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We developed and tested a powerful method for identifying and characterizing the effect of
attention on performance in visual tasks as due to signal enhancement, distractor exclusion, or
internal noise suppression. Based on a noisy Perceptual Template Model (PTM) of a human
observer, the method adds increasing amounts of external noise (white gaussian random noise) to
the visual stimulus and observes the effect on performance of a perceptual task for attended and
unattended stimuli. The three mechanisms of attention yield three ‘“signature” patterns of
performance. The general framework for characterizing the mechanisms of attention is used here
to investigate the attentional mechanisms in a concurrent location-cued orientation discrimination
task. Test stimuli—Gabor patches tilted slightly to the right or left—always appeared on both the
left and the right of fixation, and varied independently. Observers were cued on each trial to attend
to the left, the right, or evenly to both stimuli, and decide the direction of tilt of both test stimuli. For
eight levels of added external noise and three attention conditions (attended, unattended, and
equal), subjects’ contrast threshold levels were determined. At low levels of external noise, attention
affected threshold contrast: threshold contrasts for non-attended stimuli were systematically
higher than for equal attention stimuli, which were, in turn, higher than for attended stimuli.
Specifically, when the rms contrast of the external noise is below 10%, there is a consistent 17%
elevation of contrast threshold from attended to unattended condition across all three subjects. For
higher levels of external noise, attention conditions did not affect threshold contrast values at all.
These strong results are characteristic of a signal enhancement, or equivalently, an internal
additive noise reduction mechanism of attention. © 1998 Elsevier Science Ltd. All rights reserved.
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INTRODUCTION is very difficult to quantify or test the subjective
appearance of perceived objects (but see Prinzmetal,
Amiri & Allen, 1997). In this research we ask the
somewhat more modest but substantially more tractable

question of whether or not attention affects performance

For more than 100 years, selective attention has
fascinated senmsory physiologists and psychologists.
Pioneer investigators, including Mach, Fechner, Wundt,
Titchener and James (Fechner, 1860; James, 1890;

Wundt, 1902; Pillsbury, 1908; Titchener, 1908), debated
whether attention affects the perceived quality of objects,
such as the brightness of a light patch, the loudness of a
musical tone, the clarity of a visual pattern, or the
vividness of a certain color. Much of this early work was
introspective in character, and the views of these early
theorists differed (James, 1890). Indeed, despite exten-
sive subsequent research, we still have only the most
rudimentary answer to the original question: Does
attention affect the quality or strength of perception? It
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on perceptual tasks by a signal enhancement mechanism
or by other means. Before describing our method for
distinguishing mechanisms of attention, we briefly
consider previous research in visual attention.

Attention to locations and features

Since the 1970s, selective attention has been the topic
of intensive psychological research, much of which
studied the consequences of attending to particular spatial
locations and not to other spatial locations, or to
particular features but not others. By cuing subjects to
attend to a region of the visual field and varying the
validity of the cues, it has been established that: (1)
observers react faster to objects falling in the attended
region than those in unattended regions (e.g., Eriksen &
Hoffman, 1972; Posner, 1978, 1980; Nissen, 1985;
Shiffrin, 1988; Sperling & Dosher, 1986); (2) observers
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are more accurate in classifying a stimulus in terms of
brightness, orientation or form when it is in the attended
region than when it is in the unattended region (e.g.,
Shaw & Shaw, 1977, Bashinski & Bacharach, 1980;
Downing, 1988). By cuing subjects to stimulus features
alone (independent of spatial location), it has been shown
that: (3) observers react faster to a stimulus of an
expected size than to an unexpected size (Larsen &
Bundesen, 1978; Cave & Kosslyn, 1989); (4) observers
detect a stimulus with an expected spatial frequency with
higher accuracy than stimuli with an unexpected spatial
frequency (Davis & Graham, 1981; Shulman & Wilson,
1987; Sperling, Wurst & Lu, 1993); and however (5) in
certain situations, observers’ performance on stimuli with
the attended feature is not better than those with
unattended features (Tsal & Lavie, 1988; Cave &
Pashler, 1995; Shih & Sperling, 1996).

The theoretical interpretation of these empirical facts is
less clear. In cases (1), (3) and (4), for example, it is often
not possible to conclude immediately that attention has
truly changed perceptual discriminability as opposed to
changing criteria, or changing the decision structure of
the task (see Sperling & Dosher, 1986 for a review of
these issues, and Palmer, Ames & Lindsey, 1993 for a
recent application). In case (2), sufficient experimental
controls were provided to determine that perceptual
discriminability improved in attended locations. How-
ever, these investigations tell us nothing about the
specific attentional mechanism leading to the improved
discriminability. Improvements in discrimination could
be the result of perceptual enhancement (Prinzmetal et
al., 1997), or response competition (Pohlmann & Sorkin,
1976; Duncan, 1980, 1984), or of a number of other
mechanisms.

Mechanisms of attention

In order to explain the various documented effects of
selective attention in human information processing,
researchers have proposed a numter of possible mechan-
isms through which selective attention might operate: a
filter (Broadbent, 1958), effort (Kahneman, 1973),
resources (Shaw & Shaw, 1978), a control process of
short-term memory (Shiffrin & Schneider, 1977), orient-
ing (Posner, 1980), conjoining object features (Treisman
& Gelade, 1980), a moving spotlight (Tsal, 1983), a gate
(Reeves & Sperling, 1986), a zoom lens (Eriksen & St.
James, 1986), and both a selective channel and a pre-
paratory activity distribution (LaBerge & Brown, 1989).
While these metaphoric models of attention make strong
suggestions about how attention operates, and in certain
cases even admit quantitative applications (Reeves &
Sperling, 1986), we take an alternative approach.

We suggest a formal perceptual decision structure and
develop and test models of attentional effects that focus
on modulation of perceptual discriminability (signal and
noise levels) in the cognitive processes. We outline three
mechanisms of attention.

1. In signal enhancement, aitention enhances the
strength of the signal.
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2. In distractor exclusion, attention narrows a filter
(i.e., feature template) that is processing the
stimulus so that distractors (or external noise) is
differentially excluded.

3.In internal noise reduction, attending reduces
internal noise associated with perceptual processing.
(We will distinguish additive and multiplicative
internal noise, explained below).

Evidence that may relate to these mechanisms has
already been cited: in some cases, attention acts to
increase the signal to noise ratio in perceptual processes
(Bashinski & Bacharach, 1980; Downing, 1988), to
exclude distractors (Davis & Graham, 1981; Shiu &
Pashler, 1994), or to decrease variance in perceived
quality of signal (Prinzmetal et al., 1996). However,
these suggestive results need to be studied systematically
within a coherent theoretical framework, and with more
powerful empirical methods.

