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Information-Limited Parallel Processing in Difficult Heterogeneous
Covert Visual Search
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Difficult visual search is often attributed to time-limited serial attention operations, although neural
computations in the early visual system are parallel. Using probabilistic search models (Dosher, Han, &
Lu, 2004) and a full time-course analysis of the dynamics of covert visual search, we distinguish
unlimited capacity parallel versus serial search mechanisms. Performance is measured for difficult and
error-prone searches among heterogeneous background elements and for easy and accurate searches
among homogeneous background elements. Contrary to the claims of time-limited serial attention,
searches in heterogeneous backgrounds instead exhibited nearly identical search dynamics for display
sizes up to 12 items. A review and new analyses indicate that most difficult as well as easy visual
searches operate as an unlimited-capacity parallel analysis over the visual field within a single eye
fixation, which suggests limitations in the availability of information, not temporal bottlenecks in
analysis or comparison. Serial properties likely reflect overt attention expressed in eye movements.
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Visual search for a target among distractor elements—finding a
particular object among many others—is of both theoretical and
practical significance. Neural computations in early visual cortex
represent visual inputs simultaneously at distinct retinal locations.
Visual search for a specific target in the visual field requires the
further analysis and identification of each display element as a
target or distractor, a process reflecting both attention and decision
(Treisman, 1982; Treisman & Gelade, 1980; Verghese, 2001). One
of the most widely studied paradigms in cognitive science, visual
search has also been investigated in neurophysiology (Chelazzi,
Miller, Duncan, & Desimone, 2001; Reynolds & Desimone, 2001),
in computational neuroscience (Corchs & Deco, 2001), and in
cognitive psychology (Neisser, 1967; Sperling, Budiansky, Spi-
vak, & Johnson, 1971; Treisman & Gelade, 1980; Treisman &
Gormican, 1988; Wolfe, 2003; Wolfe & Friedman-Hill, 1992) and
has applications to practical situations in screening and human
operator environments.

One central theoretical issue is whether human observers are
characterized by serial or parallel search processing architectures,
often associated with the processing of complex and basic visual
features, respectively (Dosher, 1998; Treisman & Gelade, 1980).
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Most behavioral assays of search efficiency evaluate either search
time in freely viewed displays (i.e., Treisman & Gelade, 1980) or
search accuracy in time-limited displays (i.e., Palmer, 1994).
Search times that increase substantially with added display ele-
ments are usually associated with a covert serial processing archi-
tecture (Sternberg, 1966), yet in fact are ambiguous and may
reflect parallel processes (Theois, 1973; Townsend & Ashby,
1983). Mathematical analyses show that increased average re-
sponse time (or decreased accuracy) for larger displays do not, by
themselves, distinguish the serial or parallel architecture of visual
analysis (see Palmer, Verghese, & Pavel, 2000, and Sperling &
Dosher, 1986, for reviews). On the other hand, some search
accuracy experiments express the performance as thresholds
(either contrast or feature differences) corresponding to a criterion
accuracy (e.g., Allen & Humphreys, 2007), and focus on the
relationship between thresholds and display size. Search accuracy
and thresholds can be directly related to one another within theo-
retical contexts of observer models (e.g., Lu & Dosher, 2008), and
are considered briefly in the discussion. These studies provide
important insights into processing capacity (limited vs. unlimited)
but not the temporal architecture (parallel vs. serial) of search.
Detection theory—based analyses of decision uncertainty may test
for whether ultimately—perhaps at a delayed processing time—
accuracy is consistent with unlimited capacity (Shaw, 1982; Shaw
& Shaw, 1997). However, such analyses cannot answer questions
about the time course of processing.

A true test of the full architecture of visual search requires joint
evaluation of both the accuracy and the temporal properties of
search. Here, speed—accuracy trade-off methods (e.g., Dosher,
1976; Reed, 1973) were used to trace the full time course of
processing and assess the serial or parallel nature of visual search.
Two previous studies (Dosher, Han, & Lu, 2004; McElree &
Carrasco, 1999) measured the full time course of visual search for
different display sizes in demanding searches and made conflicting



PARALLEL HETEROGENEOUS SEARCH

claims. McElree and Carrasco (1999) argued that search for a con-
junction target defined by color and form (i.e., red triangle among red
squares and green triangles), often associated with serial search, was
consistent with a limited-capacity parallel process. In contrast, the
time course of a difficult asymmetry search (Dosher et al., 2004), also
often associated with serial search, was consistent with an unlimited
capacity parallel process. A recent study of isoluminant color search
(Sanhti & Reeves, 2004) used a model and response-time analysis and
also argued for parallel processing. Which result is the more typical?
Is pure parallel processing only rarely characteristic of difficult search,
or do most cases of difficult visual search engage capacity-limited
parallel or serial processes?

This article focuses on time-course measurements and concludes
that the classification of individual elements as target or distractors is
carried out in parallel across the visual field within any single episode
of information acquisition (eye fixation), even in many very difficult
searches. Here we study difficult heterogeneous distractor search and
easy homogeneous distractor search to evaluate the generality of
unlimited capacity parallel mechanisms. The time-course accuracy
functions, hits, and false alarms, as well as the previous results on
asymmetry searches (Dosher et al., 2004) and a reanalysis of con-
junction search data (McElree & Carrasco, 1999), all show that within
a single eye fixation, unlimited capacity parallel processing charac-
terized visual search for a wide class of tasks. These results are
consistent with an analysis of multiple-target search (Thornton &
Gilden, 2007) and with recent computational models of eye fixations
in search that assume parallel processing across the field within a
single glance (Najemnik & Geisler, 2005).

Parallel and Serial Visual Search

In serial architectures (Figure 1A), as the number of elements in
a visual display increases, more elements must be searched one
after the other in sequence to find a target. The visual search
terminates as soon as a target is found, or continues through the
entire display to decide that a target is not present. Serial searches
show reduced accuracy and slowed time course (Figure 1B) for
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displays with more objects, as well as slower response times and
lower accuracies in a standard response-time measurements (X
symbols) (Sternberg, 1975). Many models of visual search invoke
serial processes associated with the capacity-limited deployment
of attention, including feature integration theory (Treisman &
Gelade, 1980), selective search models (Dosher, 1998; Egeth,
Virzi, & Garbart, 1984), guided search models (Cave & Wolfe,
1990; Wolfe, 1994, 2003), and others. In unlimited capacity par-
allel architectures (Figure 1C; e.g., Dosher, Han, & Lu, 2004;
McElree & Dosher, 1989, 1993; Ratcliff, 1978; Townsend &
Ashby, 1983, all objects are processed simultaneously, but with
variable completion times. Again, search terminates when a target
is found or after all items are evaluated when a target is not found.
Parallel searches may or may not show noticeable reductions in
ultimate accuracy, but exhibit very similar time courses (Figure
1D) for larger and smaller displays. Even if standard response
times and error rates (0 symbols) show increases with display size,
especially if the target is absent, they may nonetheless be consis-
tent with a parallel time course.

Pairs of response times and accuracies (RT and d') for different
display sizes can be consistent with either a serial or an unlimited
parallel architecture. Figures 1E and 1F illustrate this point, graph-
ing serial and parallel time courses of search. (This is meant to be
illustrative; consideration of additional display sizes may provide
added constraints.) Measuring the full time course of visual search
is a very direct way to distinguish the two temporal architectures,
although analysis of response-time distributions (Townsend &
Nozawa, 1997) and of multiple-target paradigms (Thornton &
Gilden, 2007) also provide converging evidence. Identical or
nearly identical time courses for different display sizes support a
conclusion of parallel processing. Some slowing in time course
may still be compatible with unlimited-capacity parallel models.
Significant slowing in time course with larger displays requires
formal models to evaluate the adequacy of different serial or
capacity limited models.
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Figure 1. Temporal processing architectures for serial (A) and parallel (C) visual search, corresponding

time-course functions for display sizes of 4 and 12 for serial (B) and parallel (D) visual search, and standard
single-point response time (E) and accuracy (F). The identical results in a response time paradigm (E and F) are
compatible with serial (A and B) or parallel (C and D) architectures of visual analysis.
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The full time course of visual search is measured in a speed—
accuracy trade-off paradigm in which processing time of the
observer is manipulated and performance accuracy is the depen-
dent measure. In the cued-response speed—accuracy trade-off
(SAT) paradigm (e.g., Dosher, 1976), the observer is interrupted
by a cue to respond (such as a brief tone) and is required to respond
as quickly as possible. Usually 6 to 8 interruption times, or cue
lags, are used to measure the full time course of information
accumulation. Performance accuracy, usually d' (a bias-free mea-
sure of discrimination accuracy) is measured as a function of
processing time (average time from the onset of the display to the
response, or average total processing time). A condition that leads
to faster response times and higher accuracy in an RT paradigm
may actually differ only in limiting accuracy and not in temporal
dynamics when measured by SAT time-course functions (see
Dosher, 1984; Dosher & McElree, 1992; McElree & Dosher, 1989;
Reed, 1973).

