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In this paper we present the results of an analysis of the physically
measured surface reflectance spectra of 360 matte Munsell chro-
matic color chips plus 10 flat achromatic vectors corresponding to
Munsell value levels 10 (white) to 1 (near black) for a total sample
size of 370. Each of the 370 spectra was multiplied by the spectral
radiant power distribution of D65 light so that the final results
represent the spectra of reflected light from Munsell color chips
under D65 illumination. We simultaneously model the structure of
the color chips and the spectra in a common three-dimensional
Euclidean space, oriented to yield the most interpretable structure
with respect of the Munsell color structure. In this orientation, axis
1 roughly corresponds to the mean power of the spectral reflec-
tance (approximate Munsell value), axis 2 goes from Munsell red to
blue-green, and axis 3 goes from Munsell green-yellow to purple.
Basis factors for the spectra are also plotted against wavelength
and Munsell hue. These plots have implications for theories of
opponent processes. By plotting the chips and spectra in the same
space we obtain virtually exact correspondences between the
various Munsell hues and spectral values in nanometers for com-
parison to those obtained by previous researchers. Mathematical
derivations are provided to validate the common Euclidean model.

The main aim of this paper is to analyze the relationship
between the structure of the Munsell color chips and the

spectra based on reflected light of Munsell color chips under
standard D65 illumination. The data derive from physical mea-
sures of reflected light spectra and involve no human judgments.
In a previous paper, we demonstrated that most variation among
spectral reflectance curves of 1,269 Munsell color chips was well
represented in a three-dimensional Euclidean space (1). In that
paper, although we did represent Munsell chips and the spectra
in a common space with a singular value decomposition (SVD),
we had no way of knowing if that joint space was Euclidean. In
the present paper, we derive proof that with appropriate weight-
ing, the method does represent the Munsell color chips and the
spectra in a common Euclidean space. This allows us to explore
in fairly precise ways the relationship between Munsell hues (H)
and spectral values in nanometers. It also facilitates relating basis
factors of the spectra with H. Another feature of the present
analysis is that we take into account illumination. In the final
section we discuss the implications of some of the results.

The Munsell system consists of painted standard color chips
arranged according to cylindrical coordinates (H, V�C) where
the vertical axis in the center represents lightness V (value) from
black to white (2). The polar angle and radial distance from the
center represents H and saturation C (chroma). Along each axis,
adjacent chips are arranged to differ in intervals of equal
perceptual size �, although the size of � in an attribute is not
defined to be the same as that of another attribute. The scale V
is from 0 to 10V (black to white), and how far the scale of C
extends from 0 depends on H and V. The hue circle is divided
into 10 H sectors, 5 principal hues [red (R), yellow (Y), green

(G), blue (B), and purple (P)] and 5 intermediate hues such as
YR, GY, etc. Each H sector is divided further into four finer
categories, namely, 2.5H, 5H, 7.5H, and 10H (0 for the next H).
The most representative color of each H sector is taken to be 5H.
Based on very extensive visual examination in the early 1940s,
the Optical Society of America determined the colorimetric data
(x, y, Y) of each chip, and the chips are painted so as to meet
these specifications (2).

Cohen was the first to reduce spectral reflectance curves s(�)
to a small number of basis factors (3). His data consisted of a
sample of 150 Munsell color chips for which reflectances are
given at 10-nm intervals from 380 to 770 nm (40 values). He
extracted four eigenvectors from the minor product moment
matrix STS, 40 � 40, and showed that 99.18% of the data was
accounted for by the first three. Maloney (4) repeated Cohen’s
analysis on 462 Munsell master standard chips obtained from the
Macbeth Corporation (400–700 nm with 10-nm intervals, 31
values) and 337 natural objects collected by Krinov (ref. 5;
400–650 nm with 10-nm intervals, 26 values). On the basis of
these two analyses, he concluded that 5–7, not 3, basis factors
were necessary to account for the data. The conclusion is
retained in Maloney’s more recent article (6). Many others have
investigated the basis factors of spectra including Parkkinen et al.
(7), Jaaskelainen et al. (8), and Vrhel et al. (9).

We are aware of only two previous studies that present
empirically derived diagrams of color structure based on mea-
sured reflectance spectra of color samples. The first, by Lenz and
Meer (10), analyzed ‘‘a database consisting of reflectance spec-
tra of 2,782 color chips, 1,269 from the Munsell system and
the rest from the NCS (Natural Color System) system.’’ (ref. 10,
p. 103; the Munsell spectra are the same data analyzed in this
paper). They found that the spectral data are described by
coordinate vectors that lie in a cone, and they therefore define
a hyperbolic coordinate system to represent the data. They
present a three-dimensional figure of the distribution of the chips
[ref. 10, figure 1(b), p. 104] that they characterized as a set of
nested cone-like structures, each made up of a single C, with
lower C values being inside higher values. The narrow tips of
each cone-like structure are at the lowest V levels.

