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This article presents a computational model of the process through
which the human visual system transforms reflectance spectra into
perceptions of color. Using physical reflectance spectra data and
standard human cone sensitivity functions we describe the trans-
formations necessary for predicting the location of colors in the
Munsell color space. These transformations include quantitative
estimates of the opponent process weights needed to transform
cone activations into Munsell color space coordinates. Using these
opponent process weights, the Munsell position of specific colors
can be predicted from their physical spectra with a mean correla-
tion of 0.989.

C lassical opponent process theory usually is modeled as a
linear combination of cone signals, with different color

perceptions characterized by different combinations of the ac-
tivation or inhibition of the long, medium, and short cones.
Finding the appropriate weights to assign to the three cones has
long been a problem within this theory (1–3). This article
presents a quantitative model for the transformation of reflec-
tance spectra into the perceptually based Munsell color space by
using regression analysis to estimate opponent process weights.
Four sets of data are required for this task: (i) reflectance spectra
of Munsell color chips, (ii) the spectral radiant power distribu-
tion for D65 illumination, (iii) quantitative estimates of the three
human cone sensitivity functions, and (iv) Cartesian coordinates
for the Munsell color space.

The Munsell Color System
The Munsell system, developed by the artist Albert Munsell circa
1905, is based on a standardized set of painted color surfaces,
commonly called color chips, arranged in a globe-like 3D space.
The goal of the Munsell system is to present an arrangement of
a full sample of colors in equal perceptual intervals over the
three dimensions of the color space. The vertical dimension,
called value, runs in equal perceptual steps from white to black.
Circling the equator of the globe are the hues, divided into 10
equally distant sectors labeled red, yellow-red, yellow, green-
yellow, green, blue-green, blue, purple-blue, purple, and red-
purple. Each sector is further divided into four subdivisions,
labeled 2.5, 5.0, 7.5, and 10.0, with the best exemplar color for
each hue sector at 5.0. Right angle distance from the value axis
represents degree of saturation, labeled chroma. The chroma
scale runs in equal perceptual intervals from 0 (achromatic) to
16 or more (highly saturated). The full sample of color chips in
the Munsell book of color form an irregular sphere with notable
protuberances in the yellow and red regions (see Fig. 1).

Although there are a variety of systems for ordering colors, so
far as we are aware, only the Munsell and Optical Society of
America (OSA) systems are based on extensive direct judgments
of perceptual similarity. The two systems have similar hue axes,
one axis extending from yellow to purple-blue, the other from
red to blue-green (1, 2). Based on millions of human judgments,

the OSA estimated the best-fitting Commission International de
l’Eclairage (CIE) colorimetric positions for each of the Munsell
color chips so that the entire set would conform as closely as
possible to the Munsell conceptual system (4). A number of
scaling studies have confirmed the approximately equal percep-
tual spacing of color chips and the overall organization of the
system (5). We think it reasonable to assume that the Munsell
axes approximate the true perceptual axes of hue and value not
only because of the scaling results, but also because hue com-
plements and negative afterimages are found on opposite sides
of the Munsell space, exactly as they should be given the basic
assumptions of opponent process theory (1).

To construct quantitative measures on the Munsell color
structure, the Munsell spherical coordinates have been trans-
formed into standard Cartesian coordinates. The value measure
for each color chip has been assigned to first dimension. To
position color chips on the second and third hue dimensions,
each of the 40 hues has been positioned around the circumfer-
ence of the globe, beginning with 5.0 red at 0°, moving clockwise
9° for each of the other 39 hues. The position of each color chip
is then calculated by standard trigonometric functions. The
position of a chip on the red to blue-green dimension, extending
from 5.0 red to 5.0 blue-green, equals the cosine of its hue angle
times its score on the chroma dimension. The position of a chip
on the yellow to purple-blue dimension, extending from 10.0

Abbreviations: OSA, Optical Society of America; CIE, Commission International de
l’Eclairage; RGB, red, green, blue.
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Fig. 1. Diagrammatic representation of the Munsell color solid with one
quarter section removed.
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yellow to 10.0 purple-blue, equals the sine of its hue angle times
its score on the chroma dimension. The chips on each dimension
are standardized to a mean of zero and a standard deviation of
one. As a result of this change from spherical to Cartesian
coordinates, every Munsell color chip can be represented as a
point at the intersection of a normalized orthogonal x, y, z space.
It should be stressed that the points in this space are a purely
conceptual system; an idealized representation of what the
perceptual relations among the color chips should be, not an
actual set of observations.