Probabilistic Models of Visual Search

The time course data are evaluated using a probabilistic serial
search model and a probabilistic parallel search model of visual
search (Dosher, Han, & Lu, 2004), illustrated schematically in
Figures 1A and 1C, respectively. The models are analogous in all
respects, save the temporal scheduling of evaluations of display
elements. Observers begin a visual search trial in a neutral, or
no-information, state. If any item, correctly (for targets) or incor-
rectly (for distractors) is classified as a target, the observer enters
a positive information state. If all items, correctly (for distractors)
or incorrectly (for the target) are classified as distractors, the
observer enters a negative information state. If the observer is
interrupted early in the search, she or he is likely to be in the
neutral state, and will guess. Later in the search, more responses
will be based on informed classifications, though some may be
erroneous. These models are a significant extension of previous
analyses because they incorporate the consequences of possible
errors in identification of display elements into time-course pre-
dictions. For example, misclassification of the target as a distractor
may prolong the search processes in target-present displays, while
misclassification of a distractor (as a target) in a target-absent
display shortens search times.

The limiting accuracy for each condition depends on the prob-
ability of correctly classifying the target, P, the probability of
correctly classifying a distractor, P, and a guessing probability g.
Correct classifications of individual display elements are shown as
solid lines, and dashed lines indicate possible classification errors
(Figures 1A and 1C). For both the serial and parallel models, the
time course of search reflects a probabilistic mixture of completion
times: the first target present classification (OR) or the last target
absent classification (AND). In the serial model, the completion
times are approximated by the gamma distribution G(#|t,a), with
a stages determined by the number of serial evaluations, and a time
constant 7. In the parallel model, the time to evaluate each element,
beginning simultaneously, is drawn from a fixed gamma distribu-
tion G(#|7,a), where variations in T and a control the mean and
skew. The probabilities of yes or no responses and search times are
computed from the combinatorics over individual element deci-
sions (e.g., a distractor false alarm in the third evaluation following
the correct rejection of two previous distractors in serial search).
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The equations for these models, developed by Dosher, Han, and Lu
(2004), are detailed in the Appendix. These models are fit directly
to the time-course data.

While time—accuracy (or SAT) functions may reflect either a
continuous accrual of information over time, or the cumulative
distribution of completion times of a discrete process (e.g., Dosher,
1976, 1979, 1981), the probabilistic parallel and serial models of
visual search are developed here as completion time models.
However, this analysis is also consistent with continuous diffusion
information accumulators in which information becomes available
only when a decision or classification boundary is reached (i.e.,
Ratcliff, 1998; Thornton & Gilden, 2007), in which case the
distribution G(|t,a) approximates the completion time distribu-
tion of individual comparisons.

Heterogeneous and Homogeneous Search

Duncan and Humphreys (1989) were among the first to system-
atize the observation that search efficiency depended both upon the
similarity of the target and distractors and on the heterogeneity of
different distractors. In homogeneous conditions, all distractor
elements are identical. In heterogeneous conditions, distractor el-
ements are of at least two types. Homogeneous visual search is
usually associated with pre-attentive parallel evaluation. Even
when the target is known, as in the current case, heterogeneous
visual search is usually claimed to involve attention-demanding
serial search processes (Duncan & Humphreys, 1989; Rosenholtz,
2001; Wolfe, Friedman-Hill, Stewart, & O’Connell, 1992). In
order to guarantee that only covert information processing is
evaluated, the SAT study uses time-limited displays to guard
against eye movements during search. All the experiments and
analyses testing signal detection accounts of search accuracy
(without reaction time) also use brief time-limited displays (e.g.,
Palmer, 1994; Palmer et al., 2000).

In these experiments, the target was always a line of shallow
right tilt (8° clockwise of vertical). In homogeneous search, all
distractors had a sharper right tilt (25° clockwise of vertical). In
heterogeneous search, distractors were equally often tilted sharp
right or somewhat left (25° clockwise or 15° counterclockwise of
vertical). So, a single boundary in orientation space separated the
target and distractors in the homogeneous condition; the hetero-
geneous condition required multiple or nonlinear boundaries in
orientation space, although some researchers might claim a unique
category for the target as a steep angle (Wolfe, Friedman-Hill, et
al., 1992). Annular search layouts controlled for eccentricity
(Carrasco, Evert, Chang, & Katz, 1995; Carrasco, McLean, Katz,
& Frieder, 1998) and density effects (see Dosher, Han, & Lu,
2004). A sample trial and layout are illustrated in Figure 2.

Experiment 1 documented the typical reaction time effects of
display size for heterogeneous search in a standard response-time
paradigm with display until response (Wolfe, Friedman-Hill, et al.,
1992). Experiment 2 evaluated time course of heterogeneous and
homogeneous visual search using the cued-response SAT para-
digm for brief displays of 100 ms or 50 ms. Experiment 3 mea-
sured response times for the practiced observers of Experiment 2
in standard response time and in brief displays.
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Stimulus layouts and sample trial sequences. A: Homogeneous distractor display of size 4. B:

Heterogeneous distractor display of size 12; C: Homogeneous distractor display of size 12. Display elements
appear on an annulus at 4.12° of visual angle, grouped with spaces to equate the local interactions of display
elements. D: Trial sequence for response time (RT) paradigm. The stimulus appeared for 100 ms or 50 ms
(time-limited condition) or until response (unlimited display conditions). E: Trial sequence for the speed—

accuracy trade-off (SAT) paradigm.

General Method

Observers

In Experiment 1, 10 observers participated in a 1-hr session for
undergraduate course credit. Four new observers participated in
Experiments 2-3 and were paid for their service. Experiment 2
required a series of 10—12 sessions, while Experiment 3 required
4 sessions. Observers reported normal or corrected-to-normal
vision.

Stimuli

The target was a shallow line tilted 8° clockwise of vertical.
Homogeneous distractors were tilted 25° clockwise of vertical.
Heterogeneous distractors were either tilted 25° clockwise of ver-
tical or tilted 15° counterclockwise of vertical, with equal proba-
bility. These values were chosen on the basis of piloting to opti-
mize asymptotic accuracies in the SAT data. The dark tilted lines
were rendered as gray-scale images with anti-aliasing on a 32 X 32
pixel grid displayed on a Leading Edge Technology 1230V mon-
itor controlled by a Vista image board on a PC computer. A special
circuit combined two output channels to produce 4096 grey levels
(12 bits), linearized to yield 256 programmable luminance le-
vels. The tilted lines were specified as the minimum luminance
(1 cd/m?), with the background luminance of 71 cd/m? (luminance
range 1 cd/m? to 144 cd/m?). The lines were rendered in regions
subtending 0.98 X 0.98 degrees at a viewing distance of approx-

imately 60 cm, and were arranged on a 4.12° radius with 15
possible equally spaced positions on the annulus, randomly rotated
on each trial. Elements of displays of size 4, 8, and 12 consisted of
one, two, or three sets of four adjacent locations, with a space
between sets (Figures 2A-2C), thus equating eccentricity and the
density for all displays (one half of elements are adjacent to a
space, and one half are internal items). Lastly, the position of each
element was randomly “jittered” (a uniform distribution from —4
to +4 pixels) in the horizontal and vertical directions to introduce
some irregularity into global contour cues.

Design

Homogeneous and heterogeneous displays were tested in sepa-
rate blocks and alternated. For all display sizes, half the trials
included a target and half did not. In heterogeneous trials, the two
types of distractors appeared in randomized locations in the dis-
play; a target replaces one of these items when it is present. Trials
with different display size and target presence or absence were
presented in a random order within blocks.

