.

9 The preelection data were collected almost entirely in September and
October, with a few interviews in early November. There were about
one-and-one-half times as many interviews in October as in September.
The postelection interviews took place almost entirely in November and
December, with a few in January. About equal numbers of interviews were
conducted in November and December.
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Table 2
Likelihood-Ratio Tests of the Asymptotic Model and its Submodels

Likelihood-ratio test df

Preelection AM vs. multinomial

Postelection AM vs. multinomial

Preelection submodel: Si^tf] invariant with g vs. AM

Preelection submodel: 28^[P], 2Sg[-P] invariant with g vs. AM

Preelection submodel: 3&d[P] = S8r[P], 93^-P] = S>r[-P] vs. AM

Preelection submodel: ajBl = fflj-fi], 2BJP] = 2SU[-P] vs. AM

18
(38 - 20)

18
(38 - 20)

12 '
(20 - 8)

4
(20 - 16)

2
(20 - 18)

2
(20 - 18)

21.6

36.5

950

12

5.6

2.67

.25

.006

<10~6

.017

.06

.26

Note. G = Log-likelihood ratio; AM = asymptotic model.

distribution of preferences is at asymptote was rejected (see Table
2). This suggests that the information flow must have changed
between the preelection interview and the postelection interview.
(In particular, for Perot it is plausible that his controversial reentry
in the race initiated a new process.) In turn, this means that the
combined data had to be analyzed with a stochastic model involv-
ing three political groups and different parameters before and after
the election. In fact, such a model, which is consistent with the
hypothesis that the preferences were not at asymptote at the second
time point, explains the data very well. It also gives some insight
into the differences between the information flow to different
political subpopulations. The details are given in this section.

Remarks on Statistical Methods

The task is to estimate the underlying parameters of the model,
to evaluate whether the data are well explained by the best fitting
set of parameters, and to test various hypotheses formulated in
terms of the stochastic model. The parameters were estimated
through maximum likelihood estimation (MLE) and chi-square
minimization. We only report goodness-of-fit statistics and param-
eter values for the likelihood ratio method. Chi-square tests were
performed whenever appropriate and led to similar conclusions.
The results of those latter tests and the corresponding parameter
estimates are not given here.

As can be seen in Figures El, E2, and E3, many empirical cells
are sparsely populated for the joint data of the two interviews. All
cells with a frequency of zero were grouped with other cells
according to the following method. Suppose N(g, >, >') = 0.
Then the cell {g, >, >') was pooled with that cell with the highest
observed frequency, which differed from {g, >, >') only by
subpopulation or only by the starting state or only by the ending
state. With this method of grouping, we keep as many degrees of
freedom in the data as possible. As can be easily checked from the
three tables, this yields 318 degrees of freedom in the data after
grouping. Several quantities had to be numerically approximated
in the computer implementation of the statistical test. These are
given in Appendix C. Some technical issues with the reliability of
the parameter estimation in the full stochastic model are reported
and discussed in the Appendix D.

Statistical Tests: The Asymptotic Predictions

We began by testing Equation B1 (see Theorem 3 in Appendix
B) on the data for the two interviews separately. This equation,
which is referred to as the "asymptotic model," predicts the long-
term probabilities Tr(g, >) that a sampled individual belongs to a
particular subpopulation g and is in state >. Testing this equation
on the first interview data was a natural first step. Equation Bl has
20 = 2 + 2 X 9 free parameters for 38 = 39 - 1 degrees of
freedom in the data. The parameters are the 3 - 1 subpopulation
parameters «(g), and the 2 X 9 bias ratios 95s[i], *&g[-i], g S
*%, i €. si entering in the expressions of the Ht.tg(>) and L,.g(>)
of Equation Bl. The respondents are classified into 39 cells: 3
subpopulations and 13 possible rankings. Because the number of
respondents is fixed (at 2,024), the number of degrees of freedom
in the data is 39 - 1. The test statistics (likelihood ratio and chi
square) are approximately distributed x2 with 18 = 38 - 20
degrees of freedom.

Test of the asymptotic model on the first interview data. We
first tested the asymptotic model against the trivial multinomial
model, in which each empirical cell has an estimated probability
equal to its observed relative frequency. This model has 38 pa-
rameters. The outcome of the likelihood ratio test is shown in the
first row of Table 2, which contains all the statistical results for the
asymptotic model. We see that the model fits the data well, with a
significance level of .25.

The effect of the election. We also tested the asymptotic model
on the postelection data. As in the case of the preelection data, we
tested the asymptotic model against the multinomial model. The
results in the second row of Table 2 indicate that the model is
sharply rejected by the likelihood ratio statistic. We tentatively
concluded that, although the preferences were at asymptote at the
time of the first interview, this was no longer the case when the
second interviews were collected, either because of the election
outcome or for other reasons, such as the reentry of Perot in the
race.