To obtain estimates of parameter variability our data have
been divided into four separate hue groups. The first group
contains all of the Munsell 2.5 hue color chips (2.5 red, 2.5
yellow-red, 2.5 yellow, etc.), the second group contains all of the
5.0 color chips (5.0 red, 5.0 yellow red, 5.0 yellow, etc.), and so
on. Because of the irregular character of the Munsell globe,
the four groups contain different numbers of color chips (2.5
hues n � 277, 5.0 hues n � 354, 7.5 hues n � 276, and 10.0 hues
n � 343).

The Reflectance Spectra
The physical data set is based on spectral reflectance measure-
ments made with a spectrophotometer on 1,250 color chips in the
1976 Munsell Matte Color Book (17) at a 5-nm resolution from
400 to 700 nm. The data set was obtained from www.cs.joensuu.
fi��spectral�databases�download�munsell�aotf.htm. We se-
lected color chips from 430 to 660 nm to approximate the range
of human color vision. Analyses using greater ranges were also
carried out; no measurable increase in accuracy was obtained by
increasing the range. Thus the basic matrix S(�) consists of 1,250
rows of Munsell color chips and 47 columns, with each column
containing the reflectance data averaged for 5-nm intervals
running from 430 to 660 nm. The first step of the analysis was
to multiply the figures in each column of the spectral reflectance
data matrix by the spectral radiant power distribution of D65
light, D(�), creating a new matrix SD(�), which approximates the
amount of radiant energy falling on the retina under conditions
of D65 illumination (6).

The Representation of Cone Sensitivities
We have used the Stockman and Sharpe (7) sensitivity functions
for the long, medium, and short cones. The Stockman and
Sharpe curves are normalized to 1.0 at their peaks. We used cone
fundamentals in 5-nm steps in terms of energy (linear) from
http��cvision.ucsd.edu�database�text�cones�ss10.htm. To esti-
mate the total activity for each cone for any given color chip we
first multiplied the cone sensitivity figures for that cone across
each of the 5-nm intervals from 430 to 660 by the corresponding
spectral reflectance figures from matrix SD(�) and then summed

across the 5-nm intervals to obtain the summed cone response.
The result is a three-column matrix, LMS, with a row of the
matrix for each color chip and each column containing the
summed cone response data.

The Cube Root Transformation
Because the relationship between physical energy and neural or
perceptual responses is generally recognized to be nonlinear, we
explored some of the standard transformations given in the
literature. For photopic vision, both log and cube root of the
spectral energy (luminance) have been used. Wyszecki and Stiles
(6) presented plots of six curves (Fig. 2) and formulae (Table 1)
relating lightness-scale values and luminance factors. The func-
tions they present include square roots, cube roots, and logs.

A visual comparison of the effect of different transformation
can be obtained by plotting the spectral reflectance curves for a
series of color chips. Fig. 2 shows spectra for seven 5.0 green
color chips at chroma 2 and value levels 3, 4, 5, 6, 7, 8, and 9. In
Fig. 2 Left the reflectance spectra are plotted on the original
reflectance scale, in Fig. 2 Center they are on a log scale, and in
Fig. 2 Right they are on a cube root scale. On the original
reflectance scale the spectra are neither parallel nor equally
spaced, on the log scale they are parallel but not equally spaced,
and on the cube root scale they are both parallel and approxi-
mately equally spaced. The same result was found across a range
of spectral reflectance curves. Romney and Indow (8), in a
scaling analysis of reflectance spectral data, also found the cube

Fig. 2. Spectral reflectance curves for seven 5.0 green color chips at chroma 2 and value levels 3–9. The original linear reflectance scale is plotted (Left), on a
log scale (Center), and on a cube root scale (Right).

Table 1. Opponent process weights

Value

Cones
Sum of
weightsLong Medium Short

White to black
2.5 group 0.42 0.63 �0.06 0.99
5.0 group 0.45 0.61 �0.08 0.99
7.5 group 0.34 0.71 �0.07 0.99
10.0 group 0.47 0.58 �0.007 0.98

Yellow to purple-blue
2.5 group �2.03 3.76 �1.82 �0.09
5.0 group �2.37 4.50 �2.18 �0.05
7.5 group �1.85 3.56 �1.77 �0.06
10.0 group �2.35 4.56 �2.21 �0.02

Red to blue-green
2.5 group 6.05 �6.27 0.32 �0.05
5.0 group 7.46 �7.82 0.41 �0.05
7.5 group 6.21 �6.46 0.31 �0.09
10.0 group 7.72 �8.12 0.41 �0.05
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root transformation yielded a close approximation to the value
dimension.