Experiment 1 tested display sizes of 4, 8, and 12 for target-
present and target-absent conditions for separate blocks of heter-
ogeneous and homogeneous displays. Blocks were 480 trials with
80 trials per condition per subject. The displays remained on until
the observer responded.

Experiment 2 tested display sizes of 4 and 12 for target-present
and target-absent conditions for separate blocks of heterogeneous
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and homogeneous displays. Processing time was manipulated with
7 cue delays of 0.0, 0.050, 0.150, 0.300, 0.500, 1.150, and 1.800 s
after display offset, for net cue delays from stimulus onset of these
values plus the display duration. All trial types within a block were
tested in random order. After one or two sessions of SAT training
with display duration set at 150 ms, observers participated for six
sessions (n = 60 trials in each of the 28 conditions, or 1680 trials)
with display duration of 100 ms, followed by six sessions with a
display duration of 50 ms.

Experiment 3 tested display sizes of 4, 8, and 12 for target-
present and target-absent conditions for separate blocks of heter-
ogeneous and homogeneous displays. In one condition, the dis-
plays remained on until the observer responded. In another, a brief
display of 50 ms was used. Observers ran one session each of the
homogeneous and heterogeneous search tasks, four sessions total,
to yield a sample size per observer per condition of 80 in each
condition.

Procedure

On each trial, a fixation plus appeared for 250 ms, followed by
the test display. For Experiment 1 and the free response version of
Experiment 3, the display remained available until the observer
responded by pressing the j key with the right hand for target-
present trials, and the f key with the left hand for target-absent
trials; the handedness of the observers was not controlled. In the
brief-display version of Experiment 3, the array was displayed for
50 ms. Observers were instructed to respond “as quickly and
accurately as possible” in the response-time paradigms. For Ex-
periment 2, the cued-response SAT task, the display was presented
briefly (150 ms in practice, then 100 ms or 50 ms) and a tone
occurred at a delay of 0—1.8 s after display offset, and finally, the
response time after the tone cue was displayed for 500 ms. Ob-
servers were instructed to respond as quickly as possible following
the tone cue, and cued response times less than 90 ms suggested
anticipation of the cue, whereas cue response times greater than
400 ms were too slow. Sessions lasted slightly less than 1 hr.

Analyses

Percentage of yes (target present) responses and mean response
times (from display onset) were tabulated for each display size, cue
delay, and target present or absent condition. For the cued-
response data, the discrimination measure, d’, was calculated from
the percentage of yes data (d' = z,;, — z;,)- Probabilities of zero or
1 were corrected (Macmillan & Creelman, 2005) by 1/(2n) to
yield measurable d’ values. Time-course functions graph d’ as a
function of total processing time, the average time between display
onset and response.

Both the probabilistic serial and parallel search models (see the
Appendix) and an exponential model were fit to time—accuracy d’
data by minimizing the squared deviations between the model and
the data

2 (di - dAi)z,
i=1
where the d; are the observed d’ value and the ai are the predicted d’

values. The exponential approach to a limit, &’ = N(1 — e~ P~ ®) for
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t > 9; and zero otherwise, provides an excellent empirical sum-
mary of time—accuracy functions and also allows comparison to
other published data (Dosher, 1976; Sutter & Graham, 1995; Sutter
& Hwang, 1999). In this equation, \ is the asymptotic (maximal)
accuracy, the intercept & is the point at which accuracy first rises
above chance, and the rate 3 describes the speed of rise from
chance to asymptote. Error minimization was programmed in
Matlab by using fininsearch. The quality of fit was summarized by
the following:

> (d;— d)*/(n— k)

i=1

2 (di_J)z/(”_ 1)

R=1-

where d; and d; are as described above, d is the observed mean, n

is the total number of predicted data values, and £ is the number of
model parameters. The fidelity index 7 is the proportion variance
accounted for by the model; replace (n — k) in the R* equation by
(n—1). R* is the percentage of variance accounted for by the
model, adjusted by the number of free parameters. Nested models
are tested for significance by using nested-F' tests (Wannacott &
Wannacott, 1981):

(RSSreduCed - RSSfull) (RSSf“”)
(kfull - kreduct’d) (kfull)

F=

with degrees of freedom kg, — k,,4,c0q and 1 — k. Wwhere RSS is
the residual sum of squared errors for the model. Model compar-
isons used 7%, R?, and nested F tests. The probabilistic parallel
model was fit to the percentage of yes data by maximizing the
likelihood of the proportion of yes data over all curves simulta-
neously:

Ci

L= H

C’(i’l C)’ p/(l pz)”'i

where

I

is the product over N observed percentage of yes points over all
conditions, p; is the predicted percentage of yes trials, n; is the
number of trials per point, ¢; is the number of yes trials, and so
n; — ¢; is the number of no trials.

Results

Experiment 1 Results

Response times increased with display size for the heteroge-
neous condition, whereas display size had minimal effects in the
homogeneous condition (Figure 3A). All main effects and inter-
actions of distractor condition, number of display elements, and
target presence were significant for response times (all ps < .01,
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Figure 3. Average correct response time (RT) and error rates as a function of display size for search with free
viewing of unlimited-time displays in Experiment 1. (A) RT (left) and proportion errors (right) in target-present
and target-absent conditions of homogeneous and heterogeneous displays for unpracticed observers with free
viewing. (B) RT (left) and proportion errors (right) in target-present and target-absent conditions of homoge-
neous and heterogeneous displays for practiced (speed—accuracy trade-off; SAT) observers for 50-ms brief
displays. (C) RT (left) and errors (right) in target-present and target-absent conditions of homogeneous and
heterogeneous displays for practiced (SAT) observers with free viewing.

except p < .05 for the main effect of target presence) and errors
(all ps < .01, except p < .08 for the interaction of target presence
and display size). The details of the analysis of variance (ANOVA)
for response times are the following: distractor condition, F(1,
9) = 66.22, p < .001, v> = 0.761, partial m, = 0.880; target
presence, F(1,9) = 6.43,p <.05,m> = 0.022, v, = 0.412; display
size, F(2, 18) = 7040, p < .001, > = 0.108, m, = 0.887;
Distractor Condition X Target Presence, F(1,9) = 9.18, p < .01,
M? = 0.016, T],z, = 0.505; Distractor Condition X Display Size,
F(2, 18) = 5857, p < .001, n* = 0.079, m, = 0.867; Target
Presence X Display Size, F(2, 18) = 15.82, p < .001, n2 = 0.009,
m, = 0.638; and the three-way interaction, F(2, 18) = 5.64, p <

013, m* = 0.023, m; = 0.385. The details of the ANOVA for
errors are as follows: distractor condition, F(1, 9) = 23.95, p <
.001, n2 = 0.427, TI,Z, = 0.727; target presence, F(1, 9) = 19.81,
p <.002,m? = 0.321, m, = 0.688; display size, F(2, 18) = 11.51,
p <.001,m> = 0.024, n; = 0.520; Distractor Condition X Target
Presence, F(1, 9) = 11.08, p < .01, n? = 0.149, nf, = 0.552;
Distractor Condition X Display Size, F(2, 18) = 20.98, p < .001,
M? = 0.036, 'r]ﬁ = (.700; Target Presence X Display Size, F(2,
18) = 2.78, p < .09, m* = 0.009, T]IZ, = 0.236; and the three-way
interaction, F(2, 18) = 4.68, p < .05, 1> = 0.012, m, = 0.342. The
nf,, or partial etas, divide the sum of squares for each factor by the
relevant sum of squares plus sum of squared errors for that factor
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in the multiway ANOVA. The nj reflects the percentage of vari-
ance accounted for by any factor holding constant all remaining
factors, and is similar to a partial correlation coefficient.

The slopes of heterogeneous target-present and target-absent
displays were 113 ms and 184 ms per item, respectively. The
slopes of homogeneous displays were 0 ms and 22 ms, respec-
tively. Homogeneous search was more accurate than was hetero-
geneous search, with display sizes of 4, 8, and 12 yielding 83.8,
97.3, and 83.8 percentage correct, and 92.8, 89.7, and 89.2 per-
centage correct, respectively. With the exception of the relatively
high error rates for the target-absent heterogeneous distractor con-
ditions, the primary differences were reflected in reaction times.