We develop a novel paradigm which manipulates the
stimulus through the addition of external noise, and the
observer through attention instructions. Using newly
developed mathematical predictions for the external
noise plus attention paradigm, we can fully and
quantitatively characterize the attentional mechanism(s)
mediating performance under different attentional in-
structions for a wide range of particular perceptual tasks.
Signal enhancement (or equivalently, additive internal
noise reduction) is characterized by divergence between
attentional conditions at low, but not high levels of
external noise; distractor suppression is characterized by
divergence between attentional conditions at high, but
not low levels of external noise; and (multiplicative)
internal noise reduction is characterized by divergence
between attentional conditions at both low and high
levels of external noise. Any attention effect must mani-
fest itself either in the low noise region, the high noise
region, or both the low and the high noise regions. Our
model provides an explanation for each of these patterns,
and in this sense fully characterizes attention effects.

In this article, we first develop the noisy Perceptual
Template Model (PTM) and derive mathematical pre-
dictions for the performance of the model under each of
the three attention mechanisms. We then apply the
general method to the study of attention mechanisms in a
location-cued orientation discrimination task.

THEORY

The Perceptual Template Model (PTM)
Internal noise

Perceptual processing by human observers, especially
near threshold, is characterized by limits imposed by
some combination of neural randomness, limitations of
coarse coding of stimulus properties, loss during
information transmission, etc. These various inefficien-
cies can be simply characterized in terms of the
equivalent internal noise—the amount of random internal
noise necessary to produce the degree of inefficiency in
processing exhibited by the perceptual system. In
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FIGURE 1. Noisy perceptual template riodel. It consists of four major components: (1) a perceptual template; (2) a
multiplicative internal noise source, Ny; (3} an additive internal noise source, Nz; and (4) a decision process. The box with U-
shaped function represents possibly non-linzar full-wave rectification; the triangle denotes an amplifier which multiplies its two
inputs to produce an output. A good example of a perceptual template is a spatial frequency filter F(f), with a center frequency
and a bandwidth such that a range of frequencies adjacent to the center frequency pass through with smaller gains. Limitations
of human observers are modeled as equivalent internal noise. Multiplicative noise is an independent noise source whose
amplitude is proportional to the (average) amplitude of the output from the perceptual template. Additive internal noise is
another noise source whose amplitude does not vary with signal strength. Both multiplicative and additive noises are added to
the output from template matching, and the noisy signal is submitted to a decision process. Depending on the task, the decision
could reflect either detection or discrimination, and could take the form of either N-alternative forced choice or “yes”/“no” with
confidence rating.

applications of signal detection theory to perception and
to memory, for example, it is commonly understood that
predicted performance depends critically on the variance
of the noise distributions (Green & Swets, 1966), and that
various processing inefficiencies such as criterion
variability can be equivalently modeled by altering the
variance of noise distributions (Wickelgren, 1968).
Although modeling processor inefficiencies in terms of
equivalent internal noise does not distinguish between
various reasons for the inefficiency, it allows us to
quantify perceptual loss with respect to performance
losses arising from external noise, and further allows the
comparison of different perceptual tasks.

External noise manipulations

External noise, also called “equivalent input noise”, is
frequently used in electrical engineering to measure the

*Some authors in the equivalent noise literature (e.g , Pelli, 1981) did
not include multiplicative noise in their models. In most cases,
these authors considered only low contrast regions (<10%) or
considered such restricted ranges of external noise levels that a
distinction between additive and multiplicative noise was not
warranted. However, multiplicative noise has bezn considered by
numerous studies (e.g., Nachmias & Sansbury, 1574; Stromeyer &
Klein, 1974; Legge & Foley, 1980; Burbeck & Kelly, 1981) and is
absolutely necessary to account for our data (see section entitled
“Fitting the PTM models” for a detailed discussion).

properties of noisy amplifiers (North, 1942; Friis, 1944;
Mumford & Schelbe, 1968). The method has also been
adopted by psychologists to study a wide range of
perceptual processes (Fletcher, 1940; Barlow, 1956,
1957; Swets, Green & Tanner, 1962; Greis & Rohler,
1970; Pollehn & Roehrig, 1970; Carter & Henning, 1971;
Stromeyer & Julesz, 1972; Harmon & Julesz, 1973; Pelli,
1981, 1990; Henning, Hertz & Hinton, 1981; Pavel,
Sperling, Ried] & Vanderbeek, 1987; Riedl & Sperling,
1988; Parish & Sperling, 1991). The basic idea is to
estimate the amount of internal noise and characteristics
of the perceptual processes by studying how performance
in some task is affected by experimenter-manipulated
external noise.

Noisy perceptual template model

The external noise method is applied here to perceptual
detection or perceptual discrimination tasks. Perceptual
task performance is modeled as the combination of
outputs from a perceptual process—a “template”—and
(additive or multiplicative) internal noise sources. The
noisy template model shown in Fig. 1 consists of (1) a
perceptual template; (2) a multiplicative internal noise
source;* (3) an additive internal noise source; and (4) a
decision process. Consider each component in turn.

A perceptual template with certain  luning
characteristics. The first component of the model is a
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perceptual processor, termed a perceptual template. A
good example of a perceptual template is a spatial
frequency filter F(f), with a center frequency and a
bandwidth such that a range of frequencies adjacent to the
center frequency pass through with smaller gains. A
perceptual template might, however, be far more
complex, for example, a templatz for an alphanumeric
character. Because the ultimate goal of the PTM is to
account for human decisions, we could cast the output of
the perceptual template as a vector in decision space. In
the experimental example we consider here, the decision
axis is one-dimensional (1-D) so the outcome of
perceptual processing may be coded as a scalar. Say that
the gain (height) of the filter for a signal-valued stimulus
is B. Then the output signal amplitude S for a signal
stimulus of contrast c is:

S = pfe. (1)

External noise—noise added to the stimulus by the
experimenter, like the stimulus, is processed through the
perceptual template. If the external noise has a gaussian
histogram, the output noise from the perceptual template
also has a gaussian histogram; this is so because the
template functions as an integrator. We label the standard
deviation of the noise output from the perceptual
template associated with the external noise N,,.. (In fact,
the relationship between the weight given to a signal-
valued stimulus, B, and the value of N, passed through
the perceptual template or filter may be known only up to
a constant. We characterize this as I'V,,,, and further
simplify the development by assaming I = 1, which is
equivalent to an assumption that the integral of the gains
for the attention-neutral perceptual template is normal-
ized to 1.)