The second empirically derived diagram of color structure
based on measured reflectance spectra was reported by Burns et
al. (11). From a data set of 427 Munsell color chips under C
illuminant measured from 380 to 770 nm in 10-nm steps, they
plotted a configuration of color chips and a curve for wave-
lengths in ‘‘fundamental color space.’’ The space was spanned by
three orthoganal axes, L (luminosity), R (red), and V (violet).
Points of the same V level form a plane, and each plane is tilted
with regard to vectors representing the power level of both equal
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energy illumination and illuminant C. Below we compare some
of their results with those obtained in the present study.

The Data
Spectral reflectance measurements of the 1,269 chips in the
Munsell color book (1976 matte edition) from 380 to 800 nm at
1-nm resolution (geometry 0�d) were obtained from ww-
w.it.lut.fi�research�color�database�database.html. We analyzed
data between 430 and 660 nm to approximate the range of
human vision. In the present paper, the analysis is limited to a
sample of the 360 most representative Hs, namely, (5R, V�C),
(5YR, V�C), . . . , (5RP V�C), where V covers 2, 2.5, 3, 4, 5, 6,
7, 8, 8.5, 9V, and C covers the whole range of chroma.

The data are denoted as S � (sj�), where j � 1, 2, . . . , N
represents the Munsell chips, and � � 1, 2, . . . , M represents
wavelength � from 430 to 660 nm (M � 231). We added 10 flat
reflectance vectors in which sj� is constant over �, and sV
corresponds to V, where ideal white (10V), s10 � 1.0, and the
other nine values are 0.78660 (9V), 0.59100 (8V), 0.43060 (7V),
0.30050 (6V), 0.19770 (5V), 0.12000 (4V), 0.06555 (3V), 0.03126
(2V), and 0.01210 (1V). Thus the sample size is N � 370 in this
study. Each column � of S370�231 � (sj�) was multiplied by e�,
the spectral radiant power distribution of D65 light (with an
arbitrary unit). All the main results of this paper are based on the
analysis of SE370�231 � (sej�), that is, the spectra of reflected
light from Munsell chips under D65 illumination.

Simultaneous Representation of Color Chips and Spectra in a
Common Space
In this section we show how an SVD of the matrix SE370�231 �
(sej�) facilitates the simultaneous representation of the Munsell
color chips and the reflectance spectra in a common space. In
general, SVD approximates (�) a matrix X such as SE in the
following way:

XN � M � U�VT, N � M, UN � m � �uj��, V� � M � �����,

� � 1, 2, . . . , m, [1]

where both UUT and VVT are identity matrices, and �mxm �
(���) is a diagonal matrix. Values of �� (�0) and ��� are
obtained as eigenvalues and eigenvectors of XTX and U �
XV�	1. In our case, m � 3 appears to provide adequate
agreement between the two sides of Eq. 1. Let us write

SE370 � 231 � PWT, P370 � 3 � U�, W231 � 3 � �w��� � V. [2]

Using P, we can plot Munsell chips as a configuration of points
{Pj} in an m-dimensional space spanned by orthogonal coordi-
nate axes � with units ���. That the three-dimensional approx-
imation is sufficient can be seen as follows. Define d̂jk, the
Euclidean distance between Pj and Pk in Eq. 2, as d̂jk �
�¥�(pj� 	 pk�)2, and define djk, the Euclidean measure of
dissimilarity between spectral reflectance curves of j and k, as
djk � �¥�(sej� 	 sek�)2. If SE � PWT holds in Eq. 2, it means
sej� � ¥� pj�w��. Then djk

2 can be written
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Because ¥�w��
2 � 1 and ¥�w��w�� � 0, d̂jk

2 � djk
2 . In fact, the

correlation between three-dimensional SVD reconstruction of
d̂jk and the Euclidean distances djk is 0.9998. The largest absolute
difference �djk 	 d̂jk� is 0.7355, which may be compared to the
maximum djk of 15.0786. Another way to look at it is to compare

the mean error djk 	 d̂jk of 0.0322 (note that d̂jk � djk because
it contains fewer dimensions) to the mean djk of 3.7476. This
indicates that P370�3 provides a satisfactory representation of the
Munsell color chips in a three-dimensional Euclidean space.