These results replicate in annular displays the previous reports
for distractor heterogeneity conditions (e.g., Wolfe, Friedman-Hill,
et al., 1992). The high slopes in the heterogeneous distractor
condition would typically be interpreted as the consequence of
attention-demanding serial processing. The small slopes of the
homogeneous condition would typically be associated with pre-
attentive parallel processing. The results in this free-viewing con-
dition may in part reflect overt information acquisition through
movement of the eyes.

Experiment 2 Results

Speed-accuracy trade-off functions. Experiment 2 tested
the full time course of visual search with the cued-response speed—
accuracy trade-off. The average time—accuracy functions (d’ vs.
total processing time) are shown in Figure 4. The data for 100-ms
displays and for 50-ms displays are displayed separately. The
average data are representative of the individual observer data. In
these SAT functions, accuracy is graphed as a function of total
processing time, which is the average time from display onset to
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Figure 4. Discrimination performance (d') as a function of total process-
ing time (test onset to response) for display sizes of 4 and 12 from
Experiment 2 for (upper left) 100-ms display homogeneous searches;
(lower right) 100-ms display heterogeneous searches; (upper right) 50-ms
display homogeneous searches, and (lower right) 50-ms display heteroge-
neous searches. The symbols are observed data points, and the smooth
curves are best-fitting descriptive exponential functions.
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response, or the lag to the cue to respond plus the average response
times. Total processing time includes stimulus registration and
motor response time, which is also true for standard reaction time.
The average response times to the response cues were unaffected
by display size or search difficulty, but varied slightly over the
shortest few cue delays, as is typical in the SAT paradigm (e.g.,
Dosher, 1976; Dosher, Han, & Lu, 2004).

The data for the 100-ms (performed first) and 50-ms (performed
second) display conditions are quite similar. These conditions may
differ slightly because they reflect different display durations, and
hence visual availability, but also different stages of practice. The
50-ms display duration allows earlier cues to respond. We treat the
two sets of data as independent replications. Exponential fits of
time—accuracy data (d' vs. total processing time) provide a stan-
dard descriptive analysis, and allow comparisons with previously
reported data. The exponential fits minimized least-squared error.
The best-fitting exponential models (smooth functions in Figure 4)
are listed in Table 1. Exponential models describe each function
with an asymptote (), a rate (3), and an intercept (3; see the
Analyses section, above). A lattice of models with different con-
straints was considered to account for the four conditions, homo-
geneous set sizes 4 and 12 and heterogeneous set sizes 4 and 12.
A (4N, 2B, 138) model with asymptotic accuracy estimated inde-
pendently for each condition, two rates (one for homogeneous and
one for heterogeneous), and a single intercept fit the data very
well, yielding R? for the average data of 0.991 [range over observ-
ers 0.916-0.976] for 100-ms displays and 0.977 (0.908-0.968)
for 50-ms displays. Nested model F tests evaluated whether re-
duced models, which hold certain parameters constant across con-
ditions, caused significant losses in quality of fit. Eliminating the
rate difference between homogeneous and heterogeneous condi-
tions significantly reduced the quality of fit for four of five
observers in each of the 100-ms and 50-ms display conditions (see
Table 1). Homogeneous search conditions yielded both higher
asymptotic accuracies and slightly faster temporal dynamics in
most cases than did heterogeneous search conditions.

Importantly, in no case did the quality of fit significantly im-
prove by allowing the larger display size to slow the search speed
(exponential rate parameter; p values for all relevant model com-
parisons > .3). These results are qualitatively consistent with
parallel search processing architectures and qualitatively inconsis-
tent with serial search processing architectures. These observations
are directly evaluated next using the probabilistic serial and par-
allel search models. These models describe the time course of
visual search, but they also provide constrained fits of the asymp-
totic accuracies.

Probabilistic parallel search models. In the probabilistic
parallel search model, visual search involves identifying each
element of the display as a target or as a distractor. The items are
processed in parallel, starting simultaneously and with a common
time distribution. At any given time, the observer will respond
“yes” if at least one item has been identified (correctly or in error)
as a target or “no” if all items have been (correctly or in error)
identified as distractors, or may guess “yes” in the absence of
information. The predicted time course of the target-present deci-
sion is controlled by the distribution of times for individual com-
parisons (drawn from an a-stage gamma distribution with time
parameter T, probabilities of correctly classifying targets (P;) and
distractors (Pj,), and the decision rule, with guessing probability g.
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Table 1
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Exponential Descriptive Parameters for Experiment 2

Parameter AV KC RC SM SP
100-ms display
Homogeneous—4 A 4.32 4.10 3.92 4.50 4.81
Homogeneous—12 A 4.33 4.54 4.10 4.26 4.51
Heterogeneous—4 A 2.11 2.81 2.25 1.55 2.82
Heterogeneous—12 \ 1.13 0.50 1.01 1.16 1.91
Homogeneous 3 9.11 9.81 7.53 6.20 10.0
Heterogeneous 3 3.48 0.93 2.35 3.71 5.60
Common & 339 351 327 289 314
Adjusted R? .992 957 979 959 916
Test a a a b a
50-ms display

Homogeneous—4 \ 4.21 4.22 4.17 4.27 4.37
Homogeneous—12 A 4.35 4.12 4.21 4.25 4.98
Heterogeneous—4 \ 2.30 1.78 2.15 2.30 3.13
Heterogeneous—12 N\ 1.21 0.51 0.96 1.23 2.14
Homogeneous 3 8.45 6.54 8.14 10.0 6.75
Heterogeneous 3 4.42 2.32 3.68 4.03 5.27
Common & .300 .300 295 323 254
Adjusted R* 977 954 968 913 908
Test a a a a b
Note. Parameters are for a (4 N, 2 3, 1 8) exponential model. Each condition has a separate asymptote \; rate

B may vary for homogeneous and heterogeneous searches; and the intercept 8 is common. Initials at the top of

columns indicate individual subjects; AV = average.

# Indicates that the rate for homogeneous searches is significantly faster than is the rate for the heterogeneous

searches (p < .05, p < .01 in most cases).

See the Appendix for a full description and derivation of the
model. The models fit d' using least-squared methods, and nested
models in the lattice of models were compared with the nested F'
test. Models were fit to average data because a lattice of models
with different numbers of free parameters was extremely time
consuming to process owing to the computation of the combina-
torics of comparison orders across items.

The probabilistic parallel search models were fit separately to
average d’ data for the 100-ms and 50-ms exposure durations,
averaged over observers, for homogeneous and heterogeneous
search. The model provided an excellent account of the time
course of both homogeneous and heterogeneous search. Although
homogeneous visual search is generally associated with parallel
search processes, heterogeneous search is generally associated
with the operation of some form of serial search architecture.

An eight-parameter (plus one preset parameter) model, (4 P, 27,
2 g, a = 25), provided an excellent fit to the time-course data for
homogeneous and heterogeneous searches, as good a fit as a fully
saturated model. The values of the four Ps specify the probabilities
of correct target and distractor identification in the homogeneous
and heterogeneous conditions. The two parameters of the gamma
distribution, T and a, specify the completion time distribution for
each individual item; in this context, a could be set without loss to
25 (see Dosher, Han, & Lu, 2004, for a discussion).

For the 100-ms data, the estimated parameters were as follows:
identification probabilities P, and P,, for targets and distractors of
0.967 and 0.999, respectively, with time constant T of 0.014 and
guessing parameter g of 0.100 in the homogeneous condition;
and identification probabilities of 0.970 and 0.815, with T of 0.020
and guessing probability of 0.102 for the heterogeneous condition.

® Indicates that the rate difference is not significant (p > .10).

This model yields an R> of 0.986. The independently estimated
parameters for the 50-ms data were closely similar: identification
probabilities for target and distractors of 0. 961 and 0.999, 7 of
0.013, and guessing parameter of 0.202 in the homogeneous con-
dition; and identification probabilities of 0.983 and 0.817, T of
0.016, and guessing probability of 0.053 for the heterogeneous
condition. This yields an R* of 0.966. This model was compared
with a lattice of both less-constrained and more-constrained mod-
els that set various parameters to be equal in the homogeneous and
heterogeneous search conditions. Model variants equating the P,
and P, or 7 in the homogeneous and heterogeneous conditions
provided a statistically inferior fit to the data. A model with
separate time constants, 7s, for the homogeneous and heteroge-
neous conditions provided a slightly better fit by a nested F' test
(p < .01), consistent with the exponential fits. The fit of the
probabilistic parallel model is shown in Figure 5. This parallel
model makes the standard simplifying assumption of all of the
uncertainty models of unlimited capacity visual search, namely
that the criteria for false alarms are identical in the 4-item and
12-item displays, or that the two set sizes are fit with a common P
and P,,. In a later section, we consider an elaborated model for
percentage of yes data, which can also be used to regenerate an
excellent equivalent fit of the parallel model to the d’ data.