Multiplicative internal noise. Perceptual task perfor-
mance (e.g., signal detection) is Lmited by properties of
the stimulus (signal contrast, amount of external noise)
and by properties of the human observer (randomness and
inefficiencies of the processing). The human limits are
modeled as equivalent internal noise. Internal noise is
either multiplicative or additive. Multiplicative noise is a
natural way of characterizing tasks in which, for
example, perceived sensory variability, or perceived
differences, are proportional to signal strength (Weber-
law situations). Multiplicative noise is an independent
noise source whose magnitude is a function of the
contrast in the external stimulus, as processed through the
perceptual template. Independent multiplicative noise is
modeled as a gaussian random variable with mean 0 and
standard deviation of N;, multiplied by some measure of
the output amplitude of the perceptual template. The
measure of output amplitude of the perceptual template

*This form is related, but not identical to a development of properties
of neural responses by Geisler and Albrecht (1995), in which the
variance of a neural response is proportional to the mean response.
Geisler and Albrecht’s equations do not consider additive noise;
and our multiplicative noise equation is somewhat simpler than
theirs. However, the predictions are qualitatively similar.
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reflects the total contrast (power) (||.||) of the signal and
the external noise, possibly raised to a power y in order to
account for saturating or compressive nonlinearities.
Further, the multiplier on the multiplicative noise is a
function of the output amplitude of the perceptual
template integrated over some brief period of time and
small area of space (locally space-time averaged). The
exact nature of the space and time averaging might
change the relative weight of the signal and external
noise; however, this is equivalent to a change in the
parameter f. Hence the standard deviation of the
multiplicative noise Ny is:

Nma = M (\ / ﬁ2c2 -+ Nezxt>7- (2)

The formulation of multiplicative noise is mathema-
tically equivalent to a theory of contrast gain control
(e.g., Legge & Foley, 1980; Carlson & Klopfenstein,
1985; Sperling, 1989).*

Additive internal noise. Recall that human processing
limits are modeled as equivalent internal noise, which
may be either multiplicative or additive. In contrast with
multiplicative internal noise, the amplitude of additive
internal noise does not vary with signal strength.
Independent additive noise is modeled as a gaussian
random variable with mean 0 and standard deviation N;.
One could include internal additive noise early and/or
late in the process. For brevity, Fig. 1 shows late additive
noise because this is consistent with our subsequent data.

Decision process. Both multiplicative and additive
noises are added to the output from template matching,
and the noisy signal is submitted to a decision process.
Depending on the task, the decision could reflect either
detection or discrimination, and could take the form of
either N-alternative forced choice or “yes”/“no” with
confidence rating. These different tasks are modeled in
detail elsewhere (see MacMillan & Creelman, 1991). Our
development here is general, and focuses on the
characteristic patterns of signal to noise ratios over
manipulations of external noise and attention. The details
of one specific application to a discrimination task are
illustrated in the experimental application.

Threshold predictions for white gaussian external noise

In this section, we describe how an observer’s
perceptual threshold depends on the amplitude of the
external noise added to the signal. In visual tasks, the
signal and the noise are rendered as intensities (gray-
levels) of pixels on a screen. Figure 2(a) shows *“white
gaussian noise” samples of increasing amplitude, and
Fig. 2(b) shows corresponding signal plus noise samples.
In this example, the signal is a Gabor patch—a spatially
windowed 1-D sine wave. “White gaussian noise” refers
to noise whose pixel graylevels are jointly independent
identically distributed gaussian random variables. In
consequence, the pixel gray-level histogram is gaussian
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FIGURE 2. Contrast threshold of the noisy perceptual template model as a function of the contrast of the external noise for three
different performance levels (d' = 1, 1.41, 2.0). (a) External gaussian white noise. From left to right, the contrast of the noise
increases from 0 to 100%. (b) Signal + external noise. Different amount of external gaussian noise (a) is linearly superimposed
on a Gabor with constant contrast. The detectability of the Gabor deteriorates with the amplitude of the added external noise. (c)
Contrast threshold of the noisy perceptual template model as a function of the external noise amplitude for three &' levels. For
each &' level, the contrast threshold is a constant when the amplitude of the external noise is small; it increases with the
amplitude of the external noise at high noise: amplitudes. In that range, external noise dominates internal noise; performance is
mostly determined by the amount of external noise.

and it has equal Fourier energy at all the spatial
frequencies.

Signal discriminability, &', is determined by the
strength of the signal, S, and the standard deviation of
the total noise (external and internal), oy:

d’ - S/O'N. (3)

The signal strength is determined by the template gain
constant for the signal, §, and the signal contrast, c. Since
all the noise sources (external, multiplicative, and
additive noise) in the perceptual template model are
independent (Legge & Foley, 1980; Carlscn & Klopfen-
stein, 1985; Sperling, 1989) the total variance of the noise
0% is the sum of the variances of all the noise sources:

0 = N2+ Ny + N2y

ext

= N; +N2(ﬁ2c2+ Nz + N3

ext

(4)
Combining these facts [equations (1, 3) and equation

D]:
e

\/ ext+N1 ﬂ2C2+ ext) +]V22

(5)

Each of the noise distributions is assumed to be
gaussian, so that the sum of the noise distributions is also
gaussian. This assumption is not critical to any of the
development outlined above, but it does simplify the appli-
cation to signal detection estimation—the gaussian noise
distribution allows us to use the gaussian form of signal
detection calculations (see the experiment for details).

An- experiment might present a single fixed signal
contrast and measure d' for various noise conditions.
However, this procedure is too dependent on the tails of
distributions to be usable over a full range of external
noise levels. Instead, the contrast of the signal is
manipulated to achieve a particular threshold level of &'
(or, equivalently, 2 AFC percent correct) for each level of
external noise. To simplify the current development, we
restrict ourselves to situations where y=1, unless
otherwise specified. (For the more general case where 7y
is different from 1, see the model-fitting section
following the experiment. Additionally, the Appendix
describes a numerical procedure developed to iteratively
solve the equation for a threshold value of contrast c, for
cases where y # 1.)
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For a fixed d', we can rearrange equation (5) to express
the required threshold signal contrast ¢, as a function of
the amount of external noise:

o =[O NN + N3
TV gy -Ap)

(6)

Figure 2(c) plots threshold contrast of the signal, c,, as
a function of the contrast (variance) of the external noise
Nex: at three fixed threshold levels (d' = 1, 1.41, 2) for a
hypothetical case in which y:= 1, Ny =0.45, N, = 0.0625
and f = 2.4. It is convenient for this purpose to plot these
on a log-log scale. Taking logs of equation (6) yields:

log(c;) = 1/21og((1 + N})NZ, + N3)
~1/21og(1/d? — N?) —log(3). (7)

Such graphs possess a characteristic shape: (1) When
the contrast (variance) of the external noise N, is very
small, threshold signal contrast ¢, does not vary with the
amount of external noise because internal noise N;
dominates external noise. (2) When the contrast of
external noise Ny, is very large, log(c,) increases as a
linear function of log(N. because external noise
dominates internal noise. (3) When the external noise
(N.x) has intermediate contrast, there is a smooth
transition from the region where internal noise is
dominant to the region where external noise is dominant.
Graphs of this kind are sometimes called threshold versus
contrast, or TvC, graphs (e.g., Blakemore & Campbell,
1969).

Of course, in any real application, y, Ny, ¥, and f are
unknown quantities and must be determined from the
experimental data. These values can be estimated from
data such as that in Fig. 2(c) by non-linear estimation
techniques.* The power of the external white gaussian
noise manipulation is that it enables us to estimate the
contributions of both kinds of internal noises, the
multiplicative internal noise N; and the additive internal
noise N,. These internal noise estimates characterize the
inefficiencies in the human processing system.