Results of Simultaneous Representation of Color Chips
and Spectra
Because the orientation of the structure obtained by plotting P
(color samples) and W� (spectral points) is arbitrary, it is useful
to make a final rotational adjustment for visual examination of
the Munsell color structure. Because the space is regarded to be
Euclidean, we can apply rigid rotation to the reference axes. The
coordinates that we use for plotting the figures below are
obtained from P and W� by a rigid orthogonal rotation, T �
(t�) to obtain P� � (p� j) � PT and W� � (w� �) � (W�)T, and
 � 1, 2, 3. The matrix P� defines a configuration of points {P� j},
and the goal was to find a T � (t�) that yields the most
interpretable structure with respect to Munsell color.

T was obtained by trial-and-error visual rotation of P� and W�
simultaneously by appending the coordinate columns of W� to
those of P� . The rotation and translation were rigid, ensuring that
the Euclidean distances among the points were invariant. The
axes were oriented to align the gray achromatic points along
the first dimension as closely as possible. We next minimized the
width of the V levels when viewed from the side perpendicular
to the first axis. In this orientation axis 1 roughly corresponds to
the mean power (the mean value of the spectra of a Munsell
color sample) of sj� (the correlation is 0.999), axis 2 goes from
Munsell R to BG, and axis 3 goes from Munsell GY to P. By
plotting both P� and W� in the same space we can see from
inspection the correspondence between H and W� in the plane
spanned by  � 2, 3.

Colorimetric specification (xj, yj, Yj) uniquely determines
Munsell chip j, but there can be many seju values that are
specified as (xj, yj, Yj). When a set of Munsell colors that has
(seju) values different from our data, SE, is analyzed in the same
way; and then P and W in Eq. 2 may be different from ours, but
there will be such T that gives the same results as stated above.
With the same coordinate axes , we can plot

W� 231 � 3 � �w� �� � W�T [3]

to see how P� and W� are related (P� 370�3 and W� 231�3 are shown
in Tables 2 and 3, which are published as supporting infor-
mation on the PNAS web site, www.pnas.org).

Fig. 1 shows the results of plotting P� 3 and W� 3 on the x axis and
P� 2 and W� 2 on the y axis. The structure of the Munsell colors is
represented in the plot of P� , with the primary colors (i.e., R, Y,
G, B, and P) indicated by matching colors for identification
purposes only, and intermediate colors are all gray. The achro-
matic samples are plotted in black and occur in the middle of the
plot. The spectral values are represented in the plot of W� from
430 to 660 nm. The black dots on the spectral plot are placed at
10-nm intervals, with the numbers being at 30-nm intervals
beginning with the number 1 at 460 nm.

There are strong implications of the dual plot of color chips
and spectral wavelength. One immediate observation is that the
projection of a vector from the achromatic point out to the
spectral curve provides a prediction of the relation between H
and wavelength, �, as represented by W� . The fact that the spectral
curve does not encircle all the hues is clearly consistent with the
well known fact that there is no unique wavelength that produces
a perceived color of Munsell P.

A tabulation of the correspondence between Hs (excluding
nonspectral P and PR) and W� in nanometers is shown in Table
1. Burns et al. (11) present a similar analysis, and it is instructive
to compare the methods and results with the present findings.
The correspondence between H and the curve of  was estab-
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lished on the plane perpendicular to vector C (ref. 11, figure 10,
p. 38). The results are included in Table 1.

Fig. 2 shows a plot of P� 3 and W� 3 on the x axis and P� 1 and W� 1
on the y axis. The color labeling of the entries is the same as that
described for Fig. 1. The sloping planes that are clearly visible in
Fig. 2 represent the various levels of V with V � 2.5 at the bottom
and V � 9 at the top. The tilt with regard to p� j1 of planes of p� j3
of colors of the same V is due to the fact that Munsell Vj �
¥� y��sej�, where y�� is the CIE (Commission Internationale de
l’Eclairage) luminosity function. In order to have the same Vj,
sej� must be larger for purplish colors than for greenish-yellow
colors. The fact that black points, representing achromatic chips,
differ from the planes of colors of the same V in Fig. 2 is due to
the same reason. If YV � ¥�y��sVe� is used for the achromatic
chips, the black dots join to the plane corresponding to V, and
V � 4.143 YV

0.34 	 1.6. This is in agreement with the 1976 CIE
lightness function (12) except for the value of the coefficient. The
present YV is defined with an arbitrary unit.

All information on the effect of � on color perception resides
in W� , while P� characterizes the se spacing of Munsell colors as
its modulations. When plotted against � (and hence �), each

column of W� defines a curve. Fig. 3 shows the plot of W� 1 � (w� �1).
The curve is almost parallel with e� of D65, which implies that
w� �1 roughly represents the flat reflectance (s� � a constant). The
curve W� 1(�) is relatively smaller compared with the curve e(�)
of D65 at shorter wavelength. The term pj1w1� is proportional to
p� j1w� 1��1

	1 � (p� j1�1
	1)w� 1� represents the general level of spec-

trum sej�. If w� 1� is such a component in sej� that makes this term
a constant, �1

	1 is independent of �, and at purplish colors p� j1 is
larger, and hence w� 1� is smaller. On the other hand, e(�) is
defined for a constant level of luminous component in �. Hence,
this may be the reason that curve w� 1(�) is relatively smaller
compared with the curve e(�) of D65 at shorter wavelength.