The probabilistic parallel search model constrains the relation-
ships of the asymptotic search accuracies of the two display sizes
because the asymptotic accuracies are derived from the probabil-
ities of correct identification of the single target and the numbers
of distractors for display sizes of 4 and 12. In the descriptive
exponential model, the asymptotic accuracies for the display sizes
of 4 and 12 were simply estimated independently to maximize fit.
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Figure 5. Fit of the probabilistic parallel search model to the discrimi-
nation data in Figure 4 for 100-ms and 50-ms displays for homogeneous
and heterogeneous searches. The symbols are observed data points, and the
smooth curves are best-fitting model functions.

The asymptotic accuracy for display sizes 4 and 12 are well fit by
the decision model in the probabilistic model, which embodies the
classic uncertainty calculations for these display sizes in search
accuracy experiments (Eckstein, 1998; Palmer et al., 2000).

Distractor identification in the heterogeneous displays was es-
timated to be notably poorer than that of the homogeneous dis-
plays, although all the heterogeneous distractors were at least as
dissimilar from the target (see Hodsoll & Humphreys, 2005, and
Rosenholtz, 2001, for related discussions). The probabilistic par-
allel search model applies directly to homogeneous search, but
could be an approximation to heterogeneous search. If the two
types of distractors in heterogeneous search were to differ sub-
stantially in identification accuracy or temporal parameters, then a
more complex model that distinguishes the two would be required.
Counting all of the combinatoric instances of such a model would
be so complex that it would likely be implemented by simulation
rather than derivation. That the probabilistic parallel search model
fit the data from the heterogeneous condition quite well suggests
that the two types of distractor were similar in identification time
and accuracy.

In summary, the probabilistic parallel search model provided a
good account of the time course and asymptotic accuracies of
visual search, not just for homogeneous search— generally asso-
ciated with parallel processes—ut also in the case of heteroge-
neous search—generally cited as a classic example of serial
search.

Probabilistic serial search models. In this section, the com-
plementary test evaluates the probabilistic serial search model and
its ability to fit the time-course data. The probabilistic serial model
is an exact analog to the probabilistic parallel model, except that
the identification of items occurs in series, one after the other, in
random order. All of the model parameters remain the same,
except that the temporal properties of the search are determined by
the gamma distribution with time parameter T characterizing the
processing of each individual item, and a variable number of stages
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determined by the (random) order of processing each item, and the
probabilities of doing so accurately. See the Appendix for details
and equations. The probabilistic serial model, which incorporates the
consequence of identification errors into the time-course predictions,
moderates the strongly slowed time-course predictions of previous
versions of the serial model in visual search (e.g., McElree &
Carrasco, 1999).

We gave the probabilistic serial model every possible chance to
work by fitting a fully saturated serial model with all different
parameters for homogeneous and heterogeneous searches, allow-
ing the greatest possible freedom to this model (four independent
probabilities of element identification accuracy, independent esti-
mates of guessing bias, independent time constants, and indepen-
dent time intercepts for the homogeneous and heterogeneous con-
ditions, 4 P, 2 7, 2 g, 2 t0 —or 10 model parameters free to vary),
the model yielded consistently poorer quality of fits in comparison
with that of the probabilistic parallel search model, with an R* of
0.789 for the 100-ms data and of 0.721 for the 50-ms data.
(Unconstrained, the serial model tried to overcome a poor fit by
vastly overestimating the asymptotic accuracy so that the display
size difference occurred largely after the last measured data point.
However, we know from the shape of the time—accuracy functions
and from pilot data for selection of the interruption times that
tested times as long as 4 s, that the curves were already at
asymptote at 2.3 s. Therefore, the fit was constrained not to
overshoot the observed asymptotic levels by a substantial amount.)
Any model that includes a saturating monotonically increasing
time course fits the data about as well as this probabilistic serial
model; the systematic misfits of this model were clear. The
best-fitting fully saturated probabilistic serial model is shown in
Figure 6.

Further relaxing the relationship in asymptotic levels, in which
the modeled asymptotic performance is constrained by the signal
detection uncertainty relationship between the two displays sizes,
still failed to achieve the quality of fit of the parallel models. This
8 P,2,2g,2 10, 14-parameter model has full flexibility in fitting
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Figure 6. Fit of the probabilistic serial search model to the discrimination
data in Figure 4 for 100-ms and 50-ms displays for homogeneous and
heterogeneous searches. The symbols are observed data points, and the
smooth curves are best-fitting model functions.
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asymptotic levels (with eight accuracy parameters to account for
different target and distractor identification probabilities in the
different set sizes and distractor conditions), yet only marginally
improved the quality of fit, with an R* of 0.849 for the 100-ms data
and of 0.796 for the 50-ms data (compare with R*s of 0.986 and
0.966 for the eight-parameter parallel model).

Even assuming that homogeneous displays reflect parallel
search and heterogeneous displays reflect a standard serial search
would not solve the poor fit of the serial model because the fit to
the heterogeneous data is independent of the fit of the homoge-
neous data. The sum of squared errors for the mixed
homogeneous-parallel, heterogeneous-serial model exceeded that
of the parallel model by a factor of more than 2 for both 100-ms
data and 50-ms data. The parallel search model provides a good
account of both homogeneous and homogeneous search, while
serial search gives a poor account of both. These results were
independently replicated in the data for the 100-ms displays and
the data for the 50-ms displays.

Compensatory-rate serial model. Is there any condition un-
der which a serial model could account well for the time-course
data? One such case, suggested by a reviewer, might be a para-
doxical compensatory-rate probabilistic serial model in which the
rate of processing each item is increased in larger displays to
compensate for the effect of increasing numbers of items in a serial
process. This model is counterintuitive; if it is possible to process
items three times as fast in a 12-element display as in a 4-element
display, then why not process the 4-element display at the faster
rate? The compensatory model violates the fulcrum of all standard
tests of serial processing, which assume either equivalent process-
ing time for each item regardless of the number of elements, or that
added items slow the rate of processing each one.

It seems obvious, however, that such a paradoxical compensa-
tory processing model should overcome the incompatibility in time
courses of display sizes 4 and 12. We implemented the
compensatory-rate probabilistic serial model by incorporating not
just independent speeds of processing for the two search types
(homogeneous and heterogeneous), but also for each display size
within search type. All other aspects of the probabilistic serial
model are retained. Thus, the model includes 4 independent prob-
abilities of element identification accuracy, independent estimates
of guessing bias, independent time constants for the homogeneous
and heterogeneous conditions for display sizes 4 and 12, and
independent time intercepts for the homogeneous and heteroge-
neous conditions (4 P, 4 7, 2 g, 2 t0). The ratio of the processing
times per item should be about 3 to 1 because the faster times in
larger displays are accounting for a 12-to-4 (3 to 1) ratio of the
number of elements to yield a common time course. As was
expected, the compensatory rate serial model estimated the two
rate parameters, T, to be 20 ms and 7 ms (ratio 2.9) and 82 ms and
22 ms (ratio 3.7) for the homogeneous and heterogeneous 100-ms
displays (respectively), and to be 21 ms and 6 ms (ratio 3.5) and 87
ms and 22 ms (ratio 3.9) in the homogeneous and heterogeneous
50-ms displays. As was intuitively expected, the compensatory
model fits to the speed—accuracy data approached (though did not
quite match) those of the parallel probabilistic model, with R* of
0.964 for the 100-ms data and of 0.930 for the 50-ms data for the
12-parameter model. This compares to R* of .986 and .966 for the
eight-parameter parallel search model. These residual differences
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reflect differences in time- course shape for the two set sizes in the
serial and parallel models.