This suggests a variation of the model in which the events of the
final weeks of the campaign or the election outcome correspond to
a new version of the stochastic process, involving new parameters
measuring the token probabilities. We tested such a model on the
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full panel data. The results were successful and are reported later
in this article.

Differences between subpopulations. To test whether or not
we need three different sets of parameters for the three subpopu-
lations at the first time point, we performed a nested likelihood
ratio test of a submodel of the asymptotic model. In this submodel,
the bias ratios Stg(£) = 6g(QIQg(t) do not vary with the sub-
population g G <@, reducing to six the number of parameters for
the asymptotic probabilities of the states, with eight parameters
overall. The hypothesis that the three subpopulations have the
same bias ratio is overwhelmingly rejected by the likelihood ratio
test (see row 3 of Table 2). This means that the asymptotic
probabilities of the preferences vary with the subpopulation. How-
ever, because the starting states play no role in the asymptotic
distribution, the asymptotic distribution depends only on the in-
formation flow. We can, therefore, reason backward and infer that
the three groups have been exposed to markedly different infor-
mation during the campaign or have interpreted the same infor-
mation differently. This finding is, of course, hardly surprising
because we should have expected the Democrats' view of Clinton
and Bush to be very different from the Republicans' view of them.
However, it is less clear whether we should expect differences
between subpopulations in their perceptions of Perot.

The perception of Perot. Political scientists would expect that
Perot, as a non-major party candidate, is evaluated differently by
respondents classified as Democrats or Republicans on the one
hand and by Independents on the other hand. However, it is not
clear whether or not Democrats would perceive Perot differently
from the Republicans. Actually, it is wellknown in the political
science literature that partisan identification was not a good pre-
dictor of the support for Perot (Wallenberg, 1994). In any evenl,
we firsl tested the hypothesis that all three subpopulations perceive
Perot in the same way. Specifically, we tested against the asymp-
totic model, the submodel in which the bias ratios concerning Perot
are the same for Democrats and Republicans. This submodel is
represented by the two sels of equations:

and

This lesl allows us to reject the hypothesis thai Perol is viewed
identically by all subpopulations al Ihe .017 level of significance
(see row 4 of Table 2).

We Ihen tested the olher variant, namely that Perot was per-
ceived essentially Ihe same way by Democrals and Republicans.
This hypolhesis iranslales into a submodel specified by the hy-
polheses

A nested test of this model against the asymptotic model of row
one is reported in row 5 of the table, and yields a significance level
of .06. Even ihough Ihe hypolhesis is technically not rejected, this
low value suggests thai Democrals and Republicans may perceive
Perol differently. (These dala certainly contribute lo the rejection
of the model in row 4 of the lable.) We poslpone for the moment
Ihe discussion of row 6.

Negativity. For any channel g G "5 and alternative i G si, Ihe
iwo bias ratios,

fl r«i 0.[-»]
and 98,[-i] =

«,[«•]
.

flj-f]

can be regarded as measuring, respectively, the net amounts of
positive and negative information flowing in lhal channel for that
alternative. The bar graph displayed in Figure 4 gives Ihe values of
all Ihe ratios estimated on the preelection dala, for Ihe asymptotic
model. The values for Ihe positive information are gathered on Ihe
left side of the graph and those for the negative information on Ihe
righl side.

As shown by the estimated values of these ratios, there has been
a subslanlial amounl of negative information in Ihe campaign (i.e.,
information thai lends lo move candidates to the bottom of the
preference ranking). It is clear and nol surprising that Democrats
perceived more favorable than unfavorable information aboul

democrats

independents

•• republicans

Bush Clinton Perot Bush Clinton Perot

Figure 4. Maximum likelihood parameter estimates of the bias ratios 3&g(f) = Qt(.£)l6g(t) for the first
interview. The left half of the graph displays the values of the positive biases S88[i] = dg[t]/0g[i]; the right half
displays the values of the negative biases 9BS[—i] = Og[—i]IOs[—i\.
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Clinton and that a similar pattern holds for Bush and the Repub-
licans. The estimates suggest, however, that Independents per-
ceived favorable and unfavorable information in approximately
equal amounts, at least as far as Bush and Perot are concerned.

This can be translated into a statistical hypothesis through the
submodel specified by the two equalities

SSJB] = «.[-«], a.[p] = aj-p].
The last row of Table 2 shows that this hypothesis could not be
rejected in a nested test against the general asymptotic model. On
the other hand, the hypothesis that the Independents received equal
amounts of favorable and unfavorable information about each of
the three candidates was rejected. The quantitative results are not
reported here for reasons of brevity.

Note that our investigation of the negativity in the campaign was
performed in terms of the bias ratios ag(£) = Og(£)/0g(%). With
the asymptotic predictions for a single interview considered here,
the token probabilities themselves cannot be estimated because
they appear in the asymptotic formula only through the ag(f).
This limitation is partly eliminated in the full stochastic model
discussed later, which permits the estimation of each of the token
probabilities after the election.

