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Relating reflectance spectra space to Munsell color
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The goal is to construct a simple model relating the conceptually defined Munsell color space to a physical
representation of the relationship among the reflectance spectra obtained from the color chips comprising the
Munsell color atlas. In the model both the Munsell conceptual system and the transformed reflectance spectra
are shown to be well represented in Euclidean space, and the two spaces are related by a simple linear trans-
formation. A practical implication is that the method allows one to compare the location of an empirical reflec-
tance spectrum with the aiming point in the conceptual structure. © 2008 Optical Society of America

OCIS codes: 330.0330, 330.1690, 330.1710.
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. INTRODUCTION
raditional color research is based on the assumption
hat the color appearance of color chips originates in their
eflectance spectra that, together with the illumination
ource, determine the light stimuli reaching the photore-
eptors of some specified standard observer [1]. In con-
rast, we focus attention on a highly constrained context,
amely, the appearance of the color of a single color chip
bserved on a neutral background in normal daylight.
his constrained context is free of complex context effects
uch as color contrast, color induction, and other compli-
ating phenomena. The physical information about a color
ample in such a constrained context resides in the mea-
ured reflectance spectrum. Reflectance spectra are typi-
ally obtained by illuminating the sample with a standard
ight as near equal as possible at all wavelengths and

easuring the percent of light reflected from the sample
t each wavelength. We assume that two samples with
dentical reflectance spectra will appear the same when
udged by humans in the constrained context. This is in
ccord with Billmeyer and Saltzman [2], who say that two
olor samples comprise an invariant match when they
ave identical reflectance spectra and that such invariant
atches look alike to all observers under all light sources.
ince the data used in this paper are derived from color
hips, in which the relative relationship among the chips
s a function of their reflectance spectra, illumination and
bserver characteristics do not appear in the model. We
hould stress that the model developed below is a math-
matical simplification that has no relationship to how
iological organisms actually compute color appearance.
Our formulation of the relation between reflectance

pectra (preceded by a cube root transformation for rea-
ons to be discussed below) and color appearance systems
egins with an empirical finding and an observation.
irst, we find that transformed reflectance spectra of the
unsell [3] color atlas chips are well represented in

hree-dimensional Euclidean space. We designate the em-
1084-7529/08/030658-9/$15.00 © 2
irically derived coordinates of this space the reflectance
pectra space. Second, we observe that the conceptual
tructure underlying the Munsell color chips may be per-
ectly represented in a three-dimensional Euclidean
pace. The Euclidean coordinates of the aiming points in
his geometrically defined structure we designate as Mun-
ell space. The aim of the paper is to provide a simple
odel that provides formulas for computing transforma-

ions between these two spaces that maintains the integ-
ity of the internal shape of each of the spaces.

The organization of the paper is as follows: We begin
ith a sketch of how the Munsell space was developed
nd perfected by the Optical Society of America, including
ow the atlas was actually produced. The description of
he Munsell color space concludes with a specification of
he aiming points for the atlas color chips defined in Eu-
lidean coordinates. We then briefly review some previous
tudies of the basis functions and representations of the
lobal structure of the Munsell system. These preliminar-
es lead to the major findings of the paper, which consist
n the derivation of the model of transformations between
he reflectance spectra space and the aiming points of the
onceptual Munsell space. Following the development of
he model, we discuss some further implications of the
odel and conclude with a short summary.

. BRIEF REVIEW OF MUNSELL
ONCEPTUAL COLOR SYSTEMS
uring the middle decades of the past century, the Opti-

al Society of America sponsored an ambitious attempt to
esign a color appearance system that led to the Munsell
ook of Color [3]. Excellent descriptions of the Munsell
ystem may be found in Wyszecki and Stiles [1] and Ne-
hall et al. [4]. The system was based on extensive re-

earch involving over three million psychophysical judg-
ents with the aim of producing an atlas of sample color

hips covering as wide a gamut as possible over the real-
008 Optical Society of America
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zable color space in regular perceptual steps according to
specified geometry. One result of these efforts led to the

976 version of the Munsell atlas, consisting of 1269 2 in.
1 in=2.54 cm� square painted chips

