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2 Psychology and the A Priori
Sciences

Penelope Maddy

I'he “a priori sciences’ to be considered here are logic and arithmetic;? the
‘psychology’ includes experimental, especially developmental psychology,
neurophysiology, and vision science. My goal is to examine the role these
empirical theories can play in the philosophies of those sciences, or more
precisely, the role I think they should play. Most of the psychological studies
referred to here will be familiar to readers of this volume, though perhaps
not the use to which I hope to put them.

. Logic

Common sense tells us that much of the world comes packaged into middle-
wzed objects—stones, coins, snails, apples, trees, bodies of cats, apes,
human beings—and not without reason; these items are what we see and
touch, encounter, and engage with, in everyday life. Of course, common
sense doesn’t always hold up under scrutiny, but meticulous science con-
lirms that each of these is a rough collection of molecules held together
by various forces, resisting penetration due to other forces, moving as i
bounded unit on a continuous spatiotemporal path.? Scientifically refined
common sense also reveals that these objects have properties and stand in
relations: stones come in a variety of sizes and shapes, apples in a various

| 1 use the term ‘a priori science’ as the customary label, not to endorse the view that these
disciplines are in fact a priori in some sense or other,

! With a nod roward set theory in footnote 47.

' Some philosophers question this simple view on the grounds that the commonsense table iy
intuitively ‘solid', while the scientific object is largely empty spice, so the two cannot be the
sime. Even assuming that common sense does picture things as continuous matter (over and
above being impenetrable), it seems more natural to say science has favght us that the objects
of common sense are ditferent than we hrst imagined, not that they don't exist, (For a hit
more on such thinking from Eddington, Sellars, and Ladyman and Ross, see Maddy 2014¢,
AT 99, tootote 9.) Other philosophers go turther, rejecting everything in seience and
cormmon sense on radical skepical grounds, bur this challenge, too, | set aside for pPresent
pueposes (lor more, see Maddy, 2017),
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colors, domestic cats are generally smaller than adult humans,' This simple
structuring validates a ¢ertain amount of rudimentary logic: if the apple is
either red or green and it's not red, then it must be green. This might all seem
so obvious, so unavoidable, as to be true no matter what, true in ‘all pos-
sible worlds’, but in fact it breaks down at the quantum level: the particles
don’t behave as bounded units on continuous paths; the sense in which they
enjoy properties (such as position and momentum) is problematic; some
simple logical laws (e.g., the distributive law) appear to fail.’ The inferences
of this rudimentary logic are reliable as long as the requisite structure is in
place, but not otherwise.

Psychology comes into this story as an investigation of how we come
to those early commonsense beliefs about objects and their features. The
groundbreaking developmental work of the 1980s and *90s® showed
that young infants track cohesive, bounded, solid” individuals. despite
occlusions, using spatiotemporal criteria such as contiguity, common
fate, and continuous motiony though they're aware of object’s other
properties, they typically don't use regularities of shape, color, texture
or motion, or features or kinds to determine object boundaries or iden-
tity.* Studies of neonates and nonhuman animals suggest a distant evo-
lutionary origin.

There's some disagreement over the precise interpretation of these experi-
mental results, The contents of ‘the object concept’ vary slightly from writer
to writery” disagreements arise over whether the abilities catalogued are

4 Dependencies between one situation and another are also important—the coin is on the floor
because the cat shoved it off the table—as are universal properties, but I leave these aside for
simplicity in this quick sketch of Maddy, 2007, 111.4 (also (2014c¢)).

5 In another skeptical move, it’s sometimes suggested that science can’t serve to ratify the ob-
Jects of common sense, because any science that begins with those objects will inevirably end
up ratifying them. In fact, a science (ours) that begins with them has ended up without them
in the quantum world.

6 For a summary with references, see Maddy (2007, 245-258). Carey (2009) (Chapters 2
and 3) is a much-discussed survey and philosophical elaboration by one of the leading re-
scarchers in the area. This work swept away the earlier seminal theories of Piaget (featured
in Maddy (1990, 54-5)), according to which the ability to represent objects comes later in
development. Carey (2009, 46-55) gives a fascinating reanalysis of Piaget’s evidence.

7 That is, impenetrable (a feature of both of Eddington’s tables in footnote L3

8 Animate/inanimate, human/nonhuman appear to be exceptions, See Carey (2009, 263-284),
especially pp. 276-277, for more on this point.

? In one of the more dramatic examples, Burge departs from many psychologists (from Piaget
on) in holding that the ‘constitutive conditions’ for representing bodies as such don’t include
tracking through occlusion: “A capacity to perceptually track a body as a three-dimension-
ally bounded and cohesive volume shape while it remains in view . . . suffices® (Burge, 2010,
460). In contrast, Hatfield (2009b) requires tracking through occlusion, but holds thar the
developmental evidence doesn’t conclusively show infants are representing objects as “indi-
vidual material objects (not as mere local collections of properties) . | | that , . . OCCUpY . .
distinet . ., space-time worms . . . throughout their existence” Hattield (2009, 241),

-
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purely perceptual or somehow conceptual,’’ and so on.!! Fortunately, these
niceties needn’t trouble us here because any of these options will be enough
to serve as the building blocks, the ‘objects with properties’, in the rudimen-
tary logical structure described earlier.