Test of the Full Stochastic Model

This model explains the combined data of the two interviews,
under the assumptions that the token parameters may change some
time after the first interview, with the subpopulation probabilities
remaining constant. (Whether or not the Poisson densities vary
after the first interview cannot be assessed, because these densities
up to the first interview play no role in the predictions; cf. our
remark after Theorem 3.) This model has 2 + 3 X (6 + 11 + 1)
= 56 free parameters ( 3 - 1 parameters for the three subpopula-
tions; and for each subpopulation: 6 parameters explaining the
state probabilities before the election, and for the postelection
period, 1 2 — 1 independent token probabilities and one Poisson
density). There are 3 X 13 X 13 = 507 cells in the data, but many
of them have a count of zero and grouping is in order (see Remarks
on Statistical Methods discussed previously). This leaves us with
318 degrees of freedom for the multinomial model. The test
statistics (likelihood ratio and chi square) are approximately dis-
tributed x* with 262 = 318-56 degrees of freedom. The results
for the likelihood ratio test are in Table 3.

As the first row of Table 3 shows, the likelihood ratio test yields
a good fit of the full stochastic model, at a significance level of
.384. However, this good fit of the model is obtained through a

Table 3
Tests of the Full Stochastic Model and Two Submodels

df G2 p

FSM vs. panel multinomial 262 268.2 .384
(318 - 56)

Submodel: \d = \u = A r vs. FSM 2 7.01 .03
(56 - 54)

Submodel of Theorem 5 vs. FSM 18 47.9 .0001
(56 - 38)

Note. G2 = Log-likelihood ratio; FSM = full stochastic model.

fairly large number of parameters. This suggests investigating
whether an equally good fit could be achieved more economically,
that is, in the form of a submodel.

Two submodels of the full stochastic model. We first tested
whether the Poisson delivery rates differ significantly among po-
litical subpopulations. This submodel is specified by the equations
\d = AK = \r, which reduce the model to 54 parameters. (Note
that these parameters affect only the postelection predictions.) A
nested likelihood ratio test of that model against the full stochastic
model rejects the hypothesis on the .03 significance level (see
Row 2 of Table 3). This suggests that the three groups were
exposed to different amounts of information between the two
interviews.

We also tested the submodel given in Theorem 5 against the full
stochastic model. This submodel has 38 degrees of freedom, and
assumes that the token probabilities at the two time points (before
and after the election) are the same. The nested likelihood ratio
very convincingly rejects the model at the .0001 significance level,
as reported in the last row of Table 3. This result confirms our
earlier conclusion that the election (or Perot's reentry) had a strong
effect on the information flow.

Asymptotic distributions of the states, based on the full data.
As emphasized earlier, an important aspect of the model lies in the
bias ratios S5^[j] and S6g[ — f ] , which govern the asymptotic dis-
tribution of the states. Under Statistical Tests: The Asymptotic
Predictions discussed previously, the data analyses chiefly relied
on those parameters, which were estimated from the (one time
point) preelection data. We have compared these estimates with
those obtained from fitting the full stochastic model to the joint
data of the two interviews. The values of the estimates for the same
bias ratios are similar, thus confirming the pattern already revealed
by our analysis of the first interview in terms of the asymptotic
model.

We recall that, in the full stochastic model, the token probabil-
ities before and after the election are not necessarily the same. In
fact, a systematic change in the bias ratios is noticeable. The three
graphs in Figure 5 display the estimated values of the preelection
and postelection bias ratios. Each graph concerns one candidate.
The preelection estimates are on the abscissa and the postelection
on the ordinate. The representing points of each graph are white for
the Democrats, gray for the Independents, and black for the Re-
publicans. Any point above the diagonal indicates an increased
bias ratio (positive for the circles and negative for the squares). It
can be seen how the election changed the bias ratios. The most
dramatic impact of the election concerns the Republicans' attitude
toward Bush (see the black circle and the black square in Bush's
graph). The positive bias is much decreased, and the negative bias
slightly increased. On the other hand, the attitude toward Clinton
is not much changed: All the points are near the diagonal. As for
Perot, the positive bias is markedly decreased for the Republicans
and to a lesser extend for the Independents. The negative bias is
also slightly increased for all subpopulations.

An illustration of the fit of the full stochastic model to the first
interview data is given in Figure 6, which displays the graphs of
the 13 possible weak orders with, next to each graph, the percent-
ages of such a weak order predicted by the model in the three
political categories and (in parentheses) the corresponding ob-
served percentages in the data. The good fit of the model indicates,
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Figure 5. Three graphs representing the estimates of the positive and negative bias ratios S!s(f) = 0g(f)/
6s(l). Each graph concerns one candidate. The preelection estimates are on the abscissa, and the postelection
on the ordinate.

in particular, that the "invariance of ratios" property of Theorem 4,
illustrated by Equations 2 and 3 is supported by the data.