Attention Plus External Noise Manipulations

We are now able to turn to the main purpose of this
development, which is a characterization of attention
mechanisms. Theoretical predictions are developed for
the performance of the perceptual template model (PTM)
under both attention and external noise manipulations.
We consider three classic proposed mechanisms of
attention-signal enhancement, distractor exclusion, and
internal noise reduction—and idertify how each mechan-
ism would operate under the PTM model. The signature
performance patterns derived here for signal enhance-
ment, distractor exclusion and ncise suppression do not
include consideration of uncertainty phenomena which

*Alternatively, simple equations can be derived which allow us to
compute estimates of certain of these parameters from relations in
the data. We do not develop the de:ails here; measurements of
thresholds at three different performance levels are required.
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would be relevant to certain tasks. In this paper, we
choose a task which does not require uncertainty
computations. Alternatively, one could correct for
uncertainty effects to yield true d' measures, to which
these signatures should apply.

Signal enhancement

One classic view (Wundt, 1902; see Prinzmetal et al.,
1997 for a review) is that attention somehow enhances
the perceptual strength of the signal. In the context of the
PTM, signal enhancement is operationalized as an
attentionally manipulated increase (or decrease) of the
gain on the output of the perceptual template [Fig. 3(a)].
(Since the output of the perceptual template depends on
both the signal and the external noise, perhaps a better
label for signal enhancement would be stimulus en-
hancement.) Attended regions might be enhanced by
multiplying the output of the perceptual processors in
those regions by a factor A; > 1.0, and unattended
regions might be attenuated by multiplying the output by
a factor Ay < 1.0. Thus, attention “turns up the gain” in
certain regions, and “turns down the gain” in others.
Signal enhancement applies to the signal and to the
external noise—both are amplified by a factor A;.

In order to see the consequences of this for the relation
between log(c,) and log(N.,.) in the simple case where
v = 1, we simply substitute A c for ¢ and A| Ny, for Ny, in
equation (7), and find that:

log(c) = 1/21og((1 + N)Ng,, + N3 A})

—1/2log(1/d? — N7) —log(8). (8)

(Notice that enhancing the signal by a factor of A; is
mathematically equivalent to reducing the additive
internal noise N, by a factor of 1/4; if y=1.)

What is the signature of signal enhancement in
performance? In Fig. 3(b), we plot log(c;) vs log(Next)
at a fixed performance level (d' = 1) for three attention
conditions (attended: A; = 1.414; equal attention: A; = 1;
and unattended: A; = 0.707) in the hypothetical situation
where y=1, Ny =045, N, =0.0625, and f=24. The
signature feature of these curves is that they split at low
external noise levels, and they overlap with each other at
high external noise levels. Signal enhancement cannot
improve performance in the region where external noise
dominates because enhancement applies equally to the
external noise and the signal. The parameters y, Ny, No/A;
and B can be estimated from experimental data for each
attention condition. The size of the attention effect can be
quantified in terms of the ratio of performance in the
attended, unattended, and equal attention conditions.

To summarize, if attention enhances attended signals,
it will only be effective when internal noise dominates
external noise; when external noise is high (and where
y=1), attention will neither improve nor damage
performance.

Distractor exclusion
Another common view (e.g., Davis & Graham, 1981;
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FIGURE 3. Three possible attention mecharisms and the performance of the noisy perceptual template model under each of the
three possible mechanisms. (a) A PTM model in which attention operates via signal enhancement. (b) Prediction of performance
of the model in (a): signal threshold of the PTM model vs external noise contrast. These curves split at low external noise levels,
and they overlap with each other at high external noise levels. Signal enhancement can only improve performance in low
external noise levels. (¢) A PTM model in which attention operates via distractor exclusion. (d) Prediction of performance of the
model in (d). The signature feature of these curves is that attention only modulates performance at high levels of external noise.
(e) A PTM model in which attention operates via internal multiplicative noise reduction. (f) Prediction of performance of the
model in (g). Attention affects performance at all levels of external noise, but increasingly so as external noise increases.

Shiu & Pashler, 1994) is that attention allows you to
exclude distractors that differ along some significant
dimension from the signal. We call this proposed
mechanism “distractor exclusion”. Distractor exclusion
is operationalized within the PTM model as changing the
tuning function of the perceptual template. If attending
narrows the tuning function, noise, or distractors, may
impact less on the output of the perceptual template. In
Fig. 3(c), attention modulates the width of the perceptual
template by multiplying the width of the function with

*Certain paradigms with filter shape changes may require changes in
the gain of the signal, i.e., B, as well as filter width.

A; < 1.0 in attended conditions and with A> > 1.0 in
unattended conditions.*

Suppose that narrowing the tuning function changes
the area under it by a factor of A;. This would reduce the
effective external noise by a factor of A;, presumably
without affecting the effective signal. In this case, the
relation between log(c;) and log(Ney) is derived from
equation (7) by substituting A>Nex for Nexi:
log(c;) = 1/2log((1 + N})AING, + N3)

—1/210g(1/d” — N?) ~ log(8). (9)

What is the signature of distractor exclusion in
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FIGURE 4. Experimental procedure. Following a subject keypress, a fixation display appears for 0.5 sec. The fixation display
includes two square-frames, each displaced 3 deg to left or right of the central fixation point. Then the 33 msec attention cue
replaces the fixation dot, instructing the observer to attend to the right (or left, or equally to both sides). The cue appears
150 msec prior to the stimulus. During this time period, the right square (or left, or both) blinks, creating a peripheral event at the
attended location. The stimulus includes, in sequence, two noise frames, a signal frame, and two noise frames. All noise samples
in each trial are independent samples with the same variance (contrast), as the signal frames on the left and right. Each frame
appears for 16 msec, so the total time from the beginning of the attention cue to the end of the signal frame is only 233 msec; this
precludes an eye movement to the attended location. After the stimulus sequence, the fixation display reappears for 500 msec,
followed by a 500 msec response cue instructing the subject to report the orientation of first the right and then the left signal
Gabor. The trial ends with the fixation display and auditory feedback for both left and right responses.

performance? In Fig. 3(d), we plot log(c,) vs log(Nex) at
a fixed performance level (4 =1) for three attention
conditions (attended: A, = 0.707; equal attention: A = 1;
and unattended: A; = 1.414) in the hypothetical situation
where y=1, Ny =045, N, =0.0625, and f=2.4. The
signature feature of these curves is that attention only
modulates performance at high levels of external noise.
Only when the external noise or distractors have a
substantial effect on performance is reduction of that
noise important. At low levels of external noise, internal
noise dominates and template tuning does not impact on
internal noise. Again, in an experiment, the parameters

N1, N;, B and A, can be estimated from the data. The
pattern of predictions holds even in cases where y differs
from 1.

To summarize, if attention changes the tuning of the
perceptual template or perceptual processes, then atten-
tion can only modulate performance when external noise
dominates internal noise.