Probabilistic parallel model and percent yes data. The pre-
vious sections documented that the probabilistic parallel model of
processing provided a good account of the time course of discrim-
ination (d") in both relatively easy homogeneous search conditions
and in relatively difficult heterogeneous search conditions. In this
section, the data for percentage of yes data (hits and false alarms)
are considered. The changes in hit and false alarm rates over
processing time are intrinsically more complex to model than are
the bias-free discrimination measures, because hits and false
alarms will be sensitive to time-dependent changes in bias as well
as discrimination. For this reason, the hit and false alarm rates have
not been modeled in any previous analyses of speed—accuracy
trade-off data. In this case, however, it was possible to provide a
good account of these data, which provide additional constraints
on the probabilistic parallel model. However, we do not necessar-
ily expect this simple model to account for the percentage of yes
data in all experiments, because criteria and guessing strategies
may change over the time course of decision.

The fact that the 8 P version of the serial model for d’, in which
the asymptotes were fit freely, did not provide a competitive fit
to the data implies that the corresponding serial model would not
provide a competitive fit to the percentage of yes data, for which
the same model would need to fit not just the d's but the more
constraining pattern of hits and false alarms. For this reason, we
focus on the ability of the probabilistic parallel model to fit the
percentage of yes (hit and false alarm) data.

The best-fitting probabilistic parallel model for the average hit
and false alarm data is shown in Figure 7. The percentage of yes
(hit and false alarm) data were fit with maximum likelihood
methods. Different identification probabilities for display sizes of
4 and 12 were required to account for these data. The different
identification probabilities for display size are necessary because
display size 12 provides additional opportunities to false alarms
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Figure 7. Fit of the probabilistic parallel search model to the percentage
of yes data for 100-ms and 50-ms displays for homogeneous and hetero-
geneous searches. The symbols are observed data points, and the smooth
curves are best-fitting model functions.
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than does display size 4, yet the observed false alarm rates are only
slightly worse in the 12-item conditions. The best-fitting probabi-
listic parallel model is a 12-parameter model (with one fixed
parameter; 8 P, 2 1, 2 g, a = 25). Overall, the P, and P, values
were about 0.99 for all homogeneous conditions, but ranged from
0.50 to 0.96 for the heterogeneous condition, with the guessing
parameter about 30%. For the 100-ms condition, the best-fitting
parameter values are (8 P = .99, 0.99, 0.99, 0.99, 0.77, 0.94, 0.50,
0.96, T = 0.013 for homogeneous search, and T = 0.017 for
heterogeneous, g = .311 for homogeneous, g = .348 for hetero-
geneous, and a = 25, R* = .982). (The 8 P are given, respectively,
in the following order: P, and P, for display size 4, then P, and
P, for display size 12 for the homogeneous searches, and then the
same order for the heterogeneous searches.) For the 50-ms condi-
tion, the best-fitting parameter values are (8 P = .98, 0.99, 0.99,
0.99, 0.93, 0.94,0.55, 0.96, T = 0.013 and 0.016, g = .429 and
0.409, a = 25, R* = .986). These fits to the percentage of yes data
can, in turn, be used to generate predictions for d’ that are com-
parable to the earlier fits of the probabilistic parallel model to the
d' data. As in those fits, the 100 ms and 50 ms provide quite
consistent independent estimation of parameter values.

The identification probabilities for the homogeneous condition
are essentially identical (and very high) for the two display sizes,
so the differences focus on the heterogeneous condition. The four
independent identification probabilities for the heterogeneous con-
ditions (targets and distractors in display sizes 4 and 12) can be
equivalently remapped in terms of a signal detection situation with
four free parameters. The mean and standard deviation of the
evidence distribution for distractors are set to 0 and 1, respectively,
corresponding with standard scaling assumptions of the signal
detection theory. The mean of the evidence distribution for targets
is D, and the standard deviation is o. There are different criteria for
classification of an item as a target for display sizes 4 and 12: ¢,
and c,. For the 100-ms displays, the best-fitting Ps can be
remapped as D = 1.76, ¢ = 0.31, ¢, = 1.52, ¢, = 1.76. For the
50-ms displays, the best-fitting Ps can be remapped as D = 1.84,
o = 034, ¢, = 1.52, ¢, = 1.81. The different identification
probabilities for 4-element and 12-element heterogeneous displays
reflect a change in criterion for identification that reduces the false
alarm rates for the 12-element displays. The variation in evidence
is estimated to be smaller for target elements than for distractor
elements, which may reflect a special coding status for the target
item, or intrinsically larger variance in the distractor distribution in
this heterogeneous case.

In summary, the probabilistic parallel search model provided an
excellent account of the hit and false alarm data over the full time
course of visual search as well as an excellent account of the d’
time-course data.

Experiment 3 Results

Time-limited display RT data. The response time and errors
for the 50-ms time-limited displays under a response time protocol
are shown in Figure 3B for the practiced observers who had
previously participated in Experiment 2. Response times were
relatively fast for these time-limited displays. Reaction time slopes
were all —1 ms to 1 ms; however, the response time levels were
sensitive to both distractor type and target presence. Error rates in
the time-limited displays also depend on distractor type and target

DOSHER, HAN, AND LU

presence, and there is a modest increase in errors of about 0.4% per
display element in homogeneous conditions and of about 0.8% in
heterogeneous conditions. The level of performance is consistent
with the performance in the 50-ms time-limited time-course data.
Indeed, the relevant response time—accuracy points from these data
are very close to points generated in the time-controlled testing
protocol. These relatively flat functions of display size seem to
differ for similar brief displays of Santhi and Reeves (2004) for
isoluminant color stimuli. The reasons for this difference are not
clear.

The details of the ANOVA for response times are as follows:
distractor condition, F(1, 3) = 5.13, p <.11,m> = 0.936, 1, = 0.631;
target presence, F(1, 3) = 4.87, p < .11, m* = 0.033, m, = 0.619;
display size, F(2, 6) = 024, p > .5, n* = 0.000, m, = 0.072;
Distractor Condition X Target Presence, F(1, 3) = 24.14, p < .02,
m> = 0.017, m, = 0.889; Distractor Condition X Display Size,
F(2, 6) = 1947, p < .002, n*> = 0.005, m, = 0.886; Target
Presence X Display Size, F(2, 6) = 15.78, p < .01, T]2 = 0.005,
nf, = 0.840; and the three-way interaction, F(2, 6) = 17.03, p <
.01, 1> = 0.004, 1> = 0.850. The details of the ANOVA for errors
are as follows: distractor condition, F(1, 3) = 146.06, p < .001,
n° = 0.737, m, = 0.979; target presence, F(1, 3) = 0.39, p >
5,m7 = 0.017, } = 0.115; display size, F(2, 6) = 11.20, p < .01,
M> = 0.056, n,z, = (.789; Distractor Condition X Target Presence,
F(1,3) = 11.84, p < .05, n* = 0.164, m, = 0.798; Distractor
Condition X Display Size, F(2, 6) = 12.25, p < .01, n* = 0.012,
nlz, = 0.800; Target Presence X Display Size, F(2, 6) = 1.57,p >
2, m* = 0.005, ) = 0.342; and the three-way interaction, F(2,
6) = 0.15, p > .5, m*> = 0.000, n, = 0.042.