The organization of the conceptual Munsell system is
rganized around the concepts of value, hue, and chroma.
efore describing the detailed geometry of the Munsell
pace, it will be useful to review the development and pro-
uction of the actual painted chips. Our description is
ased on the detailed report by Davidson and Hemmend-
nger [5] of how an early version was produced. The aim-
ng point for the color location of each chip was first con-
eptualized in terms of the Munsell conceptual system.
he definition of the aiming points were estimates; there
ere no absolutely secure anchor points. All paints used

n the production of the chips were mixed from just six
olored paints (yellow, orange, red, red-purple, blue, and
reen) plus black and white. Only two colors of paint were
ombined to produce any given hue, and variations in
alue and chroma were produced by the addition of black
nd white paint as needed. Over a thousand combinations
ere painted as a first step in the calibration process. The

esulting samples were measured and located in CIE
pace. With this information the painter drew charts by
and to help estimate the mixture of paints required to
btain a color chip that corresponded to a specified loca-
ion in the CIE estimate of the conceptual Munsell space.
he result was a set of painted color chips that conforms
easonably close to the Munsell conceptual system. Inde-
endent studies confirm the approximately equal percep-
ual spacing of the color chips and the overall organiza-
ion of the system [6,7].

In the Munsell conceptual system, value is generally
aken to be the vertical dimension and varies from 2.5
dark) to 9 (light). At each value level, 40 spokes repre-
enting hues radiate out from a central achromatic axis in
ircles of increasing chroma beginning at one and con-
inuing with even integers. The full set of color chips in
he Munsell system may be represented as a somewhat ir-
egular sphere, as shown in Figs. 1(a)–1(c). The colors in
he plot reflect the major hue sectors named below and
re otherwise arbitrary. The actual colors range from near
lack to near white on the vertical value (lightness) axis
nd from achromatic to higher chroma (saturation) as
olor chips depart farther from the achromatic locus of the

ig. 1. Conceptual Munsell color system represented in Cartesia
n an approximate fashion.
ircles. Viewed from above, as in Fig. 1(c), the various
ues are seen as 40 spokes radiating out from the achro-
atic central axis. The circles of increasing size represent

ncreasing levels of chroma. The size of each chroma circle
s invariant through all levels of value, and they are
tacked on top of each other to form cylinders. There are
en equally spaced hue sectors labeled red, red-purple,
urple, purple-blue, blue, blue-green, green, green-yellow,
ellow, and yellow-red. The four spokes in each sector rep-
esent finer hue gradations, called areas in the Munsell
ystem, labeled 2.5, 5, 7.5, and 10. Area 5 usually repre-
ents the most representative hue. Fig. 1(a) shows a full
lot of the two pages of the Munsell color system that con-
titute the spokes of the 5 green-blue versus 5 red axis,
hile Fig. 1(b) shows those of the 10 blue-purple versus
0 yellow axis. From psychophysical evidence Indow [6,7]
as shown that one value step in this system is roughly
quivalent to two chroma steps. To adjust for this we have
rbitrarily divided the chroma scale by two and fit the
iming points of the conceptual Munsell system into the
uclidean coordinates accordingly; thus in the plots using
unsell coordinates, the chroma numbers shown need to

e doubled to get the correct Munsell chroma levels. Pro-
edures for obtaining the Cartesian coordinates are de-
cribed in D’Andrade and Romney [8] and have been used
n previous papers [9–12].

. PREVIOUS STUDIES OF REFLECTANCE
PECTRA AND GLOBAL STRUCTURES

n this section we look at examples of previous studies of
wo kinds: The first focused on reflectance spectra and the
uestion of how many basis functions are needed for an
dequate representation, and the second focused on the
nalysis of the relation among reflectance spectra as rep-
esented in some global geometrical structure. Some stud-
es have included results on both basis functions and glo-
al structure.
The first study of the basis functions of reflectance

pectra is that of Cohen [13]. He published the mean and
rst four basis functions in 1964 based on a sample of 150
unsell chips measured in 10 nm intervals over the

ange of 380 nm to 770 nm. The first three accounted for
ver 0.99 of the overall variance. Maloney [14] used these
asis functions to estimate multiple correlation coeffi-