The curves defined by W� 2 � (w� �2) and W� 3 � (w� �3) represent
two opponent processes, respectively. In Fig. 4, the positive and
negative sides of w� �2 are shown by R and G, and those of w� �3 by
Y and B. This is the usual way of plotting when opponent
processes are determined with monochromatic light by the
cancellation technique, as used for example, by Jameson and
Hurvich (13) and Werner and Wooton (14).

In Fig. 5, two negative curves, G and B, are flipped over to the
positive side. This is the usual pattern when opponent compo-
nents in surface colors are defined by assessment as used by

Fig. 1. Plot of the 370 color samples showing both the location of the Munsell
color chips and each spectral position from 430 to 660 nm represented jointly
in dimensions two and three of three-dimensional Euclidean space. The five
primary colors are coded with the appropriate color, and the numbers on the
spectral line represent intervals of 30 nm beginning in the lower left, where
1 indicates 460 nm. The black, filled circles indicate 10-nm intervals.

Table 1. Comparison of values of W� for the Hs obtained in the
present study with those found by Burns et al. (11)

H Present W� , nm Burns et al. W� , nm

5PB 470 473
5B 488 482
5BG 501 490
5G 512 520
5GY 555 565
5Y 580 574
5YR 600 586
5R 655 620

Fig. 2. A plot of the same information with the same codes as those shown
in Fig. 1 using dimensions one and three of the three-dimensional Euclidean
space.

Fig. 3. A plot of the first spectral dimension (blue) and D65 illumination (red)
against nm.
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Indow (15). These curves are different in meaning for mono-
chromatic lights and for surface colors. For example, the value
of a curve R for a monochromatic light of wavelength �
represents the strength of giving rise to redness impression in the
light of this specific wavelength �. On the other hand, that value
for a surface color having � as its dominant wavelength repre-
sents that strength in the entire range of the spectrum of
reflected light from that surface.

Fig. 5 includes the correspondence between � and H in Table
1. The curves in Figs. 4 and 5 are most different from other
opponent curves in that the R � 0, G � 0, and Y � maximum
at �550 nm that is close to 5GY. Usually, this occurs at �572 nm,
which corresponds to 5Y as shown by Indow (ref. 16, figure 3).

Discussion
In this paper we have introduced procedures for modeling the
reflectance spectra of Munsell chips under D65 illumination into
the same three-dimensional Euclidean space as the color chips.
This allows more precise determination of the relationship
between spectral wavelength and H than in previous studies. The
nature of the structure of the Munsell color solid in terms of
physically measured spectra are modeled in some detail in this
and a previous paper (1).

Our finding on the orientation of the axes of the color space
may have implications for opponent process theories. The major
axes of the hue circle as represented in Fig. 1 indicate that axis
2 goes from Munsell R to BG, and axis 3 goes from Munsell GY
to P. The axes in traditional opponent process theory (13, 14) are
generally considered to go from Munsell R to G and from

Munsell Y to B. Jameson and D’Andrade (17) have drawn
attention to this discrepancy between the axes posited by oppo-
nent process theory and the axes in the Munsell color system.
They say that opponent process theory ‘‘. . . can never be patched
up as long as unique hues are maintained as unitary sensations
and antagonist channel zero-crossings. In light of these facts it
seems wise to pursue alternate hue axes that model the empirical
data more closely, and we suggest that one such model may be
provided by a maximized interpoint-distance formulation in, for
example, the Munsell color space, or in some other perceptual
scaling space’’ (ref. 17, p. 308).

Two directions for future research suggested by the current
work should be mentioned: (i) to investigate in detail the
relationship between the perceptual structure of the Munsell
color solid and the physical structure as represented in the
current research, and (ii) to relate the cone sensitivity curves of
the three receptors in the human retina to the physical model.
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advice. The research was funded in part by National Science Foundation
Grant SES-0136115 (to A.K.R. and W. H. Batchelder).
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Fig. 4. A plot of the second and third spectral dimensions against nm coded
with the color of the assumed opponent process.

Fig. 5. A plot of the absolute value of the second and third spectral dimen-
sions against nm with the same color coding as that described for Fig. 4. The
arrows at the bottom of the figure show the connection of 5H colors with nm
as shown in Table 1.
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