Free-viewing RT data. Figure 3C shows the response times
and error rates for standard response time conditions, in which the
stimulus was available until response, for the practiced observers
of Experiment 2. The performance of the practiced observers is faster
and more accurate than that of the unpracticed observers in Experi-
ment 1, yet the general pattern of the data was equivalent. With only
four observers, all main effects and interactions, including those
assessing the effects of display size, were significant in the respo-
nse time data (p < .05). In the accuracy data, the differences were
smaller, and fewer main effects and interactions were significant. The
details of the ANOVA for response times are as follows: distractor
condition, F(1, 3) = 14.48, p < .05, m* = 0.676, 1, = 0.828; target
presence, F(1, 3) = 11.55, p < .05,m> = 0.026, m, = 0.794; display
size, F(2, 6) = 10.20, p < .02, nz =0.124, 7112; = 0.772; Distractor
Condition X Target Presence, F(1, 3) = 10.10, p < .05, n2 =
0.026, ’r]f? = (.771; Distractor Condition X Display Size, F(2, 6) =
9.34,p < .01,m* =0.113, 7]12, = 0.757; Target Presence X Display
Size, F(2, 6) = 12.05, p < .01, n*> = 0.016, m, = 0.800; and the
three-way interaction, F(2, 6) = 13.03, p < .01, nz = 0.016, n,% =
0.813. The details of the ANOVA for errors are as follows:
distractor condition, F(1, 3) = 8.00, p < .07, * = 0441, n, =
0.727; target presence, F(1, 3) = 10.10, p < .05, 1]2 = 0.281,
m, = 0.770; display size, F(2, 6) = 1.35, p > .3, n> = 0.022,
'qi = 0.310; Distractor Condition X Target Presence, F(1, 3) =
5.71, p < .10, nz = 0.060, T],Z, = 0.657; Distractor Condition X
Display Size, F(2, 6) = 4.44, p < .07, n> = 0.084, m; = 0.596;
Target Presence X Display Size, F(2, 6) = 0.68, p > .5, 1 =
0.008, T]Iz, = 0.188; and the three-way interaction, F(2, 6) =
1.89, p > .2, m* = 0.039, m; = 0.387.
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The response time slopes were 2 ms and 1.5 ms for homoge-
neous conditions, respectively, for target-present and target-absent
displays; and were 57 ms and 120 ms for heterogeneous condi-
tions, respectively, for target-present and target-absent conditions.
Practice improves, but does not fundamentally alter, the processes
for visual search.

General Discussion

Empirical Summary

Experiment 1 documented the classic heterogeneity effect in a
standard, free-viewing reaction time paradigm in annular displays
controlling for target and distractor eccentricity. Response times
increased substantially with the number of distractors in heteroge-
neous distractor conditions, but only slightly in homogeneous
conditions. Attention-demanding serial search processes is widely
associated with the pattern of performance in heterogeneous dis-
plays.

In Experiment 2, the time course of visual search was measured
using speed—accuracy trade-off methods in time-limited displays
(100 ms or 50 ms). A probabilistic parallel model provided an
excellent account of both the constrained relation of the asymptotic
performance and the common time course of visual search with
display sizes of 4 and 12. The probabilistic parallel model also
provided an excellent fit to the hit and false alarm pattern under-
lying the d' time-course data. The model for the hits and false
alarms required distinct probabilities for the two display sizes, but
these probabilities were well fit by a consistent signal detection
model with a higher criterion in the 12-item displays in order to
compensate for the high levels of false alarms otherwise engen-
dered by location uncertainty.

In contrast, a fully elaborated 10-parameter probabilistic serial
search model provided a relatively poor account of the data. The
parallel model is consistent with closely equivalent temporal dy-
namics over the various conditions, with a small slowing regard-
less of display size due to heterogeneity. The serial model predicts
slowing in dynamics for larger displays, a phenomenon that was
not observed in the data. Even adding to the freedom of this model
to allow unconstrained fits to the asymptotic levels for display
sizes 12 and 4, with 14 parameters, failed to substantially improve
the quality of the fits and isolated the failures firmly in dynamic
aspects of the time-course functions.

Relatively high asymptotic levels in homogeneous search and
much lower accuracy in heterogeneous search were related to
differences in item identification probabilities. The relative accu-
racies of the display sizes of 4 and 12, however, were then fully
constrained by these estimates in both models.

A compensatory-rate serial model in which each item is pro-
cessed approximately 3 times more quickly in 12-element displays
than in 4-element displays provided nearly but not quite as good a
fit as did the parallel model. This paradoxical model violates the
assumptions of all common tests of serial models of equal effi-
ciency in all display sizes, or lower efficiency in larger display
sizes if capacity limits are evoked. Even if this model achieved an
equal fit, the parallel model would be preferred on the grounds of
simplicity. The simpler parallel model accounts for the data with 8
free parameters rather than the 12-parameter compensatory serial
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model. However, certain unusual serial models such as the com-
pensatory rate model cannot be completely ruled out.

Experiment 3 documented that highly practiced SAT observers
showed the same pattern of performance as that of unpracticed
observers in a standard response time paradigm. There was no
evidence that the extended practice altered the form or mecha-
nisms of search, although those mechanisms became somewhat
more efficient with faster response times and fewer errors. The
data from the time-limited response time paradigm were consistent
with the SAT data.

Relation to Other Findings

The probabilistic parallel search model provided a good quan-
titative fit of the time course data, consistent with the suggestive
analysis based on descriptive exponential models. The explicit
model is important because it assesses the constraints on perfor-
mance for different display sizes, incorporating asymptotic con-
straints and the effects of classification errors on the time course of
visual search. The model accounts well for the asymptotic accu-
racies for display size of 4 and 12 using the same parameters P
and P,

The current asymptotic accuracy effects are consistent with a
series of findings focused on search accuracy in time-limited
displays (Palmer, 1994, 1995; Palmer, Ames, & Lindsey, 1993;
Palmer et al., 2000). In that literature, effects of display size were
consistent with statistical uncertainty within the framework of a
signal detection framework, and not consistent with models that
proposed capacity limitations, for a wide range of searches with
targets defined by primary features such as line length, brightness,
or orientation. This is also true for the portion of the search
accuracy literature (e.g., Palmer, 1994) measuring the effects of
display size as feature or contrast thresholds, the difference needed
to achieve a given accuracy. These are two different ways of
expressing the same accuracy effects, which can be directly related
via observer models such as the perceptual template model (see Lu
& Dosher, 2008, for a review).

Overall, then, the uncertainty constraints of the search accuracy
experiments of Palmer and others (Palmer, 1994, 1995; Palmer,
Ames, & Lindsey, 1993; Palmer et al., 2000) are consistent with
the asymptotic accuracies of the current and other time-accuracy
studies. The current results go beyond the search accuracy litera-
ture in providing a consistent account of the temporal properties of
visual search, not just the ultimate, asymptotic accuracy levels.

The current results join our earlier results on the time course of
visual search asymmetries (O in Cs; Dosher et al., 2004). This
difficult search asymmetry also generated large display size effects
in standard response time, yet the probabilistic parallel model of
visual search gave an excellent account of the time course of
search for brief displays. The current results extend the parallel
model from a simple case of feature search to the more complex
heterogeneous search conditions.

Thus, parallel processing has been documented in two cases that
have classically been associated with serial deployment of covert
attention. However, the previous study of McElree and Carrasco
(1999), the first to apply cued-response speed—accuracy trade-off
methods to visual search, argued that a pure unlimited capacity
parallel model cannot account for the temporal dynamics of con-
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junction search, and suggested instead that conjunction search
invoked a limited-capacity parallel search.

Combining the results of the current study, the results of Dosher
et al. (2004), and the results of McElree and Carrasco (1999) could
suggest a qualitative difference between difficult search conditions
of heterogeneous search and difficult asymmetric search that ex-
hibit parallel search processes on the one hand, and conjunction
searches that exhibit some form of capacity limitations on the other
hand. The definition of this boundary between purely parallel pro-
cesses and other forms as involving conjunction search would be
complicated under Wolfe, Friedman-Hill, et al.’s (1992) suggestion
that some cases of heterogeneous search are implicitly conjunction
searches in which the target is the conjunction of being tilted right and
having steep (or shallow) tilt. However, the conclusions of McElree
and Carrasco (1999) were based on the presence of small but
significant slowing in dynamics of conjunction search as assessed
in exponential fits rather than a direct fit of an explicit parallel
model. We fit the data of McElree and Carrasco (personal com-
munication, March, 2007) with the probabilistic parallel and serial
search models, and found that, counter to the initial interpretation,
the probabilistic parallel search model provided quite a good
account of these time-course data and asymptotic accuracy data for
conjunction search. The fit of the probabilistic parallel search
model to the McElree and Carrasco conjunction data is shown in
Figure 8.
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Figure 8.  Fit of the probabilistic parallel model to the time-course data of
McElree and Carrasco (1999), including feature and conjunction searches.
The symbols are observed data points, and the smooth curves are best-
fitting model functions.

DOSHER, HAN, AND LU

This new finding, based on direct fitting of explicit models,
considerably simplifies the meta-pattern of results. All cases in
which the full time-course of visual search has been measured, for
brief visual displays that eliminate eye movements, are consistent
with parallel processing architectures, although the difficult con-
ditions may yield low accuracies. We are not claiming that all
difficult visual searches will exhibit unlimited-capacity parallel
processing, although we have yet to find a documented case of
clear serial processing using time-course analysis. There may,
however, be some cases in future investigations that do show
covert serial processes.