Estimated average number of tokens delivered between inter-
views. Figure 7 contains the estimated average number of tokens
of each type—that is, [i], [i], [-i], and [-;'], with i G {B, C,
P)—delivered to each subpopulation between the two interviews.
The estimated number of tokens of type £ perceived by subpopu-
lation g is obtained from the estimated average number of Poisson
events perceived by subpopulation g, weighted by the estimated
proportion of tokens of type £ in that subpopulation. The estimated
average numbers of tokens concerning Bush are represented in the
top graph of Figure 7: The blank bars refer to the Democrats, the
shaded bars to the Independents, and the black bars to the Repub-

licans. The middle and lower graphs are similar, and refer to
Clinton and Perot, respectively.

Not surprisingly, Democrats receive more negative information
regarding Bush than regarding Clinton, and Republicans receive
more negative information regarding Clinton than regarding Bush.
The most noticeable result, however, is that the number of tokens
concerning Perot, especially of type [—P] and [— P] for both
Democrats and Republicans, is considerably larger than all the
other numbers displayed in Figure 7. This is especially remarkable
on the background of the analysis of the bias ratios represented in
Figure 5. There, the graphs concerning Bush and Perot are very
similar. In particular, both graphs display a decrease of the positive
bias of the Republicans toward these candidates between the two
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d: 6.3(6.3)
u: 10.1 (5.5)
r: 2.9 (2.6)
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p X

P

B
d: 3.8 (2)
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r: 4.4 (2.6)

d: 2.4 (1)
u: 8.7(7.8)
r: 6.7 (7.6)

C

P
B
C

d: 2.2(0.8)
u: 4.7(4.1)
r: 4.1(4.6)

Dem.
Ind.

Rep.
Total:

d: 5.4(4.3)
u: 12.5(11.7)
r: 24.3 (25.8)

3.4 (1.6)
5.9 (5.6)

r: 15.9(17.3)

d: 2.1 (1.7)
u: 8.5(9.1)
r: 24 (29.2)

Frequencies
Estimated Observed

698 702
781 784
545 538

2,024

Figure 6. Three-dimensional graph of all the possible states. Next to each state, we indicate for each
subpopulation (d, u, and r) the estimated preelection percentage of that state based on the full panel data and (in
parentheses) the corresponding observed percentage. The table at the lower right indicates the predicted and
observed frequencies of the three subpopulations in our sample of 2,024 respondents. Thus, in the framework
of the model, 698/2024 = 0.345 is an estimate of sampling (based on our data set) a Democrat in the population
of reference. B = Bush; C = Clinton; d = Democrat; Dem. = Democrat; Ind. = Independent; P = Perot; r =
Republican; Rep. = Republican; u = Independent.

interviews; this decrease is more extreme for Bush than for Perot.
A tentative interpretation of the data of Figures 5 and 7 is that
many Republicans received a few negative tokens about Bush,
with a mild, but widespread, adverse effect on their rankings of
Bush. By contrast, the large numbers of mutually opposite tokens
[—P] and [ —P] received by both Democrats and Republicans
indicate a wild swing in the opinions regarding Perot, which
reveals the unstable image of this candidate in the minds of many
voters. A technical point worth mentioning is that, because of
some unreliability of the estimates of the densities Ag of token
deliveries, the average number of tokens [—P] and [— P] per-
ceived by the voters after the election could not be estimated very
reliably. Nevertheless, despite this unreliability, the overall picture
previously given can be regarded as valid. In particular, the com-
paratively large number of tokens [—P] and [ — P] used in Figure 7
are conservative estimates. (See Appendix D for details.)

Discussion

We have described a stochastic model of persuasion organized
around two fundamental ideas: (a) At any time t, each individual
in the relevant population is in a state that can be represented by a
strict weak order, that is, a ranking with possible ties; (b) these
individuals are subjected to a stochastic stream of elementary
messages, which we have called tokens. The characteristics of the
stream may vary with the subpopulation to which the individual

belongs. We have postulated four types of tokens for each of the
alternatives in the choice set: the positive and negative tokens
(those tokens that improve or hurt the image of an alternative) and
their respective opposites. The potential effect of a token is to
change the position of the alternative in the current ranking (see
Figure 2). We do not assume that the tokens can be directly
observed by the researcher. However, their combined effect can be
assessed through a statistical analysis of the data in terms of a
model formalizing the two fundamental ideas.