inates with arbitrary color coding meant to convey hue locations
n coord
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ients of the spectra of an expanded set of 462 Munsell
hips as well as 337 natural objects. He found median val-
es of over 0.996 for the Munsell reflectance spectra using
hree basis functions, confirming the results of the overall
t. Maloney clearly established that reflectance spectra
ere broadband and generally smooth over the range of
00 to 700 nm. He speculated that there were physical
onstraints imposed on the band limits of reflectance
pectra by molecular interactions and the superimposed
ibrational/rotational patterns [14]. More recently, Mal-
ney [15] has studied the spectra in more detail and esti-
ates that more than three dimensions are necessary,

ven though well over 0.98 of the variance is accounted
or in three dimensions. In addition to an extended set of

unsell color chips, Romney and Indow [9] analyzed the
ame reflectance spectra of natural objects included in
aloney’s [15] study and concluded that only three, or at
ost four, dimensions were required for an adequate fit.

aaskelainen et al. [16] show a plot of the first three basis
unctions of 1257 Munsell color chips that is very similar
o what others have found, although they think that it
ay be necessary to use more than three to obtain precise

ccuracy. Dannemiller [17] has analyzed the number of
asis functions necessary to represent the reflectance
pectra of natural surfaces as represented in the Krinov
18] data and concludes that three basis functions are
ecessary and probably sufficient for representing the
pectral reflectance functions of natural objects [17].

Lenz et al. [19] made a detailed study of three collec-
ions of reflectance spectra, two Munsell and one on the
atural Color System, and found that the first few eigen-
ectors are almost identical for all three databases. Chiao
t al. [20] conducted a study of reflectance spectra col-
ected from images of natural scenes of both forests and
oral reefs. Their plots of the basis functions have a quali-
ative similarity to those obtained from color chips, and
he first three account for about 98% of the total variance.
n all these various studies on the basis functions of the
eflectance spectra of color chips and various natural ob-
ects, it is clear that the shapes of the first three or four
asis functions are qualitatively similar from study, to
tudy although there is no complete consensus on the ex-
ct number of basis functions necessary in practical appli-
ations.

The second category of studies has focused on how to
elate reflectance spectra to the global appearance of color
pace. Some utilize just the reflectance spectra, while oth-
rs include some data on an assumed observer. We dis-
uss those based on just reflectance spectra first. Koen-
erink and van Doorn [21] present an idealized spherical
onfiguration of color space obtained by singular value de-
omposition but do not show the empirical evidence for
he structure. Lenz and Meer [22] analyzed a database
onsisting of reflectance spectra of 2782 color chips. They
nd that the data described by coordinate vectors lie in a
one, and they therefore define a hyperbolic coordinate
ystem to represent the data and present a three-
imensional figure of the distribution of the chips. Usui et
l. [23] construct a three-dimensional representation of
unsell color space using a five-layer neural network

hat is qualitatively similar to one obtained with singular
alue decomposition.
Another category of global representations of reflec-
ance spectra uses observer-based models that utilize
ome observer characteristic, such as a standard observer
ased on color matching functions or cone receptor curves,
aking an observation of a color chip under some speci-
ed source of illumination. For example, color matching
unctions were used in the first analysis of the global
tructure of the Munsell reflectance spectra done by
urns et al. [24]. They mapped Munsell reflectance spec-

ra into what they call fundamental color space, which is
asically a projection of the reflectance spectra through
he color matching functions. They used the interval from
80 nm to 770 nm and obtained very clear representa-
ions of the Munsell conceptual structure. Since they did
ot use any nonlinear transformations, their Munsell
alue intervals were unevenly spaced and their chroma
ircles expanded as lightness levels increased. Laamanen
t al. [25] used the cone response curves of Smith and
okorny to model the Munsell color chips. They obtain
ery satisfactory fits to the Munsell conceptual system us-
ng an optimization program. They also provide a most
seful and up-to-date review of significant studies relat-

ng reflectance spectra of Munsell color chips to the global
olor space that need not be duplicated here.

