APPENDIX:  Basic Propositions about Sufficient and Necessary Conditions

To help the reader we provide a simple outline of the nature of the logical relations of necessity and sufficiency which are the heart of the QCA approach.  
Definition 1.1: 
A is a sufficient condition for B if the occurrence of A implies the occurrence of B.   In other words, A is a sufficient condition for B if anything that is A is also B.

Definition 1.2 
A is a necessary condition for B if the occurrence of B implies the occurrence of A.   In other words, A is a necessary condition for B if anything that is B is also A.

Proposition 1.1    If A is a sufficient condition for B, then B is a necessary condition for A, and conversely.

Proposition 1.2    A is a necessary condition for B if and only if 
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Proposition 1.3    A is a necessary condition for B if and only if 
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Also 

Proposition 1.4   A is a necessary condition for B if and only if 
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Hence, A can be a necessary condition for B only if there are at least as many As as there are Bs.

Similarly,

Proposition 1.5   A is a sufficient condition for B if and only if
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Proposition 1.6    A is a sufficient condition for B if and only if
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Also, 

Proposition 1.7    A is a sufficient condition for B if and only if 
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Hence, A can be a sufficient condition for B only if there are at least as many Bs as there are As.

The definitions of necessity and sufficiency and the propositions above can be applied to the kinds of dichotomies used in crisp set QCA as these might be represented in crosstabs based on counts to generate the following additional propositions.

Proposition 1.8    A 2 × 2 cross-tab based on counts shows one variable to be a sufficient condition for another only if one cell in the cross-tab is zero.

Proposition 1.9    A  2 × 2 cross-tab based on counts shows one condition to be a necessary condition for another only if one cell in the cross-tab is zero.   

Proposition 1.10    A 2 × 2 cross-tab based on counts shows one condition to be both a necessary condition and a sufficient condition for another only if two diagonal (or two off-diagonal) cells in the cross-tab are zero.  This can occur only if there are exactly as many cases in row and column conditions.   

APPENDIX: Notational and Terminological Issues that 

May Give Rise to Misunderstanding

One confusion that QCA may give rise to comes from its use of + and * as symbols for indicating the intersection (( ) and the union (() of sets rather than for the multiplication and addition of numbers, as most of us were taught in primary school. In QCA 1+1=1 makes perfect sense, yet   reading <A + B> as something other than < A added to B> goes against the grain of our early childhood education, even though it is obviously a mistake to read and interpret QCA solution formula as if they were linear arithmetic equations.  

Second, leaving out the symbol for intersection (*) between sets can be a major source of confusion, since most social scientists would normally interpret, for example, PUCS, as either (a) the name of a variable, or (b) the product of the four variables shown.  
A third potential source of confusion consists in indicating negation by changing the case of a letter rather than using mathematical notation such as putting a ~ before the expression or a bar over the expression, or simply writing NOT.  It is an unfortunate fact that, for apparently accidental historical reasons, the symbols used for OR and AND and NOT in the QCA literature are not those commonly used in mathematics for those same operators.  Indeed in our view it would be better and far less confusing to henceforth present all QCA results in standard mathematical notation, e.g., ( for AND (intersection) ( for OR (union) and ( for NOT (negation), although the conventions of representing A(B as AB and using lower case letters for negation do have the virtue of simplicity and are also sometimes found outside the QCA literature.   
A fourth potential source of terminological confusion for those not familiar with QCA terminology involves the use of the term ‘equation’ for what we suggest to call ‘solution formula’ and, related to that, the use of the ‘=’-sign rather than the ‘→’-sign.  Most QCA scholars – and even Ragin in his seminal work in 1987 – use an equal sign for implication.  Strictly speaking, the use of the ‘=’ sign is incorrect and misleading.  Due to the set theoretic foundation of QCA the solution formula do not express a relation of equality as insinuated by the ‘=’-sign.  Only under the very specific and rare empirical situations of a fully specified truth table (no contradictory rows and, if possible, also no logical remainders) are sub-set relations correctly expressed with a ‘=’-sign.  But, in any case, calling a solution formula an ‘equation’ and using ‘=’ rather than ‘→’ unnecessarily misleads readers to equate the truth functional statements in QCA with ordinary (linear) equations ( QUOTE "Ragin and Rihoux 2004" 
Ragin and Rihoux 2004
). 

Of course, the onus is basically on the reader to understand the symbols used by an author as long as the author is clear about what his or her symbols mean.   So, say, using a “+” for OR ought not to be that much of a problem.  Still, there is no need to confuse readers unnecessarily, and we would suggest that QCA authors might wish to shift in the future to a more standard notation, though we, to be consistent with how results are actually presented by QCA scholars, have presented our own results in the notation that has been most often used.  

Some of the tools used in QCA also can be confused with one or more presentational forms or parameters commonly used in standard statistics whose meaning is actually quite different. 

Truth tables may be confused with a standard data matrix.  In a normal data matrix each row presents the information on one case.  Table 1 is a standard data matrix -- one in which the values are all 0s and 1s, and where we have “sorted” the rows to highlight resemblances among cases.  In contrast, in a  truth table such as Table 2, each row presents information about one of the logically possible combinations of conditions, and there are only as many rows as there are possible combinations of (0,1) values of the k independent variables, i.e., there are 2k rows.  The shift from rows representing cases to rows representing combinations of conditions may confuse readers if they wrongly equate the phenomenon of logical remainders, i.e. truth table rows for which no empirical evidence (no case) is at hand, with the more familiar problem of missing data, i.e., cases that empirically exist but for which data is missing for one or some of the variables.   

Solution formula may be confused with a regression equation involving the same variables.  Imagine that we have as our solution formula  
P+ U + C + S  → W.  
If we interpret that as if it were a regression, i.e., 
W = P + U + C + S, 
we would be making multiple mistakes.  

First we would be confusing the “+” used in QCA (with here means set theoretic union, i.e., “or”) with the + of ordinary addition (see earlier discussion in the Appendix).  Second we would be acting as if the coefficients on the P, U, C and S terms were one, rather than recognizing that in the QCA framework, these denote membership scores in set theoretic conditions.  Third, by using the ‘equal’ sign (=) we would be imposing symmetric causality rather than appreciating that the → indicates only sufficiency and, thus, an asymmetric set relation.  
Finally, errors can arise in interpreting coverage and consistency parameters in QCA. These parameters are very different from measure of overall goodness of fit such as r2 or other measure of association.  Indeed, the discussion of binary logistic regressions in the text provides an example of a case of two models which have identical predictive fit in terms of coverage and consistency  but differ  in the pseudo-R squared values each generates from a binary logistic regression.  Moreover, most measures of association, including Pearson’s R and its relatives, are symmetric measures of association, whereas consistency and coverage are assessments of either necessity or sufficiency, which denote asymmetric set relations (cf. Schield and Burnham, 2002).  We should also point out that coverage and consistency as introduced above and currently used in QCA are purely descriptive measures and do not correspond to anything even remotely like statistical significance.  
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