We have developed such a model in the case of three alterna-
tives. The model presented in this article is an extension of a model
by Falmagne et al. (1997) and (essentially) a special case of that in
Falmagne (1997). Models based on similar ideas can be found in
Falmagne (1996) and Falmagne and Doignon (1997). The axioms
cast the model as a real-time stochastic process. A basic result of
this article is that the succession of states is a random walk on the
collection of all weak orders on the set of alternatives. The article
spells out quantitative predictions depending on a number of
parameters, namely, for each subpopulation the probabilities of the
tokens and the density of their overall occurrence. A key concept
of the article lies in the positive and negative bias ratios (of token
probabilities)

and
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Figure 7. Estimated average number of tokens of each type about the
three candidates delivered to the three groups between the interviews based
on maximum likelihood estimation. B = Bush; C = Clinton; P = Perot.

This model can be applied to any set of ranking data. As
indicated earlier, the only requirement is that the alternatives can
be ranked by the respondents according to the dimension under
study, such as desirability, personal utility, trustworthiness, or
trendiness.

The model has been applied to the 1992 NES data, which have
been receded into two rankings of the three main candidates (Bush,
Clinton, and Perot) by each of 2,024 respondents. The two rank-
ings were provided before and after the 1992 election, respec-
tively. On the basis of the information given by the respondents
concerning their political affiliations, they were classified into
three categories: Democrats, Independents and Republicans. A
very good fit of the model was obtained. We have reached the
following conclusions.

The preelection preference probabilities are different for respon-
dents with different political orientations. More precisely, the
estimates of the bias ratios S8s(f) vary with party identification
(see Table 2). Reasoning backward from this result, we conclude
that, during the campaign, the three subpopulations have been
exposed to different information or have interpreted differently the
information received, which should not come as a surprise. More
interesting is the observation that, in the framework of this model,
because the asymptotic distribution is unaffected by the initial
distribution on the set of states, the information flow alone has to
account for these differences.

Negative campaigning appears to have played a major role in
the information flow (see Figure 4). However, as expected, for
Democrats, favorable information about Clinton outweighed un-
favorable information about him and the same holds for Bush and
the Republicans.

There was a significant variation in the estimates of the token
probabilities between Interview 1 and Interview 2, which may be
due to the election results or to the reentry of Perot in the race on
October 1. For the same period, the information processes also
differed for the three subpopulations. In particular, the token
channels of the Democrats, Independents, and Republicans have
different token delivery rates, again a result to be expected.

Political scientists expect a "rally-around-the-winner" effect,
leading to a "presidential honeymoon" period. This suggests that
the president-elect is perceived more positively. We find that
Clinton was perceived essentially the same way in the two inter-
views, but that, on the other hand, there was a shift in the percep-
tion of the candidates that led the Republicans to evaluate both
Bush and Perot less favorably. During the same period, Democrats
and Republicans appear to have been submitted to a barrage of
contradicting information about Perot (negative vs. not so nega-
tive), revealing an unstable image of this candidate.

Another model, by Falmagne and Doignon (1997), has been
tried on the same data but led to a statistically very significant
failure. This model uses semiorders (Krantz, Luce, Suppes, &
Tversky, 1971; Roberts, 1979) rather than weak orders to represent
the preferences. Our interpretation of this failure is that, although
the Feeling Thermometer ratings have a natural transformation
into strict weak orders (retaining only the order of the ratings), no
such transformation is available for the semiorders, because each
respondent may have a personal threshold. The transformation we
used assumes that the threshold is the same for every respondent.
For an analysis in terms of semiorders, ordinal data should be
collected, involving three possible responses for each pair of
alternatives: i is better than;', j is better than ;', neither (' nor j is
better than the other.

We have made clear in our presentation that the tokens are
not regarded as identifiable. Rather, they are hypothetical con-
structs intended to subsume and formalize the multiple, varied
pieces of information that may reach an individual concerning
the alternatives but which are inaccessible to the researcher.
Nevertheless, steps toward identifying the tokens can be taken
in some situations. We mention two examples. The first is a
large-scale controlled experiment. The researcher would
present the participants with a set of descriptions of candidates
for a specified political office (say, president of the United
States). The participants would be asked to rank these candi-
dates on the basis of these descriptions. In a second phase of the
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experiment, the participants would receive a carefully drafted
supplement of information, and a second ranking would be
required. The researcher would analyze the data using the
methods presented here. The number of tokens of each type, for
each supplemental description, would then be estimated. Such
an analysis may contribute to elucidating the nature of the
tokens. It can also serve as a measurement technique in that the
effect of each piece of supplemental information can be eval-
uated by the average number of tokens that it represents. Note
that for an analysis as elaborate as ours and involving a control
group, a sample size of at least 4,000 would be required.

The second example is a realistic one. The effect of an important
event in a political campaign could be evaluated by the model in
the following way. For instance, a sufficiently large sample of
viewers of a televised debate would be asked to rank the candi-
dates before and after that debate. An analysis in the style of this
article could be carried out, which would provide estimates of the
average numbers of tokens of each type. These numbers may be
helpful in parsing out and measuring the impact of features of the
debate on the viewers, offering an appealing alternative to con-
ventional content analysis.