In our own work with Indow [9] we originally reported
Euclidean representation of the reflectance spectra of
unsell color chips obtained with classical multidimen-

ional scaling methods. Subsequently, we showed [11]
hat the row vectors weighted by the singular values ob-
ained from a singular value decomposition of reflectance
pectra result in a Euclidean representation of Munsell
olor chips. The fit was poor since value levels were
paced unevenly and chroma increased with value. Work-
ng with D’Andrade [8], we attempted to transform the
hysical description of the Munsell chips into the Munsell
olor system using D65 illuminant and the Stockman and
harpe cone sensitivity curves. That model, which ac-
ounted for about 98% of the data, used a cube root trans-
ormation that produced evenly spaced value levels with
qual intervals of chroma at all levels. In a recent paper
ith Fulton [12] we found that four independent methods
f fitting the reflectance spectra of Munsell chips to the
unsell conceptual system converged to a common solu-

ion to within a fraction of a percent. The four methods
ere based on the following approaches: (a) the CIE
*a*b* international standard, (b) the D’Andrade and
omney model [8] using Stockman and Sharpe cone sen-
itivity curves, (c) the cube root of the sums of the prod-
cts of reflectance spectra and synthesized prime color
urves, and (d) a simple transformation of a Euclidean
epresentation obtained with singular value decomposi-
ion of cube rooted spectra. The four methods gave results
uch closer to one another than any was to the theoreti-

al locations defined by the Munsell system, suggesting
hat taking into account the illuminant and standard ob-
erver or cone sensitivity curves, as in approaches (a) and
b) above, does not add any precision in estimating color
ppearance in a restricted context such as color samples
rom a color atlas. In this paper we develop a model sug-
ested by but distinct from approach (d) above. In a pre-
ious paper [12] we simply regressed the coordinates de-
ived from the cube rooted reflectance spectra to fit the
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unsell coordinates. In the model below we first synthe-
ize idealized reflectance spectra from the Munsell coor-
inates and then work back from these to obtain exact es-
imates of the Munsell aiming points. The details of how
his is done will be shown below.

. TRANSFORMATIONS BETWEEN
EFLECTANCE SPECTRA SPACE AND
ONCEPTUAL SPACES
he reflectance spectra analyzed in this paper derive from
269 spectra of the 1976 matte edition of the Munsell
olor atlas [3]. The spectra were obtained from a
erkin–Elmer lambda 9 UV/VIS/NIR spectrophotometer
easured from 380 nm to 800 nm at 1 nm resolution us-

ng an integrative sphere. The source of the data and in-
ormation on the usefulness of this and other data sets
re described in Kohonen et al. [26]. Since color vision re-
earch is usually based on a range of 400 nm to 700 nm,
e use the reduced range and represent these data as a
atrix, A1269�301.
It has been long established that a nonlinear transfor-
ation is necessary to transform reflectance spectra into
reasonable approximation of a perceptual color system.
he international color standard CIE L*a*b* [1] uses the
ube root transformation, and our findings in previous re-
earch [8,12] provide additional evidence that the cube
oot is the appropriate transformation for modeling per-

eptual color space. In may also be noted that the fifth- t
rder polynomial defining the Munsell renotation value
cale is plotted as indistinguishable from the CIE 1976
ightness function that uses the cube root transformation
see Fig. 2(6.3) in [1]]. In this paper we apply the cube
oot transformation to the reflectance spectra prior to fur-
her analysis. The effect of this transformation is illus-
rated in Fig. 2, where untransformed spectra are shown
n the left column, spectra transformed by taking the cube
oot are shown in the middle column, and ideal spectra
erived from Munsell coordinates, obtained with proce-
ures described below, are shown in the right column. The
our rows of Fig. 2 represent samples from the four Mun-
ell hues that form the axes of Fig. 1. The spectra contain
ll values of lightness of chips of chroma 6. Thus the spec-
ra in a single panel differ only in lightness. Note that the
ntransformed spectra in the first column have noticeable
ifferences in the shape and spacing of the curves. For the
ube root spectra in the middle column, the curves are of
he same general shape and nearly equally spaced. The
bserved discrepancies from perfect equality in spacing
nd shape may arise from various sources such as design
rrors in translation from CIE specifications to Munsell
iming points, errors in hand-drawn templates by David-
on and Hemmendinger [5], errors in weighing the com-
inations of paints, etc. The reflectance spectra in Fig. 2
re representative of painted surfaces in general in that
hey are very broadband and relatively smooth curves
hat reflect at least some light at all wavelengths. Al-

hough this is true of painted surfaces such as the Mun-
ig. 2. Sample illustrations of reflectance spectra of all varying values that occur at chroma level 6 of four equally spaced Munsell hues,
here untransformed spectra are shown in the left column, spectra after cube root transformations are shown in the middle column, and