Internal noise reduction

Another often suggested mechanism of attention
involves the reduction of internal noise for the attended
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stimulus (e.g., LaBerge, 1995). As it happens, the
reduction of additive noise is formally equivalent to the
enhancement of signal [see equation (§)] in the special
case where y=1. In this section we consider an
attentional mechanism which modulates multiplicative
internal noise by changing the gain on the independent
multiplicative noise [Fig. 3(e)]. Changing the gain of the
multiplicative noise by a factor of A3 is equivalent to
substituting A3N; for NV} in equation (8), to yield:
log(c;) = 1/2log((1 + AINF)NZ, + N2)

—1/21og(1/d* — AINE) —log(B). (10)

The signature of an attentional modulation of multi-
plicative internal noise is shown in Fig. 3(f), where we
plot log(c,) vs log(Ne,) at a fixed performance level
(d=1) for three attention conditions (attended:
A3 =0.707; equal attention: Az =1; and unattended:
A3=1.414) in the hypothetical situation where
N =045, N, =0.0625, and §=2.4. Attention affects
performance at all levels of external noise. Generally,
attention affects the high external noise regions some-
what more than low external noise regions. Furthermore,
the magnitude of the attention effect depends on the
particular . This feature distinguishes multiplicative
noise reduction from a mixture of signal enhancement
and distractor exclusion, where the magnitude of
attention effect does not change with .

To summarize, if attention modulates multiplicative
internal noise, it affects performance at all external noise
levels, with slightly larger effects when external noise
dominates internal noise.

EXPERIMENT

In this section, we apply the attention plus external
noise paradigm to study attention mechanisms in a
location-cued orientation discrimination task. The parti-
cular task was chosen because location cuing of
orientation judgments is one of the few paradigms in
the literature with clearly demonstratzd attentional
control over discriminability in a perceptual task (Down-
ing, 1988).

We chose a concutrent design in which stimuli are
independently varied at each stimulus location and the
subject was required to make an independeat response for
every stimulus location. This has the advantage of
avoiding statistical uncertainty issues in the decision
process in compound paradigms, in which only one
detection response is required in a trial invclving multiple
locations (see Sperling & Dosher, 1986; Dosher &
Sperling, forthcoming, for reviews).

In this experiment, the display always consisted of a
test stimulus on both the left and the right of fixation.
Observers were cued on each trial to attend to the location
on the left of fixation, the location on the right of fixation,
or to attend evenly to both locations. The observers
always report on both left and right. Each test stimulus
was a Gabor test patch oriented slightly (top) to the right
or (top) to the left, and the stimuli on the left and right of
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fixation vary independently. To this basic stimulus was
added various amounts—from O to moderately high
contrast—of random external noise. In the experiment,
the threshold signal contrast level for each subject in
performing the orientation discrimination task was
determined for all combinations of attention conditions
and external noise levels.

Method

Stimulus and display. The “signal” in the experiment
consisted of Gabor patterns tilted either 8 deg to the left
or 0 deg to the right of vertical (Fig. 4):

{x,y) =1y (1 0 4+ ¢ sin(27f (x cos(6)

+y sin(6)) exp <—x2 ;}’2» (1)

For subject ZL, 0 = 10 deg; for subjects HS and EB,
6 = 12 deg. Each Gabor extended 1.5 x 1.5 deg?, with a
center frequency f= 2.5 cycle/deg, and a standard devia-
tion ¢ = 0.6 deg. The mean luminance Iy is 169 cd/m?.
The maximum contrast of each Gabor varied so as to
generate psychometric functions, at levels dependent
upon the level of external noise. The center of the left/
right Gabor is displaced 3 deg to the left/right of the
fixation point.

The pixel gray-levels of each external noise frame
were sampled from a gaussian distribution with a mean of
0 and a variance depending on the amount of external
noise desired. Noise frames had the same size as that of
the signal frames, with each pixel subtending
0.05 x 0.05 deg? visual angle. To ensure that the external
noise did conform to the gaussian distribution, the
maximum standard deviation of the noise was kept
below 33% maximum achievable contrast.

Apparatus. Both signal and noise frames were
generated off-line using the HIPS image processing
software (Landy, Cohen & Sperling, 1984a; Landy,
Cohen & Sperling, 1984b) and displayed using a program
based on a software package (Runtime Library for
Psychology Experiments, 1988) on an IKEGAMI
DM516H monochrome monitor driven by an AT-Vista
video graphics board in an IBM 486PC computer. The
monitor has a fast, white P4-type phosphor, and a 60 Hz
refresh rate. While many monitors have pixel interactions
so that the intensity of an isolated pair of adjacent
intensified horizontal pixels is different from a pair of
adjacent vertical pixels, the IKEGAMI DM516H monitor
has a sufficiently extended temporal frequency response
to reduce such interactions to insignificance. A special
circuit that combines two graphics card output channels
produces 4096 distinct gray levels (12 bits).

The luminance of the monitor was 12.1 cd/m? when
every pixel was assigned the lowest gray level and
325 cd/m® when every pixel was given the greatest gray
level. We chose the background luminance to be that
value which, when it is assumed by every pixel, produces
0.5%(325 + 12.1) = 169 cd/m®. A lookup table was gen-
erated by means of a psychophysical procedure that
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TABLE 1. Estimated threshold values for the experiment

ZL HS EB
Noise Attn o n o n % n
attn 0.0286 3.21 0.0346 3.18 0.0384 2.85
0 eq 0.0337 3.39 0.0359 2.11 0.0400 344
unat 0.0349 3.73 0.0413 291 0.0432 342
attn 0.0279 2.99 0.0311 2.25 0.0387 4.19
0.021 eq 0.0311 3.39 0.0349 2.55 0.0400 2.51
unat 0.0324 2.94 0.0416 3.7 0.0451 4.58
attn 0.0298 2.05 0.0368 2385 0.0384 2.52
0.041 eq 0.0327 231 0.0378 233 0.0448 3.04
unat 0.0349 1.91 0.0397 2.85 0.0470 1.68
attn 0.0314 2.48 0.0406 1.91 0.0425 277
0.082 eq 0.0343 1.91 0.0457 1.17 0.0454 2.07
unat 0.0375 2.09 0.0495 1.58 0.0483 246
attn 0.0502 1.88 0.0594 1.28 0.0552 .72
0.123 eq 0.0508 1.67 0.0670 1.40 0.0568 1.44
unat 0.0524 1.91 0.0714 2.22 0.0641 2.57
attn 0.0683 1.92 0.100 1.90 0.0819 1.77
0.164 eq 0.0721 1.92 0.0994 1.84 0.0810 1.33
unat 0.0730 2.49 0.102 2.24 0.0857 1.50
attn 0..46 1.91 0.175 0.99 0.167 0.95
0.246 €q 0..40 1.33 0.178 0.62 0.168 1.67
unat 0.246 1.80 0.179 1.24 0.172 1.88
attn 0.219 2.86 0.308 0.81 0.306 1.05
0.328 eq 0.219 1.94 0.300 1.11 0.297 2.38
unat 0.216 1.83 0.306 2.11 0.303 0.89

Note: the 10-point psychometric functions ror each level of attention and of external noise were summarized with a Weibull function, where &
estimates the 75% correct level of 2AFC performance, and 1 indexes the slope of the function.

linearly divided the whole luminance range into 256 gray
levels. When extremely low contrasts were required by
the experiment, a simpler lookup table was generated by
linearly interpolating luminance levels around the back-
ground luminance (for contrasts less than 1%). All the
displays were viewed binocularly with natural pupil at a
viewing distance of 75 cm in a dimly lighted room (the
average luminance in the room is zpprox. 10 cd/m?). At
this viewing distance, the monitor extended a 24 x
15 deg visual angle.