Because the cube root transformation maintains linear rela-
tionships among spectral curves for color samples of the same
hue and chroma, the summed cone values in the matrix LMS
were cube-rooted. We also explored whether taking the cube
root function at different points along the transformational
process had effects on predictive accuracy. Neither cube rooting
the spectra data matrix S(�) before engaging in any other
transformations, nor cube rooting the spectral data after they
had been multiplied by the D65 illumination [the matrix SD(�)],
affected predictive accuracy. Correlations of the sums of the
long, medium, and short cones created by the different cube root
procedures were all in the 0.999 range.

The values of each of the L, M, and S columns of the matrix
were then transformed into z scores with a mean of zero and a
standard deviation of one, creating a new matrix designated
z3rLMS. Scores were standardized because the summed cone
scores have no absolute reference point because the cone
sensitivity functions used here were already normed with each
curve having a maximum value of one. We recognize that this is
not the usual cone normalization procedure. A more common
procedure is to normalize summed cone scores by dividing the
scores for each cone by the total sum of the three cone scores for
that chip (i.e., L�L�M�S), M�L�M�S, S�L�M�S). We have
carried out our full analyses on both procedures and found a
slight, but significant, increase in predictive accuracy with z
scores, possibly because using all scores to estimate relationships
among cones yields better estimates than using only the three
cone scores for each chip. For the purposes of this article, there
is no theoretical import to using one rather than another kind of
normalization procedure. A cartoon describing the transforma-
tions we have carried out, some of which have yet to be described,
is presented in Fig. 3.

Obtaining Linear Estimates for the Munsell Color Space
The opponent process of color vision can be conceptualized as
a set of transformations by which the summed cone activity of
each color sample is translated into the coordinates of perceptual
color space. Quantitatively, this can be modeled by finding
weights that predict the Munsell coordinates from the matrix of
summed cone activity z3rLMS. Assuming that the process is
linear and scores have been standardized, standard multiple
regression or least-squares analysis of multiple linear equations

are appropriate techniques that yield identical results. The
standardized regression coefficients, or opponent process
weights, are presented in Table 1 for all four Munsell groups.

Overall, weights vary little by hue group. The ratios between
the weights vary even less, indicating a robust estimation pro-
cedure. The weights for value and the red to blue-green dimen-
sion are generally what one would expect from the literature on
the opponent processes (2, 3, 9–12). Value, the light to dark
dimension, is almost entirely a function of the long and medium
cones. The red to blue-green dimension is primarily a function
of the difference between the medium versus the long cones. The
weights for the yellow to purple-blue dimension show a more
complex pattern, with long and short cones in opposition to
medium cones. In the literature, this dimension has shown the
greatest divergence of estimates of opponent process weights.

It should be mentioned that the weights reported here are
applicable only for the axes from which they were computed.
Given any rotation of the axes, the weights will change, although
the overall degree of accuracy in predicting the Munsell con-
ceptual position of chips from the spectral data will remain the
same. We believe the Munsell axes are reasonable approxima-
tions to whatever axes are used by the neural system because the
red end of the red to blue-green axis is fixed by hue of the longest
perceived wavelengths and the purple-blue end of the yellow to
purple-blue axis is fixed by the shortest perceived wavelengths.
In this sense, each axis is fixed on one side by its furthest limit
of perception. As a formal computation matter, however, the
position of the axes is arbitrary.

The next issue concerns how well these weights predict the
position of the color chips in the Munsell space. To predict the
position of any given color chip, the summed and standardized
activity of each cone has been multiplied by the appropriate
opponent process weights for each Munsell dimension. Table 2

Fig. 3. Cartoon of the data transformations carried out in this article, using as an example a single spectral reflectance curve that is multiplied by the D65
illumination curve, then multiplied by the short, medium, and long cone sensitivity functions, then summed for each cone, cube-rooted and standardized, and
finally multiplied by opponent process weights to its predicted Munsell location on the yellow to purple-blue, red to blue-green, and white to black axes.