econstructed transformed reflectance spectra of the ideal conceptual Munsell chips are shown in the right column. The Munsell hues
epresented in the four rows are, starting at the top, 5 red, 10 yellow, 5 blue-green, and 10 purple-blue.
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ell chips, many natural objects [27], and a variety of
hemicals and pigments [28–30], its full generality re-
ains to be determined.
Note in the right-hand column of Fig. 2, in which the

dealized Munsell spectra are modeled, that two pairs,
amely, 5 red versus 5 blue-green and 10 yellow versus 10
urple-blue, have complementary shapes and at appropri-
te value levels correspond perfectly when superimposed
ith one of the pairs reflected in the vertical dimension.
his corresponds to the structure of the Munsell color sys-
em, in which complementary colors combine to form ach-
omatic shades of gray centering on the zero point of the
xes.
We turn now to the task of representing the reflectance

pectra in Euclidean space. Based on the discussion
bove, we take a cube root, elementwise, of the original
atrix, to obtain

S1269�301 = �3 A1269�301. �1�

he main results reported in this paper derive from the
nalysis of the matrix S1269�301.
Romney and Indow [9] demonstrated that a singular

alue decomposition of a matrix such as S1269�301 pro-
ides a representation of the spectra as combinations of
asis functions and a Euclidean representation of the
hysical relation among Munsell chips consisting of the
ingular row vectors multiplied by the singular values. In
eneral, singular value decomposition analyzes a matrix
uch as S1269�301 in the following way:

SN�M = U�VT, N � M � K, UN�K = �uik�,

VM�K = �vjk�, k = 1,2, . . . ,K, �2�

here � is a diagonal matrix consisting of singular values
k.
In our case, we find that K=3 provides an adequate ap-

roximation between the two sides of Eq. (2), resulting in
three-dimensional Euclidean representation. We can

rite

Ŝ1269�301 = U1269�3�3x3V
T

3�301. �3�

ig. 3. Three basis functions computed from the Munsell reflec-
ance spectra after cube root transformation, shown with solid
urves, compared to the basis function derived from the original
eflectance spectra, shown with dotted curves.
The adequacy of the approximation may be seen by
omparing the sum of squares of the original data with
hat of the reconstructed data based on the first three ba-
is functions. The sum of the squares of the full rank ma-
rix, �i=1

1269�j=1
301sij

2 =152,520, while the sum of squares of the
hree-dimensional reconstructed matrix, �i=1

1269�j=1
301ŝij

2

152,398, indicating that the proportion of the sum of
quares accounted for in the three-dimensional approxi-
ation is 0.9992. The same answer may be obtained as a

roportion reduction in error measure or as the propor-
ion of the sums of squares of the first three singular val-
es compared to the sums of squares of the all singular
alues [31], namely,

PRE = 1 − �
i=1

1269

�
j=1

301

�sij − ŝij�2� �
i=1

1269

�
j=1

301

sij
2 =�

k=1

3

dk
2��

k=1

301

dk
2

= 0.9992. �4�

This result indicates that the cube roots of the Munsell
eflectance spectra are well fitted in a three-dimensional
uclidean space and may be characterized by three basis

unctions, V3�301
T =V301�3= �v1 ,v2 ,v3�, from Eq. (3) and il-

ustrated in Fig. 3 as solid curves. The dotted curves in
ig. 3 are the basis functions obtained from the original
on-cube-rooted reflectance spectra and show that the
ransformation has little effect on the shape of the basis
unctions. All calculations were done with the program

athematica [32]. The signs of the basis functions are ar-
itrary, and we report them as they emerged from the
omputer. The first basis function is close to a flat line or
onstant and represents the mean of the spectra and is
oughly related to the Munsell value. In cases where the
pectra are multiplied by an illuminant before processing,
he first basis function is shaped like the illuminant [9].
ll of the chromaticity information is contained in the sec-
nd and third basis functions and accounts for differences
n Munsell hue and chroma.