Design. Subjects’ threshold signal contrasts were
estimated for each attention condition and each external
noise level. There were three attertion (attended, equal
attention, and unattended) and eight external noise level
conditions (0, 0.02, 0.04, 0.08, 0.12, 0.16, 0.25, 0.33).
The method of constant stimuli (Woodworth, 1938) with
10 different signal contrasts was used to generate
psychometric functions at each of the 24 combinations
of attention and external noise levels. There were at least
40 trials in each of the 240 conditions. All experimental
conditions were intermixed in every session. Data were
collected from each of three subjzcts in five sessions,
each consisting of 960 trials and lasting approx. 1.5 hr.

Procedure. The display sequence of a typical trial is
shown in Fig. 4. Following a subject keypress, a fixation
display appears for 0.5 sec. The fixation display includes
two square-frames, each displaced 5 deg to left or right of
the central fixation point. Then the 33 msec attention cue

*Further experiment suggested that this per.pheral cue, when added to
the central cue, did not have a substantial effect on subjects’
performances.

replaces the fixation dot, instructing the observer to
attend to the right (or left, or equally to both sides). The
cue appears 150 msec prior to the stimulus. During this
time period, the right square (or left, or both) blinks,
creating a peripheral event* at the attended location
(Yantis & Jonides, 1990). The stimulus includes, in
sequence, two noise frames, a signal frame, and two noise
frames. In this procedure, the noise is combined with the
signal through temporal integration. All noise samples in
each trial are independent samples with the same contrast
(variance); the contrast levels of the signal frames on the
left and right during a trial are also the same. Each frame
appears for 16 msec, so the total time from the beginning
of the attention cue to the end of the signal frame is only
233 msec; this precludes an eye movement to the
attended location (Hallett, 1986). After the stimulus
sequence, the fixation display reappears for 500 msec,
followed by a 500 msec response cue instructing the
subject to report the orientation of first the attended and
then the unattended signal Gabor. The order of report was
randomized in the equal attention condition. The trial
ends with the fixation display and auditory feedback for
both left and right responses.

Subjects. Two graduate students (SH and EB), naive to
the purposes of the experiments, and the first author (ZL)
served as subjects in the experiment. All have corrected-
to-normal vision.

Results

The two-alternative forced-choice (2AFC) percent
correct for judgments of Gabor orientation on the left
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FIGURE 5. Threshold contrast (rms contrast of the Gabor) vs external noise level (rms contrast of the gaussian random noise)

for three subjects each in three different at:ention conditions. The curves are generated from the best-fit PTM model with signal

enhancement occurring after multiplicative noise. Attention affected threshold contrast only at low external noise levels. For

higher levels of external noise, attention ccnditions did not affect threshold contrast values at all. Fitting PTM models to the data

suggests that attention operates via signal enhancement after multiplicative noise, or equivalently, internal additive noise
reduction.

and the right were tabulated. Data from a:tend-to-the-left
and attend-to-the-right trials were collapszd and coded in
terms of attended and unattended locations; the equal
attention trials formed the third attention condition.
These three attention conditions had bezn tested at 10
appropriate signal contrast levels at each of the eight
external noise levels to yield 24 10-point psychometric
functions.

In 2AFC paradigms such as this one, choosing a
threshold value of percent correct is equivalent to
choosing a threshold value for &' [see equation (6) and
equation (7)] (MacMillan & Creelman, 1991). Threshold
signal contrast (the rms contrast of the Gabor), c,,
yielding a threshold value of 75% correct performance
level in 2AFC (equivalent to d' of 0.95) for orientation
judgments was computed by fitting a Weibull function:

Percent correct = 1 — 0.5 x 2= (&)n (12)

to each of the 24 attention X external noise condition
psychometric functions using a maximum likelihood
procedure (Hays, 1981). In the Weibull, the parameter
value a corresponds to the contrast yielding 75% correct
performance, and the parameter value # indexes the slope
of the function. Estimated values of o and # for all
subjects and experimental conditions are summarized in
Table 1.

Figure 5 plots the threshold signal contrast (« in the
Weibull function, corresponding to 75% correct 2AFC
performance) against external noise level (the rms

contrast of the external noise) for each subject under all
three attention conditions.

The pattern of results is quite obvious from Fig. 5: at
low levels of external noise, attention affected threshold
contrast-threshold contrasts for unattended stimuli were
systematically higher than for equal attention stimuli,
which were in turn higher than for attended stimuli. For
higher levels of external noise, attention conditions did
not affect threshold contrast values at all. This pattern
held for all three subjects individually. These results
qualitatively conform perfectly to the signature pattern
for the signal enhancement (or, equivalently, internal
additive noise reduction) mechanism of attention [see
Fig. 3(a, b)].

The size of the attentional effect at low external noise
levels (<10% rms contrast) can be expressed in several
ways. For each of the three subjects, averaged over the
low-noise region where attention operates, the attentional
effect represents a 17% change in contrast threshold from
attended to unattended conditions. This is equivalent to a
12% shift along a 2AFC psychometric function (50—
100%) or 24% of the full psychometric function. The size
of the effect is exactly in line with the prior effects on
sensitivity (as distinct from bias) of attention to location.
For example, the well-known sensitivity effect of
attentional cuing of Bashinski and Bacharach (1980)
was equivalent to 17% in 2AFC percent correct. The
often-cited cuing effects of Downing (1988) were
equivalent to 12-20% 2AFC percent correct, in a
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TABLE 2. ’TM Model with signal enhancement following multiplicative noise

Subject Aattnd Aeq Anon N2 B ¥ r

ZL 1.12 1.00 0.948 0.939 0.115 4.81 1.17 0.9789
HS 1.08 1.00 0.879 0.942 0.098 3.62 1.16 0.9884
EB 1.07 1.00 0.936 0.952 0.128 4.69 1.12 0.9779

paradigm with far more attention competition for the
memory supporting an extended response structure.

Fitting the PTM models

Although the qualitative pattern of these data is strong,
we also quantitatively model the data using the PTM
model. We focus on the signal enhancement variant of
the PTM model, which yields the best qualitative and
quantitative description of the pattern of attentional
effects under different levels of external noise. A least-
squares procedure was developed to fit the PTM model,
with signal enhancement as the attentional mechanism, to
the log threshold log(c.) for each subject. This turned out
to be non-trivial. It was necessary to develop and estimate
parameters for the more complicated form of the PTM
model with y > 1.

Estimation procedure. Our estimation procedure was
implemented in Matlab (The Mathworks, Inc.), and was
applied separately to the data for each subject. (1)
Computed log(c'"**?) from the PTM model with certain
parameters for each attention and external noise contrast
level; (2) computed the squared difference between the
log threshold prediction from the model and the observed
sqdiff = (log(c"*°™) — log(c,))* for each attention and
external noise condition; (3) computed L: summation of
sqdiff from all the attention and external noise conditions.
(4) Used a gradient descending method to adjust the
model parameters to find the minimum of L. (5) After
obtaining the least L, computed the i statistic to evaluate
the goodness of model fit:

__ S(log(el) — log(c))”
¥(log(c;) — mean (log(cT)))2

where ¥ and mean () runs over all the data points for a
particular subject.