This work can be extended in various directions. The model
should be applied to panel data from other elections using
similar types of surveys, whether from the U.S. NES or from
other countries. As pointed out by a reviewer, an especially
promising data set on which to test this model would be the
1980 NES major panel study, which interviewed the same
voters four times. This data set is especially interesting because
it provides multiple interviews within an ongoing election cam-
paign, which can then be matched against specific events and
speeches in the campaign, plus one interview after the election.
Other important applications mentioned earlier are consumer
choice-preference panel data, for instance brand preference
from market surveys or product choice from scanner panel data.
Minor alterations of the model of this article would render it
appropriate for such data (see the remarks in Falmagne, 1996,
pp. 80-81, in this connection).

Interesting theoretical developments are also possible. We men-
tion only one of them. As mentioned earlier, an important issue
concerns the effect of the social context on the evolution of
preferences (cf. the work of Lazarsfeld et al., 1948, and that of
Latane and his colleagues cited in our review of the literature). A
possible approach in the framework of this article would be to
collect the preferences expressed by couples of individuals living
together, say husband and wife. Thus, at times f , , . . . , tn, each
couple would be asked to provide a pair of rankings (>h, >w)
(where the indices refer to "husband" and "wife," respectively).
The model could be elaborated to predict the probabilities of the
transitions from any pair of rankings (>h, >w) to any other pair
(> h< > ») under the effect of the tokens. We could then formalize
and analyze the possible dependence or independence of the rank-
ings and their transitions within the pairs. We do not, however,
pursue these developments here.

A cross-validation on 1996 NES data is in progress. Preliminary
results indicate that the model also fits, but suggest different
substantive conclusions. The full results will not be available for
some time, however.
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Appendix A

Strict Weak Orders

A relation > is a (strict) weak order or a "ranking with ties" on a set si
(cf. Roberts, 1979) if for all i, j, and k in si,

If i > j then
f not j > i and

I either i > k or k > j (or both).

Note that the empty relation 0 (i.e., the relation containing no ordered
pairs) is a strict weak order because the prior condition holds vacuously,
(i.e., the case ; > j never arises). A weak order on a finite set sj induces

a numerical order on si in the sense that there exists for every i in si a
number «(/) such that

i > j if and only if «(j) > «(/)

(Krantz et al., 1971). Note that the scale u is only defined up to an arbitrary
strictly increasing transformation. This equivalence justifies our receding
of the Feeling Thermometer ratings into weak orders.

Appendix B

Basic Theoretical Results

In Falmagne et al. (1997), four theorems were proven for the case of a
stochastic process (S,, N,, T,) concerning a single population. Essentially
the same theorems are restated here as Theorems 1, 2, 3, and 5 with the
additional subdivision into subpopulations. We only state the theorems and
do not go into any proofs because they would be repetitious. Theorem 4 is
new and deals with the "invariance of ratios" discussed under Sketch of
Some Mathematical Results. The first result that follows is basic to all
further developments.

Theorem 1

For any subpopulation g, the sequence of states is a random walk on the set
yofallstates. The one-step transition probability p$>, >') that an individual
in population g moves from any state > to any state >' is given by

if >' = >Of
otherwise.
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A graph of this random walk is pictured in Figure 1. We now give three
examples of one-step transition probabilities p*g(>, >') for this random
walk, all concerning an individual in subpopulation d who happens to be
in state [C > B, C > P]:

pj([c > B, c> P], [c> P > B]) = oji-n],

> B, c> P], 0) =

equation

pJ([C > B, 0 P], [B > P, 0 P]) = 0.

We write p*.,g(>, >') t o denote the &-step transition probability that an
individual in population g moves from state > to state >' in exactly k steps
of the random walk. Using these transition probabilities for the random
walk, it is easy to derive the probabilities of moving from state > to state
>' in S units of time. The following result holds.

Theorem 2

For individuals in subpopulation g, the occurrence of the states is a
homogeneous Markov process. In this process, the transition probabilities
p&.g(>, >') of moving from state > to state >' in S units of time are
specified by the equation

(A,8/e

Prob. in g to go
from > to >'

in 8 units of time

k!

Prob. in g to go Prob. in g to get
from > to >' k tokens within

in k steps 8 units of time

The captions should help the reader to parse this equation, which is easy to
apply. The only tricky part lies in the &-step transition probabilitiesp*-g(>,
>'). These are obtained by computing the successive powers of the
transition matrix of the random walk. In practice, only a few dozen powers
need to be computed before reaching an acceptable approximation to the
stationary distribution of the states.