Table 2. Correlations by dimension for the fit between predicted
and conceptual Munsell locations

Hue group Value
Yellow to

purple-blue
Red to

blue-green
Mean

r

2.5 0.997 0.980 0.994 0.990
5.0 0.998 0.975 0.995 0.989
7.5 0.998 0.977 0.995 0.990

10.0 0.998 0.972 0.994 0.988
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presents the correlations between predicted and the conceptual
Munsell color chip positions on the three color dimensions for
each of the four hue groups; Fig. 4 presents the scatter plots for
these three dimensions for the 5.0 hue group.

Given the real-world problems involved in producing color
chips that are exactly positioned in their proper perceptual
location in the Munsell space, the fit between predicted and
conceptual positions seems excellent. The graphic results for the
Munsell 5.0 hue group with respect to the hue dimensions at
values 3, 5, 7, and 9 are presented in Fig. 5.

Examination of the residuals shows a systematic difference
between the predicted and conceptual data. Overall, there is a
tendency for the predicted points on the yellow side of the yellow

to purple-blue axis to extend further out from the achromatic
point than the corresponding conceptual points, whereas the
predicted points on the purple-blue side of the axis fail to extend
far enough from the achromatic point.

Two sources of data lead us to believe the problem here is in
positioning of the actual color chips, not some complex nonlin-
earity in perception. The first is that the principal components
obtained from a single value decomposition of the spectral data
obtained by Romney and Indow (8) displays the same systematic
divergence with respect to the yellow to purple-blue axis when
all components are rotated into conformity with the Munsell
system. Here the mapping is directly from the physical spectral
data to the Munsell conceptual system. Although one would not

Fig. 4. Plot of the relation between the positions of 355 5.0 hue chips on the theoretical Munsell Cartesian axes versus the position predicted from the spectral
reflectance curves and opponent process weights.

Fig. 5. Comparison of plots at selected levels of value for the Munsell hue dimensions. (Upper) The conceptual positions of chips on the two hue dimensions.
(Lower) The positions predicted from the spectral reflectance curves and opponent process weights. R�BG, red�bluish-green; Y�PB, yellow�purplish-blue.
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necessarily expect an isomorphic mapping directly from the
physical data to the perceptual data, the fact that both the
opponent process analysis and the purely physical analysis show
the same divergence from the Munsell color samples is notable.

The second source of evidence is based on work by Boynton,
MacLaury, and Uchikawa (14) in which Munsell color chips were
directly matched to OSA color tiles. Comparing matched OSA
and Munsell colors, the same divergence becomes apparent.
Examination of the matched color samples show that OSA tiles
have proportionally greater values on yellow side of the yellow
to purple-blue dimension than the corresponding Munsell chips,
and proportionally smaller values on the purple-blue side of the
axis. Fig. 6 presents a scatter plot of these data fitted to a
second-order polynomial.

Although the number of matched color samples between the
OSA and Munsell systems is not great enough to arrive at a
fully determinate result, a nonlinear relation between the two
systems with respect to the yellow to purple-blue axis is
apparent. Comparison of the red to blue-green axes across the
two systems, on the other hand, shows no evidence of nonlin-
earity. Modifying the Munsell conceptual system by using a
second-order polynomial correction to take account of this
nonlinearity raises the correlation between predicted and
conceptual scores from 0.976 to 0.991 for the yellow to
purple-blue dimension.

Simplification of Opponent Process Weights
Because regression weights are based on least-squares approx-
imations, such weights can often be unitized without adversely
affecting accuracy of prediction (13). By treating the weights
as if they were composed of two components it is possible to
replace the many-place numbers in Table 1 with simple
integers with little loss of accuracy. The first step in doing this
is to abstract the relations between the cones. Thus, for

example, for the 5.0 group, for the yellow to purple-blue axis
the weights in Table 1 are �1.99 for the long cone, �4.04 for
the medium cone, and �2.10 for the short cone. The propor-
tions here are ��1 to �2 to �1. These integers then become
the unitized weights. To predict actual locations along this axis,
the results of the �1, �2, �1 weightings must be multiplied by
two to make the results correspond to results obtained from
the unsimplified regression weights. A simplified matrix for the
opponent process weights is presented in Table 3 and a
comparison between the results of predicting from calculated
weights versus simplified weights is presented in Table 4.
Because it is easier to imagine neural opponent connections on
a 1-to-1 basis, which are then amplified seven times than it is
to imagine neural connections matching up on a 7.74 to �8.09
to 0.37 basis, the fact that relatively simple integer relations
can be found to model the opponent process weights adds to
the potential neural plausibility of our model.