A PTM model without multiplicative noise. In model-
ing signal contrast threshold as a function of external
noise, certain authors (e.g., Pelli, 1581) in the equivalent
noise literature consider only adcitive internal noise.
While this model worked reasonably well in their limited
problem domains, it is inadequate to account for our data.

The predicted relationship between signal contrast
threshold vs external noise contrast in a PTM without
multiplicative noise can be derived by simply setting N,
to 0 in equation (8):

? =10 (13)

2

ogte) = 1/210g (5 (82 + 82/ )

This model seriously misfits our data—although the
model captures the generally increasing nature of the
functions, there are substantial and systematic misfits

(14)

over the entire range of noise values. Since this reduced
model, excluding multiplicative noise, is nested within a
fuller model, including both additive and multiplicative
noise, the two can be statistically compared, and this
oversimplified model can easily be rejected
(P < 0.0000001). (The details appear below in the
description of the fuller model and of nested model tests.)

Simple PTM model (y = 1). We then fit the data with
the simple PTM model (y=1) including both additive
and multiplicative noises with a signal enhancement
attention mechanism [equation (8)] to the data. Although
the quality of fit as measured by r*-values was reasonable
(* = 0.9122, 0.9248, 0.8859 for subjects ZL, HS and EB,
respectively), there were serious systematic misfits of the
data. Comparing the model predictions of log(c*°Y) to
the observed log(c;), it is apparent that the simple model
misfits data in the high external noise region. The
parameter y determines the slopes of the TvC curves in
the high external noise region. With y=1, the slope of
this region should also be 1, yet these slopes are clearly
significantly greater than 1 for all the subjects. A more
general model with y > 1 is necessary to fit the data.

PTM model with y as a free parameter. For y > 1.0—
corresponding to slopes greater than 1.0 in the high
external noise region—two different loci of signal
enhancement (or additive noise reduction) must be
considered. Signal enhancement (or additive noise
reduction) might occur either before or after multi-
plicative noise. (These two loci generate mathematically
equivalent ¢; vs Ngy relationships when y = 1.)

Fortunately, we can easily reject a PTM model with
signal enhancement before multiplicative noise because
it makes a very counter-intuitive prediction that, at high
external noise levels (in our experiment, for conditions
with rms contrast >0.20), contrast thresholds for the
unattended location should actually be smaller than for
the attended location, although the reverse is true at low
external noise levels.

Therefore, the discussion will be restricted to an
analysis of the PTM model with signal enhancement after
multiplicative noise. With this locus, the attentional gain
A, is applied to everything before additive internal noise,
including the signal S, the external noise N.., and
multiplicative noise Npy. Substituting A;c for ¢ in
equation (1), A{Neyx for Nex, and A1 Ny in equation (4),
we have:

BA1C
V(AN + (AN (B2 + N2 +N3

Because it is not possible to solve this equation

d = - (15)
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analytically for c¢,, a numerical procedure was developed
(Appendix I).

This model yielded a quite reasonable fit to all regions
of the data. The resulting model parameters for each
subject are listed in Table 2. The model predictions with
fit parameters are shown as the solid lines with the data in
Fig. 5. The model fits the data in the low and in the high
external noise regions very well, as well as accommodat-
ing the substantial attentional effects in the low external
noise region and the lack of attentional effects in the high
external noise region.

The model slightly quantitatively misfits the data in the
transitional region between the low ard high external
noise limbs. This is a consequence of slightly over-
simplifying the mechanisms of contrast gain control by
using a single y to account for all contrast gain control
non-linearities. More complex models of contrast gain
control have been considered in order tc account for the
shape of individual TvC curves (Nachmias & Sansbury,
1974; Stromeyer & Klein, 1974; Legge & Foley, 1980;
Burbeck & Kelly, 1981). Although more complex model
variants might yield an improved fit to the exact shape of
the TvC curves, the current model is more than adequate
for our purpose of establishing the mechanism of
attention, and estimating the size of the attentional
effects.

Using the General PTM model with signal enhance-
ment after multiplicative noise and y >> 1 as the fully
saturated model, it was possible to apply an F test for
nested (reduced) models to reject the Simple PTM model
with y= 1.

(r%ull - rgeduced) / df 1
(1 = rgw)/dfx

where df1 = kfuu — kreduccda and dfz =N - kfu[[ — 1. The
k’s are the number of parameters in each model, and N is
the number of predicted data points. In this case, N = 24,
the number of parameters in the full v > 1 model &g, = 6,
the number of parameters in the reduced y =1 model
Kreduced =5. The rZ; and r%,,..4 are taken from the
General PTM model and the Simple PTM model fits,
respectively. This test evaluates whether assuming that
y = 1 significantly damages the quality of the model fit.
The values of F(1,17) were 53.7, 93.2, and 70.8 for
subjects ZL., HS and EB (all P < 0.000C05). Hence, the
Simple PTM model (y = 1) can be rejected in favor of the
General PTM model (y > 1) with signal enhancement
after multiplicative noise.

A comparable test comparing our General PTM model
with the oversimplified, additive noise only, model also
easily rejected that mode! (see the section “PTM model
without multiplicative noise”). The values of F(2,17)
were 26.97, 46.60 and 35.38 for subjects Z1., HS and EB
(all P < 0.000001).

PTM Model without attention effecis. Quantitative
application of the PTM model also allows the statistical
evaluation of the attentional effects. In order to test
whether there were significant attention effects, we
estimated the model values N;, N>, f, y from fitting the

F(dfi,df2) = (16)
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PTM model with signal enhancement after multiplicative
noise to the data of each subject. The model was fit to the
data in the lowest three external noise levels, where
attention had an impact on performance. We compare the
case where A; for the attended location condition and for
the non-attended location condition were allowed to vary
to the case where all A;s are set to 1. (A; for the equal
attention condition is set to 1 as a normalizing constant in
all model fits.) For the data in the low noise region, the r%s
for the model with A;s as free parameters are: 0.6519,
0.9999, and 0.7242 for subjects ZI., HS and EB; and the
s for the model with all A;s set at one are: —0.2443,
—0.3795 and —0.2475 for subjects ZL, HS and EB.
(Again, negative r° indicate that the model is doing worse
than simply assuming the mean of these data values.) The
corresponding nested F tests allowed us to reject the
hypothesis that attention had no impact on performance:
F(2,6)=17.72, 4127 and 10.57 (P < 0.025) for subjects
ZIL., HS, and EB.

The resuits of our quantitative treatment of the PTM
model can be summarized as follows: attending to a
location enhances the signal at that location, on average,
by a factor of 1.09, while not attending to a location
reduces the signal at that location, on average, by a factor
of 0.92. Finally, attentional mediation of performance is
accomplished via a mechanism of enhancement of the
attended stimulus which occurs after multiplicative noise.