We now turn to the "long-term" predictions, which are relevant when-
ever it can be assumed that the sample of respondents has been exposed to
the flow of tokens for a long time. (This is the case in the data analyzed
here.) We first consider the asymptotic probabilities ir(g, >) of sampling,
in the population at large, an individual in subpopulation g and in state >.
These asymptotic probabilities depend on the probabilities of the tokens
only through the bias ratios

0 Hi:

ir(g, >)
0 »*,(>')**.(>')

Asymptotic prob. Probability of - - „ - /
of subpopulation g subpopulation g asymptotic probability of

and state >. state > for subpopulation g
(Bl)

Notice that the density \g of the Poisson process governing the density of
occurrence of the tokens in channel g does not appear in Equation Bl. In
fact, Theorem 3 would also hold under much more general assumptions
concerning the delivery of the tokens. For example, it would be sufficient
to require that the occurrence of the tokens be governed by a renewal
process.

Three cases of Theorem 3 have been encountered before, namely Equa-
tions 6, 7, and 8. We now prove Equation 6. Suppose that > represents the
strict weak order [B > C > P] . Then,

Writing Qg for the denominator in Equation Bl, we obtain from Theo-
rem 3,

Tr(d, [B > O P]) =
K(d)

K(d)

that is, Equation 6. Equations 7 and 8 are obtained from similar arguments.
A straightforward consequence of Theorem 3 is the "invariance of

ratios" property discussed under Sketch of Some Mathematical Results.

Theorem 4

For any subpopulation g, any state >, and any token £ such that > +
> O t, , we have

•w(g, > o Q e(f)

Accordingly, this ratio does not depend on the state >.

(cf. Equation 5). We define:

[i] if i >./and j > A

otherwise,

[-i] if./> i and A > i

otherwise.

(The choice of letters H and L is meant to evoke a high position and a low
position in the ranking.) The next theorem uses this notation.

Theorem 3

The asymptotic probabilities ir(g, >) that a sampled individual is
both in subpopulation g and in state > exist and are specified by the

Proof

Because of Equation 5 we need to consider only the cases in which £ is
of the form [j] or [-/]. Suppose that f = [j]. Take any state > such
that > =f= > O £ . Then, by Equation Bl we obtain

(B2)it(g, K(g)QsY[Hi:g(>)Li:g(>)

However, the only difference between > and > O[j] is that alternative j
is the unique best in > O[j] but not in >. Therefore, the right member of
Equation B2 simplifies into

Similarly, for any > with > * > O[-j],
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D

Finally, we compute the long-term predictions that are instrumental in
the case of two interviews carried out at different times, say t and t + S,
when t can be regarded as large.

Theorem 5

The asymptotic probabilities that a sampled individual is in subpopula-
tion g and in states > and >' at times t and t + 8, respectively, for t —»
«> exist and are specified by the equation

lim p(G = g,S,= >, S,+s = >') = ir(g, (B3)

where the quantities in the right member are specified by Theorems 3
and 2, respectively.

This follows immediately from Theorem 3 and 2. From probability
theory, we know that

P(G = g, S,= >,S,+,= >')

= P(G = g, S, = >)P(S,+6 = >'|G = g, S, = >).

Taking limits for t —» °° on both sides of this equation and using Theo-
rems 3 and 2, Theorem 5 obtains.

In some situations, it makes sense to generalize Theorem 5 by supposing
that a critical event has occurred between the times t and t + S, which may
have altered the parameter values of the processes, that is, the token
probabilities and the densities of the Poisson processes for some or all
subpopulations. In the case of the data analyzed here, the critical events are
the election itself and the reentry of Perot into the race, both of which took
place between the two interviews and may have drastically changed the
flow of information. Theorem 5 generalizes by letting the parameter values
used in computing TT(§, >) (before the election) differ from those used in
computing pgit(>, >')• This generalization of Theorem 5 is used in the
data analysis.

Appendix C

Poisson Approximation

The values ps.g(>, >') are approximated through

, (\so)ke-^\ TT(g, >')
> ) x J t j l +

k\

We set S = 1 and computed the right tail of the Poisson distribution by an
approximation of its cumulative probability by 4>(z) with:

This formula was suggested by Peizer and Pratt (1968) and is recom-
mended by Matsunawa (1986). The optimizations for the MLE and mini-
mum total chi square were computed with a conjugate gradient search
algorithm by Powell (1964), which is available in form of the C subroutine
PRAXIS (Gegenfurtner, 1992).

Appendix D

Reliability and Robustness

An analysis of the reliability of the parameter estimates was carried out,
which is too extensive to be given in detail here. We only report the main
points.

The likelihood maximization routine was run many hundred times with
different starting points to guard against local optima. The final values reported
were those obtained in virtually all runs. As mentioned earlier here, parallel
estimations were computed using chi-square minimizations and yielded results
consistent with those obtained by the maximum likelihood technique. To
obtain a more detailed picture of the goodness-of-fit pattern, we also tabulated
individual chi-square terms. These are included in Tables El, E2, and E3. The
data in these tables and in Figure 6 give no indication of a systematic deviation.
In fact, a plot of the predicted probabilities against the observed relative
frequencies practically lies on a straight line.