We next examine in detail the location of the chips in
eflectance spectra space. The locations of the 1269 Mun-
ell color chips represented in Euclidean reflectance spec-
ra space may be estimated by weighting the row singular
ectors by the singular values from Eq. (3) as follows:

P1269�3 = �p1,p2,p3� = U1269�3�3�3. �5�

These three vectors represent the contribution of each
asis function to the estimation of any given spectrum.
he pi for any given spectrum may be estimated with
ultiple regression techniques [33] similar in form to
qs. (6)–(8) and (10)–(12) below; such coefficients are
quivalent to those obtained by Eq. (5). Results showing
he locations of the Munsell reflectance spectra are plot-
ed in Figs. 4(a)–4(c). The various value planes visible in
igs. 4(a) and 4(b) are sloped rather than horizontal as in

he conceptual Munsell. Figure 4(c) shows a plot of the
econd and third basis functions that have an overall
ualitative similarity to the Munsell color system, even
hough it is not exactly centered on the zero point of the
xes nor is it oriented the same, the whole figure being
otated about 20° to 30° counterclockwise.

The final task is to compute the relationship between
he structure derived from an analysis of the reflectance
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pectra and the conceptual Munsell structure. Our ap-
roach is to compute the linear transformation of the
unsell conceptual coordinates that best predicts the co-

rdinates of the reflectance spectra space, namely, P1269�3
rom Eq. (5). We denote the Munsell conceptual coordi-
ates as a matrix, M1269�3= �m1 ,m2 ,m3�, where m1
Munsell value, m2=5 red versus 5 green-blue Munsell
xis, and m3=10 blue-purple versus 10 yellow Munsell
xis. We obtain estimates of the Euclidean coordinates by
tandard regression techniques [33] and get estimates as
ollows:

p̂1
m = − 2.8204 + �− 1.3423 � m1� + �− 0.1484 � m2�

+ �0.2831 � m3�, �6�

p̂2
m = − 0.0065 + �− 0.0256 � m1� + �0.4789 � m2�

+ �0.2688 � m3�, �7�

p̂3
m = − 0.2028 + �0.0395 � m1� + �− 0.1723 � m2�

+ �0.2809 � m3�. �8�

We substitute the estimated values of p̂i
m for those of pi

n Eq. (5) and then use Eq. (3) to obtain estimates of the
eflectance spectra of ideal conceptual Munsell samples.
hese estimates are obtained by the following equation:

Ŝ1269�301
M = P̂1269�3

M V3�301
T . �9�

Fig. 4. Location of the Munsell color chips repr

ig. 5. Plot showing the location of the Munsell color chips aft
oordinate system. Orientation is the same as in Fig. 1.
In Fig. 2 we plot the reconstructed reflectance spectra
ˆ

1269�301
M in the right column for comparison to the em-
irically measured spectra. It may be seen that the spec-
ra corresponding to the ideal conceptual Munsell chips in
ach panel are of the same shape and are equally spaced
etween the various value levels (except for the yellow
anel, which contains an intermediate value level of 8.5.).
We now pose the question of where the empirical coor-

inates, P1269�3, would be located in Munsell space. Since
e know that the estimated P̂1269�3

M matrix is a linear
ransformation of the Munsell coordinates, we can com-
ute a linear transformation back to the Munsell coordi-
ates as follows:

m1 = − 1.9401 + �− 0.7304 � p̂1
m� + �0.0235 � p̂2

m�

+ �0.7031 � p̂3
m�, �10�

m2 = − 0.4825 + �− 0.0719 � p̂1
m� + �1.5681 � p̂2

m�

+ �− 1.4040 � p̂3
m�, �11�

m3 = 0.6990 + �0.0583 � p̂1
m� + �0.9286 � p̂2

m�

+ �2.5996 � p̂3
m�. �12�

Equations (10)–(12) apply not only to the hypothetical
pectra generated by the ideal conceptual Munsell loca-
ions but to all possible spectra generated from the three
asis functions. For example, to compute the location of

in Euclidean space as calculated using Eq. (5).