These time-course results and the probabilistic parallel and
serial models (Dosher et al., 2004) are closely related to the
modeling development and observations of Thornton and Gilden
(2007) in a multitarget search paradigm. Their analysis used four-
location search, varied the number of targets, and examined the
response time and error patterns of search within the context of an
unlimited-capacity parallel processing model. This model simu-
lated the various outcomes on the basis of independent parallel
accumulation of evidence to a criterion for each display element,
and is essentially equivalent to the probabilistic parallel model
with the distribution of element comparison times (Dosher, Han, &
Lu, 2004). The analysis of the multitarget paradigm also led
Thornton and Gilden to conclude that a wide range of difficult
search tasks were consistent with parallel search. The multitarget
data, together with the time-course investigations, provide con-
verging evidence for the widespread explanatory adequacy of
parallel processes in visual analysis. This is also generally consis-
tent with recent analyses of increasing d' per unit second of
response time estimated for near-isoluminant color visual searches
(Santhi & Reeves, 2004).

Models that routinely incorporate attention-demanding serial pro-
cessing architectures face challenges in accounting for the visual
search data in time-limited displays. This includes the feature inte-
gration model (Treisman, 1993; Treisman & Gelade, 1980; Treis-
man & Gormican, 1988), selective search models (Dosher, 1998;
Egeth et al., 1984), and guided search models (Cave & Wolfe,
1990; Wolfe, 1994, 2003). Each of these models ascribes effects of
display size on reaction time to the serial deployment of covert
attention over the display in free-viewing conditions. The feature
integration model (Treisman & Gelade, 1980) assumes serial
search over the display elements, or groups of elements, and is
directly tested with the probabilistic serial search model here.
Selective search models (Dosher, 1998; Egeth et al., 1984) restrict
serial searches to particular subsets of stimuli (e.g., the red items).
The guided search models (Wolfe, 1994, 2003) also serially search
selected subsets of stimuli, in this case defined by a more complex
salience ordering. Finally, recursive rejection models (Humphreys
& Muller, 1993) would require elaboration or modification to
account for full time course data. In short, a number of models of
covert attention, especially those involving serial search opera-
tions, appear to be simply inconsistent with the time course results,
and others would require elaboration and further evaluation.

Visual search models are often applied to the response times and
accuracies of free-viewing search paradigms, yet make claims
about covert attention processes. A comparison of the search
reaction times in freely viewed displays and those in time-limited
displays leads us to believe that eye movements must play a
considerable role in the former (e.g., Geisler & Chou, 1995; Motter
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& Belky, 1998). The current analysis of the temporal properties of
search in time-limited displays suggests that processing within a
single episode of information acquisition is parallel, at least for the
clear (unmasked) displays used in these studies.

This conclusion is consistent with all the data on time course of
visual search, with the data in a multiple-target paradigm, and it is
also consistent with recent proposed models of eye movements
during search for small targets in cluttered fields (Najemnik &
Geisler, 2005). These models are based on an assumption of
parallel uptake of information across the visual field, modulated by
eccentricity, and compute a region that is expected to yield the
most new information as the location of the next eye fixation. The
eye movement system works together with visual processing of
the information available over the visual field.

Conclusions

Covert attention is deployed in parallel over the items in the
visual field in heterogeneous searches studied here, in asymmetry
searches (Dosher et al., 2004), and in conjunction search (McElree
& Carrasco, 1999). A probabilistic parallel search model (Dosher
et al., 2004) provided an excellent account of the time course and
asymptotic accuracy of search in all these cases. The time-course
of search for different display sizes is consistent with the combi-
nation of classifications, some of them errors, of all the display
items embodied in the probabilistic parallel model. Visual search
is information limited, not limited with temporally serial process-
ing within an eye movement. These results converge with an
analysis of multiple-target searches (Thornton & Gilden, 2007)
and with recent analyses of eye movements in visual search
(Najemnik & Geisler, 2005). Some extremely difficult versions of
search, or of search within masked or noisy displays (e.g., Dosher
& Lu, 2000), may require close scrutiny of the targets and hence
serial processes, but it is an open question whether even such
examples would engender serial processes within a single eye
fixation or information acquisition episode.
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Appendix

Models of Visual Search

This appendix presents the equations for probabilistic serial and
parallel search models developed by Dosher, Lu, and Han (2004).
These model predictions include a single identification accuracy
for non-targets. As such, these models are directly applicable to
homogeneous search conditions, and are a first-order approxima-
tion for heterogeneous search conditions. See Dosher, Han, and Lu
(2004) for a more detailed model development.

Figure 1A illustrates a probabilistic serial search model in
which each item in a display is searched successively in a random
order. The serial model implements a probabilistic weighting rule
that incorporates errors—both misses of the target and false alarms
to distractor items—and determines both the completion time and
accuracy of the search. Observers begin in a neutral information
state. A positive information state is entered when an item, cor-
rectly or incorrectly, is identified as a farget. The negative infor-
mation state is entered when all items, correctly or incorrectly, are
identified as distractors.

Let P, and P, be the probability of correctly identifying a target
and a distractor, respectively, and N be the display size. Finally,
G(f|T,a), the gamma distribution with time constant T and number
of stages o (defined later), characterizes the finishing time distri-
butions as a function of time from the onset of the display, .

For target-present displays, the probability of entering the pos-
itive information state (correctly or in error) by time ¢ following
display onset is

T,m)

1 N
P = | y2pp 'pr Gl

m=1

l N m—2
+ NE (1 = pp) G(1
)

m=2 k=(

Tk+ 1)

1 N—-1 N-m—1
N2 2 P (= pop(l = p) Gllrm + k+ 1) |
m=1 k=0

Here, m is an index for the order or position in which the
location containing the target is searched, and k is an index for
calculating the combinatorics of errors at various positions.

For target-present displays, the probability of entering the neg-
ative information-state is

P (1) = py'(1 —py Gt

For rarget-absent displays, the probability of entering the pos-
itive information state is

T,N).

Pty = X pip'(1 = pp) G(i|7,m).

where m is the first process in which a distractor is incorrectly
identified as a target.

For rarget-absent displays, the probability of entering the neg-
ative information state is

P(1) = py G(1

T,N).

Figure 1C illustrates a probabilistic parallel search model in which
each item in a display is searched in parallel, beginning at the same
time but with independent finishing times drawn from a distribution
G(t|r,a). Pr-and P, are the probabilities of correct target and distractor
identification. This is a parallel model with unlimited-capacity dy-
namics, in that the speed of processing individual items does not
depend upon the number of elements in the display.

For the target-present displays, the probability of entering a
positive information state is

N—-1

N—1)!
P = [m'(l(\/——m)—l)' pr oy "= pp)”
X (1 =1 = G(t|r,))™* ) }

. (N—1)!
+2 [m (1 =p) pp "

X (1 = pp)"(1 = (1 = G(tT,oc))”’)],
where m is the number of distractors that are misidentified as
targets and the weighting factors reflect the combinatorics on the
completion order of those processes.

For the target-present displays, the probability of entering a
negative information state is

T,0)".

P ()= —py)pp ' Gl

For target-absent displays, the probability of entering a positive
information state is

N

P = >

m=1

!
m’(N* m)' p%_m(l - pD)m

X (1= (1= Glr,0) ™.

For target-absent displays, the probability of entering a negative
information state is

P (1) =py G(t

T,0)N.

(Appendix continues)
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For both parallel and serial models, the probabilities of yes and
no responses is used to calculate a composite (overall) d' perfor-
mance accuracy. The probability of yes and no responses is cal-
culated by assuming that the observers say “yes” when in the
positive information state, say “no”” when in the negative informa-
tion state, and otherwise guess with probability g:

P = P + g1 =P (1) — P (1),
and
P()=P (1) + (1 —g) (1 =P (1) —P(1).

A predicted measure of bias-fee accuracy, d’ for the model is
derived from the predicted hit and false alarm rates as a function

of processing time, d' = Z(P,.,) — Z(1 - P,,).
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The cumulative density function of the gamma distribution,
G(t|7,a), in the time-course equations is

T(X t ,
P(T<1 = m feTtl/a]dl', t>0,
0

else
0.
(This may be generalized to include a shift by a base time §.)
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