We also investigated the contribution of the individual parameters to the
overall goodness of fit of the model. To this end, we fixed the value of a
particular parameter arbitrarily and fitted the model by reestimating the

remaining parameters. This procedure was repeated for a range of fixed
values around the maximum likelihood estimate of that parameter. The
reliability of that estimate was evaluated by the evolution of the goodness-
of-fit around the maximum likelihood value. This procedure was used in
particular for the parameters \g describing the average number of tokens
delivered to subpopulation g. These parameters could not be estimated
very reliably for Republicans and Democrats. We discovered that a fairly
large increase in \d or \r can be compensated, without affecting the
goodness-of-fit, by a decrease_in all the token probabilities, except for
those of tokens [-P] and [-P], which increase. Fortunately, a related
statistic can be estimated with good reliability, namely, the average number
of tokens of a given type delivered to each_constituency. An exception is
the average number of tokens [-P] and [-P] perceived by the Democrats
and the Republicans. This lack of reliability does not affect our conclu-
sions, however, because the MLEs for these numbers are conservative:
Any decrease results in a decrease of the quality of the fit.
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Appendix E

Row Data

B
P
C

B P
C
P
B
C
P

B C

P

C
B

C P
B
C
P
B
C

B P

C
B
P

B C
P
B

C
P
B

C P

B
P
C
3
2
0

1
1
0

2
1
0

'

0

2
1
0

B P
C 1
4
1
-2 ,

-

-

-

2
0
-1

1
0

1

0

-

P
B
C

-

1
2
1 ,

1
1
n .
1
1
0

i
-.-<!__

2
0

__-_L_-

P

B C

2

0

1
1
0 j

3
3
0
1

2
__0.

1

2
0

1
0

-

-

P

C
B

1
1
0

5
3
n ,
14
8
-3 ,
3
5
1 .
9

6

h -1
5
2

r- -2-
7
3

— -3-__
1
2

L_-D-_-

j

0

r _ _ P _ _ _

C P
B
3
0

_ -11__

-

2
2
0
11
6
-3 .
9
5

' "3 (
7
9
0 ,

5
4
0
g

5

-I
|̂

2

...0--.

1
0

C
P
B

1
0
0
1

3
j.
7

0
13

9
, -1 ,
138
176

, 8 ,
26
27
0
42
40
0

5
..0.

1
3

-.2..

C

B P

-

-

-

-

3
2 •
0 ..
2

3
0
33
25
-2
29
18
-5 J
23

30
2
7

2

2
0

1
1
0
2
2
n

C
B
P

-

2
2
0
4
2

_ 0
5
4

L 0
33

30
0
27
25
0 J
76
76

1 ° <
9
6
-1

5
3
0

B C
P

1
0

---Q
1
0
Q

1
1
Q
1
2
0
2
I
Q

3
3
0
6

6
_ 0
4
2
n
3

3
0

3
1

. -1

B
C
P

_ _ _ _

0̂
0

I
0
1

0

0
4

2
n
7
7
0
1
4
2

B

C P

1
1
0
2
0
-L

1
0
o.

i
0
a

i
i
0

i
2
n
6
5
0

5
3
-1

1
1
n .

~

-

1
1
n

1
1
0
1
3
1

4
4
0
2
2
n
2

2
0

2
I
n

Figure El. Data and predictions for the Democrats. The rows are the starting states, and the columns are the
ending states. Each entry consists of the empirical frequency (top), the predicted frequency (middle, after pooling
and rounded to the closest integer), and individual x2 value (bottom, rounded to the closest integer). A minus sign
in front of a x2 indicates underestimation. Cells marked with a dash had empirical frequency 0 and were pooled.
Transitions from a state to itself or to a neighboring state (linked to it by an arrow in Figure 1) are framed by
a tiled border. B = Bush; C = Clinton; P = Perot.
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Figure E2. Data and predictions for the Independents. The rows are the starting states, and the columns are the
ending states. Each entry consists of the empirical frequency (top), the predicted frequency (middle, after pooling
and rounded to the closest integer), and individual x2 value (bottom, rounded to the closest integer). A minus sign
in front of a ̂  indicates underestimation. Cells marked with a dash had empirical frequency 0 and were pooled.
Transitions from a state to itself or to a neighboring state (linked to it by an arrow in Figure 1) are framed by
a tiled border. B = Bush; C = Clinton; P = Perot.
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Figure E3. Data and predictions for the Republicans. The rows are the starting states, and the columns are the
ending states. Each entry consists of the empirical frequency (top), the predicted frequency (middle, after pooling
and rounded to the closest integer), and individual x2 value (bottom, rounded to the closest integer). A minus sign
in front of a ̂  indicates underestimation. Cells marked with a dash had empirical frequency 0 and were pooled.
Transitions from a state to itself or to a neighboring state (linked to it by an arrow in Figure 1) are framed by
a tiled border. B = Bush; C = Clinton; P = Perot.
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