near transformation from the Euclidean system to the Munsell
esented
er a li
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he empirically measured chips in Munsell space, we can
ubstitute pi for the p̂i

m in Eqs. (10)–(12). Figure 5 shows
he results of the linear transformation of the Euclidean
odel into the Munsell coordinate system. The similarity

etween Figs. 5 and 1 is striking and quantitatively close
ith only minor discrepancies.
The differences between the locations of the empirical

hips in Fig. 5 from those of the ideal Munsell locations in
ig. 1 may have arisen from a variety of sources as noted
arlier. To give an idea of the size and nature of the errors
ade, we plot in Fig. 6 the location of the spectra shown

n Fig. 2 together with four additional intermediate hues.
he locations of the empirical spectra from the middle col-
mn of Fig. 2 are plotted as circles, and the reconstructed
onceptual spectra from the right column of Fig. 2 are
lotted as squares. Note that chips of a given hue tend to
e clustered and (except for yellow) outliers tend to be low
n value (darkest colors are indicated by the largest
ircles), as may be seen by the fact that they are farthest
rom the center of the cluster. One of the advantages of
he method presented here is that the direction and size
f any error is immediately apparent. There is a caution-
ry message in Fig. 6 for experimenters using Munsell
hips in color perception experiments. The assumption
hat the Munsell chips are located in their ideal concep-
ual locations would lead to errors of a magnitude equiva-
ent to the errors illustrated in Fig. 6. These errors are
arge compared to the ability of humans to detect color
ifferences.

. FURTHER IMPLICATIONS OF THE
ODEL

lsam and Hardeberg [34] and Alsam and Finlayson [35]
ave recently applied the notion of convex sets to the so-

ig. 6. Plot showing a comparison of the locations of selected
mpirical Munsell chips with their conceptual locations (after be-
ng transformed to Munsell space). The chips are eight equally
paced hues beginning at 5 red, all of chroma 6 with all degrees
f value or lightness. The empirical locations are plotted as
ircles, while the conceptual locations are plotted as squares; the
ize of the symbols indicates value, with the largest circles being
arkest. The thickness of the squares is produced by the super-
osition of symbols representing various values.
ution of two color problems: reducing the number of cali-
ration charts and finding metamer sets without spectral
alibration. The basic idea arises from the observation
hat reflectance spectra space and RGB space are closed
nd convex, and hence the extreme points in the data
pecify a convex hull that encloses the whole target. We
ropose to apply similar notions to enhance the useful-
ess of the model presented above. We proceed by gener-
ting all possible combinations of the three basis func-
ions illustrated in Fig. 3 to construct a convex set of all
eflectance spectra in the range from 400 nm to 700 nm
hat occur in the interval 0 to 1 to constitute a vector
pace defined as X and xi�X. Within this set any combi-
ation [36] of elements from X follows the rules of convex
ombination and is defined as a linear combination of the
orm

�1x1 + �2x2 + ¯ + �nxn, �13�

here each xi�X, each �i�0, and the �i sum to l.
Any proper subset of vectors that form a convex hull in

he vector space of X also follows the rule of convex com-
inations. The Munsell sample, S1269�301, and its comple-
ent, 1−S1269�301, computed elementwise, are proper

ubsets of X. It follows that the rule of convex combina-
ions is also valid in the space of P1269�3 that specifies the
eighting of the basis functions that form any specific re-
ectance spectrum. This space is embedded in a three-
imensional Euclidean space. An important implication of
he linkage between the physical Euclidean space of re-
ectance spectra and the conceptual space of Munsell
olor by linear transformations is that solutions computed
y convex combinations in either space apply equally well
n both spaces. It is of interest to note that the paints used
y Davidson and Hammendinger [5] to paint the Munsell
hips constitute eight extreme points defining the convex
ull of a convex set. Consequently, assuming the kind of
tock used to produce the chips, the same paints, etc., the
ethods outlined in this paper could have been used to

irectly compute the appropriate combinations of paints
o produce chips located in Munsell conceptual space.

The Munsell conceptual space has some practical ad-
antages in the way the hues are arranged. One example,
reviously mentioned, is that the combination of any color
or its reflectance spectra) and its complement form an
chromatic color (or constant spectra). Complementary
olors in Munsell space also predict afterimage effects.
he model also implies that if one were to use Munsell
hips to replicate Maxwell’s [37] experiments on the mix-
ng of color samples with spinning discs, the results would
e predicted by the rule of convex combinations calculated
rom the empirically obtained locations of the chips’ re-
ectance spectra.
The question of the generality of the results needs to be

ddressed. In order to make a partial test of this question,
e obtained the reflectance spectra of the Optical Society
f America Uniform Color Scales (UCS) color chips. The
eometric structure, which differs radically from the
unsell structure, is organized as a regular rhombohe-