To help resolve some of the differences in the literature about
the weights for the yellow to purple-blue dimension, we have
assigned different sets of integer weights to find out which set
best predicts the data. Results for four different sets of integer
weights are presented in Table 5. Although the differences
between the coefficients are small, all pairs of coefficients are
significantly different at probability levels �0.01. These results
support our assignment of �1 long, �2 medium, and �1 short
weights for the yellow to purple-blue dimension, given the
understanding that these weights are specific to the Munsell axes
used here.

Other Color-Matching Functions
Besides cone sensitivity functions, other functions, such as the
10° red, green, blue (RGB) color-matching functions and CIE
10° (1964) XYZ functions, have been used in color-matching
research (15, 16). These functions all appear to be linear
transformations of each other, which means regression weights
can be used to transform any set of color-matching functions
to any other. This also means that we can use any linearly
related set of color-matching functions exactly as we have used
the cone sensitivity functions to predict from spectral ref lec-
tance curves to the Munsell perceptual space. Table 6 presents
the results of carrying out the operations depicted in Fig. 4
using the 10° RGB and the CIE 10° XYZ color-matching
functions for the 5.0 hue group (obtained from http:��
cvision.ucsd.edu�cmfs.htm) instead of cone sensitivity func-

Fig. 6. Plot of the relation of 135 matched Munsell chips and OSA tiles on the
Munsell yellow to purple-blue axis and the OSA j axis, including a least-squares
fitted trend line and second-order polynomial equation for these data.

Table 3. Simplified opponent process weights

Value

Cones

Long Medium Short Amplify by

White to black 1 1 0 0.5
Yellow to purple-blue �1 2 �1 2
Red to blue-green 1 �1 0 7

Table 4. Comparison of correlations by dimension for the fit
between predicted and conceptual Munsell locations for
calculated versus simplified weights (means for all hue groups)

Weights

Munsell dimensions

Mean rValue
Yellow to

purple-blue
Red to

blue-green

Calculated 0.998 0.976 0.995 0.989
Simplified 0.997 0.974 0.980 0.984

Table 5. Comparison of simplified opponent process weights for
the yellow to purple-blue dimension

Cones
Correlation between

conceptual and predictedLong Medium Short

�1 2 �1 0.974
0 1 �1 0.930
1 1 �2 0.891
1 0 �1 0.847
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tions. Table 6 shows that while the weights change for the
different sets of functions, the sets predict from the spectral
data to the Munsell color space equally well.

Discussion
The data transformations presented here produce a reasonably
satisfactory positioning of the Munsell color chips in perceptual
color space from spectral reflectance data. Although by them-
selves these transformations are not sufficient to account for
many aspects of color vision, such as color constancy or hue
shifts with changes in illumination, our results do indicate that
simple linear opponent process mechanisms give an adequate
account of certain basic features of human color vision. This
model may also prove to have some practical value, making it
possible to effectively assign Munsell positions to a wide variety
of colored materials based solely on their spectral reflectances
without requiring complex psychological scaling judgments. At
this point, analyses of spectral reflectance data from the OSA
system are clearly needed as an independent check on the
procedures and weights presented here.
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Table 6. Opponent process weights 5.0 hue group for cone
sensitivity, RGB, and CIE XYZ color-matching functions

Value

Cones

Sum

r between
predicted and

conceptualLong Medium Short

White to black
Cone sensitivity 0.45 0.61 �0.08 0.99 0.998
RGB 0.24 0.84 �0.08 1.01 0.997
CIE XYZ �0.11 1.19 �0.09 0.99 0.997

Yellow to purple-blue
Cone sensitivity �2.37 4.50 �2.18 �0.05 0.975
RGB �2.03 3.76 �1.82 �0.09 0.971
CIE XYZ �1.85 3.56 �1.77 �0.06 0.979

Red to blue-green
Cone sensitivity 7.46 �7.82 0.41 �0.05 0.995
RGB 2.28 �2.49 0.41 �0.08 0.990
CIE XYZ 6.21 �6.46 0.31 �0.09 0.994
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