Discussion

In this location-cued orientation discrimination task,
attending to a spatial location reduces the signal contrast
levels needed to achieve threshold performance in that
location, while not attending to a spatial location
increases the signal contrast needed to achieve threshold
performance in that location. Our results are consistent
with prior demonstrations that location-cued attention
alters discriminability of targets of varying orientations
(e.g., Downing, 1988). While prior demonstrations of
location-cued attention effects do not inform us as to the
mechanism of attention, the external noise plus attention
paradigm allowed the precise specification of the
mechanism of attention in this case. Attention affected
performance via signal enhancement (or, equivalently,
additive internal noise reduction) which operated after
the introduction of internal multiplicative noise.

We have chosen a concurrent (dual-task) paradigm in
which two responses were requested from the subject on
each trial. Some authors (Pohlmann & Sorkin, 1976;
Duncan, 1980, 1984) have claimed that differential
performance under different attentional conditions in
dual task procedures might be due to response competi-
tion. Response competition cannot account for the
attentional effects in our data. If attention mediated
which response had priority in response competition, then
our attentional effects should have been found equally
across all external noise conditions. The reported
attentional effect, which mediated performance only at
low levels of external noise, is incompatible with
response competition explanations.
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The current experiment isolates the mechanism of
attention for a particular location-cued orientation
discrimination as signal enhancement. We make no
claim about the generality of this particular result.
Whether the same, or different attentional mechanism(s)
operate in other task situations is a matter for empirical
investigation. If signal enhancement is the primary
mechanism of location-based attention, then we should
expect to see similar results in a variety of location-cued
attention tasks using the external noise plus attention
paradigm:. If the mechanism of location-based attention is
more opportunistic, then we would expect to see different
attention mechanisms utilized for different target tasks.
Whether the same attentional mechanism or different
attentional mechanisms apply in different task situations,
the General PTM model (or a slightly elaborated version
of it) should be useful in the quantification and
classification of those attentional mechanisms.

GENERAL DISCUSSION

Generality and applicability of the external noise plus
attention paradigm

In this paper, we developed the external noise plus
attention paradigm within the Perceptual Template
Model, generated clear theoretical predictions for three
mechanisms of attention, and provided a strong example
application of the method to a classic perceptual task. To
our knowledge, the external noise plus attention para-
digm provides the strongest and most precise test of
mechanisms of attention currently available. The basic
design is widely applicable to many perceptual decision
tasks, ranging from detection of sine waves to visual
identification of objects. It can be applied to both
location-cued and to feature-cued attention paradigms.
In fact, the only requirement fo- application is the
availability of an appropriate exteraal noise, which can
be varied in strength over a suitably wide range.

For convenience, we chose an experimental paradigm
which used a 2AFC concurrent task structure (Sperling &
Dosher, 1986). The choice of a concurrent task structure
eliminated the need to include statistical uncertainty
calculations in the model. The choice of a 2AFC task
simplified the calculation of &', as it allowed the criterion
value to be specified in terms of a target percent correct.
However, the model and attention plus external noise
method is in no way restricted eithe: to concurrent (dual)
tasks, nor to 2AFC tasks. The model could be extended to
compound tasks by consideration of the appropriate
statistical uncertainty calculations (see below). The
criterion d' could be related to any suitable detection or
discrimination paradigm with the appropriate form of
signal detection theory (SDT).

Other forms of external noise

The external noise plus attention paradigm described
here used a form of external noise that is essentially
masking noise. The theoretical and methodological
development of the external noise plus attention para-
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digm is, however, extensible to external noise manipula-
tions in which random variation is added to the dimension
of discrimination only. These alternative noise manipula-
tions would leave the display looking ‘“clean”, but
introduce irrelevant variation to the signal itself. For
example, if an observer is discriminating patch contrast
as an increment or decrement, variation would be
introduced into the size of the increment or decrement.
External noise manipulations of this kind may be more
consistent with the traditional form of certain perceptual
tasks, such as visual search. The availability of both
forms of external noise manipulation critically increases
the applicability of our methods to a very wide range of
perceptual domains. Although only masking noise was
described in detail in the current paper, either form of
external noise may be explicable using the PTM model.

The external noise plus attention method may also be
complicated somewhat in order to further specify the
nature of perceptual processing performed by the
perceptual template. This requires the manipulation of
the content of the external noise. For example, the
determination of a threshold contrast ¢, for different
external noise conditions which vary in their bandpass
characteristics can provide estimates of the bandwidth of
the relevant perceptual template, or perceptual process.
This form of external noise manipulation may be most
interesting if “distractor exclusion” is identified as a
significant attention mechanism in a standard, white
external noise task. Extensions to filtered noise would
serve to validate and quantify distractor exclusion
mechanisms and to further specify the perceptual
template.

Extension to visual search and other compound tasks

Further extensions of these methods to quite different,
but classic attention paradigms are possible. As discussed
above, a concurrent paradigm in which each possible
signal requires a response eliminates the need for a
complex model of the effects of statistical uncertainty.
The interpretation of data from compound experiments
requires the modeling of the noise sources in one vs
several locations (or one vs several stimuli). Once
uncertainty effects are corrected, the derived signature
patterns for the three attention mechanisms (Fig. 3) apply
just as well to true d' measures in compound tasks.
Alternatively, one could generate new signature patterns
which incorporate uncertainty effects directly.

On the other hand, the exact distribution of noise is
critical in the process of correcting for uncertainty effects
in a compound task. One example of a compound task is
visual search. A great deal of modeling work on visual
search (Shaw, 1980, 1982; Palmer et al., 1993; Palmer,
1994, 1995; Pavel, 1993) is based on assumptions about
the unknown distribution of noise. Different assumed
noise distributions lead to different conclusions about
whether attention affects perceptual quality. Once our
methods are verified and the impact of noise in various
domains is known, we can use those methods to identify
regions in the target task in which a known external noise
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dominates internal noise. These conditicns can be used in
visual search and other compound tasks in order to form
precise distribution-known tests of the competing search
models (Pavel, 1993). We can make exact predictions
from various search models to answer the question of
whether limited resources determine performance.

Conclusion

The attention plus external noise paradigm and the
Perceptual Template Model provide a general character-
ization of three mechanisms of attention: signal enhance-
ment, distractor exclusion, and internal noise reduction.
The method is extensible in a number of ways to related
paradigms. The experiment demonstrates the strength of
the approach in a classic location-cued orientation
discrimination task. Attention in this task reduces
threshold contrast in attended locatiors and increases
threshold contrast in unattended locations by affecting
signal enhancement, or equivalently, internal additive
noise reduction. Conclusions regarding the generality of
the empirical result await further experimentation.
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APPENDIX

In this Appendix, we explain the numerical procedure we developed
to solve the following equation (A1) for the threshold contrast level ¢,
in the general situation where y # 1:

Be
VNE+ N + N2 +N3

d'(c) = (A1)

Because we expect y to be not too different from 1.0, we first solve
the equation with y = 1, thus:

(1+NZ)NZ, + N

P/ - V) (6e)

co =

Then, we use the following recursive procedure to find a better and
better approximation of ¢, for the general case where y # 1:

ot = d'/ By N2 + N2 (3%} + N2,) +NE. (A2)

. 2
The recursion stops when (d(Cx—1) — dfypeqnog)” < 0-00000001. We
set ¢r = Cktl-