ral lattice embedded perfectly in three-dimensional Eu-
lidean space and is well described by Wyszecki and Stiles
1]. We analyzed (calculations not shown) the 558 reflec-
ance spectra using exactly the procedures applied to the
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unsell spectra and replicated the results almost exactly.
he proportion of the sum of squares accounted for in the
hree-dimensional singular value decomposition was
.9992 for the UCS, the same as for the Munsell data.
hese figures are based on the computation of indepen-
ent basis functions for each data set. If one used a com-
on set of basis functions to fit both sets, the overall fig-
re would drop to 0.9991. The size of the discrepancies
etween the conceptual UCS locations and the empiri-
ally obtained locations from the reflectance spectra
howed no detectable difference in magnitude from those
eported above for Munsell. Davidson [38] presents a very
etailed explanation of how the chips were painted, in-
luding specification of the 15 pigments and the actual re-
ectance spectrum of each. He also lists the actual com-
osition of pigments of all 558 color chips and gives the
ource of the reflectance data. He indicates that even
hough there may be some inaccuracies, the chips should
e good approximations of the specified UCS colors. It
eems likely that the model presented in this paper may
e generalized to color appearance atlases that are com-
arable to the Munsell and UCS in the sense that the con-
eptual aiming points are defined in a three-dimensional
uclidean space.
Finally, the construction of any color appearance atlas

nvolves a kind of circularity that deserves comment. The
unsell conceptual system originated in the mind of Al-

ert Munsell, who patented the system in 1906 (U.S.
atent 824,374). The first atlas was, by necessity, an art-
st’s invention of what color chip belongs in what location.
he artist was informed, of course, by hundreds of years
f accumulated folk knowledge. The problem of iterating
ack and forth between a conceptual system and actual
olored chips was not easy, as illustrated by the decades of
ork the Optical Society of America invested in the Mun-

ell renotation, the re-renotation, and the OSA UCS sys-
ems [1]. The circularity of previous systems has been im-
erfect in that small discrepancies have existed between
he atlases and the conceptual systems on which they are
ased. In some sense this paper has demonstrated that a
erfect circularity is possible in theory and has provided a
ethod that should be of aid in approaching closer to that

oal.

. SUMMARY
he key conclusions of the paper are these: First, the cube
ooted reflectance spectra of the Munsell color chips are
ell characterized in three-dimensional Euclidean space.
econd, appropriate linear transformations provide a
apping between the Euclidean space of reflectance spec-

ra and the Munsell conceptual space. Third, under
roper constraints the three basis functions combine to
escribe a convex super set of realizable reflectance spec-
ra that characterize colored surfaces, including painted
nd some other surfaces. Fourth, the rules of convex com-
inations apply to both the physical and conceptual
paces, and the linear transformations allow results ob-
ained in one space to be applied in the other.

It is understood that the conditions in which these con-
lusions are valid are constrained to viewing color
amples in a neutral achromatic background. If more
han one sample is viewed, it is further assumed that the
amples are illuminated with the same source. In this re-
tricted situation we assume that the measured reflec-
ance spectra of the sample contain the relevant informa-
ion for color description. It appears to us that the model,
oupled with the definition of invariant colors [2], pro-
ides an objective way of defining color based entirely
pon measurable aspects of the colored chips without re-
orting to any assumptions about an ideal observer or
ariations in illuminants.

Taking the cube root of the reflectance spectra has the
ffect of transforming nonlinear functions into linear
unctions in the formulation of mathematical models of
eflectance spectra. The rules of convex combinations may
rovide a foundation for formalizing measurement in re-
ectance spectra space comparable to that provided by
rantz in the formalization of Grassman’s laws for mono-

hromatic lights [39,40].
A major puzzle remains, namely, to explain why the re-

ectance spectra are so well modeled in three-
imensional space. The only reasonable explanation we
ave found is by Maloney [14], who suggests that it re-
ults from some physical constraint imposed on the di-
ensionality of reflectance spectra by molecular and

uantum considerations. The causes of surface and other
ources of color are treated by researchers such as Tilley
41] and Nassau [42], but they do not deal explicitly with
hy reflectance spectra are low dimensional.
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