But ‘object with properties’ aren’t all there 1s to that rudimentary struc-
ture: a stone has a size and a shape, an apple can be red or green, a coin
can fail to be a quarter. More developmental work of the *80s and '90s
shows that young infants classify cats and dogs so as to exclude birds,
and even cats so as to exclude superficially similar dogs. They're also
sensitive to correlations of features: infants'? aware of three possibilities
lor cach of the features A, B, C, D, and E (that is, A1, A2, and A3, and
v on), habituated to items with correlations between these features——
lor example, items with (A1AB1AC1)A(D1vD2)AE1VE2) and items with
(A2AB2AC2)A(D1VD2)A(E1VE2)—find a new correlated combination
(such as A2-B2-C2-D1-E2) familiar but an uncorrelated combination (such
is A1-B2-C1-D1-E2) just as novel as one that’s entirely new (such as A3-B3-
(. 3-D3-E3)! In addition to these conjunctions, infants also appear sensitive
(o disjunctions—habituated to cats or horses, they find a dog novel-and
to relations—for example, ‘above’, ‘below’, ‘between’. Results like these
strongly suggest that we humans are sensitive to rudimentary logical struc:
tures from an early age.'?

Still, as is well-known, it’s entirely possible to respond to a feature of
the world without representing it: the frog’s visual system might allow it
(0 detect (then catch and eat) flies without representing them as flies, On
this point, I'm less confident than Tyler Burge that ‘representation’ is a psy-
¢hological natural kind'* and even more doubtful that its contours can be

10 For example, Burge (2010, 438-450), in disagreement with Spelke (1988).

L1 It could be that some of these disagreements run deeper than the sort of thing scouted in
tootnore 9. Sticking with Burge and Hatheld as our examples, notice that Burge takes the
goul of the project to be determining what's ‘constitutive’ of objecthood=—"Our question
concerns necessary minimal constitutive conditions for having the capacity to attribute the
kind body in perception” (Burge, 2010, 465 )—where this presupposes a fact of the matter
tor be discovered (perhaps by rational intuirion, perhaps with a hint of essentialism i the
appeal to ‘natural kinds'). In contrast, Hatfield (2009b, 241) only claims, "We as adull
percelvers typically see (things) as individual objects™ with the features listed in footnote ¥
and that the developmental evidence doesn’t establish that infants do this too. He describes
this sitvation by referring to ‘the adult concept’, burt there’s no indication of an underlying
Burge-like metaphysics; he could just be using the phrase to highlight the possibility of o
signiticant cognitive shif,

12 This pattern and the next emerge in 10-month-olds, sull pre<linguistic.

LA For a summary, with references, see Maddy (2007, 258-262),

4 See Burge (2000, 2910 "Psychologleal explanatons have a distiner explavatory pavacigm,
Paychology . o discovers in own kinds, One of them iy the kind representation”,
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discovered, as he suggests, by uniquely philosophical means.'s In contrast,
Gary Hatfield (1988) undertakes a more modest task. firmly grounded in
contemporary vision science.'® An ongoing debate pits those who believe
that the visual system employs symbolie representations in an internal sym-
bolic ‘language’—that rules are encoded and a pplied, hypotheses formed and
tested (in the tradition of Helmholtz)—and those who insist that the visual
system is not representational, that it's simply tuned to register directly the
rich and complex information available in the ever-changing array of ambi-
ent light (Gibson and his followers). Both sides acknowledge that process-
ing takes place between the retina and the visual experience. The debate
between them hinges on the question., is this processing purely physiological
or does it break down into psychologically significant components and, in
particular, into components with a cha racteristically representational role?!7
Hatfield threads the needle between the two schools of thought, arguing
that there are representational components, but that they needn’t involve a
symbolic system.

To see how this goes, consider using a slide rule to multiply # times mz:
locate # on the A scale; slide 1 on the B scale beneath » on the A scale; find
the number on the A scale that’s above 7 on the B scale. The procedure
works because the scales are laid out logarithmically and # x 1 = In~!(In(7)
+In(mm)). That same equation could be programmed into a digital computer
and multiplication carried out in that way, in which case, the logarithmic
algorithm itself would be encoded, represented, in the computer’s program,
but this isn’t true for the slide rule: there the algorithm is effectively fol-
lowed, but it isn’t literally represented.!8 The lengths on the slide rule repre-
sent numbers because of what the device is designed to do (multiply, among
other things) and how it was designed to do it (relying on, but not represent-
ing, the properties of logarithms). The computer is also designed to multiply
(among other things), but it’s designed to do so quite differently, by apply-
ing explicit rules in an internal symbolic system. So what a device does or
doesn’t do represent depends on how it does what it’s designed to do.

15 See Burge (2010, xviii): “Philosophy has . . . a set of methodological and conceprual tools
that position it uniquely to make important contributions to understanding the world. . . .
Many of its topics remain of broadest human concern. Where, constitutively, representa-
tional mind begins is such a topic”.

16 Obviously, this contrast (elaborated in footnotes 14 and 15) is reminiscent
footnotes 9 and 11.

17 See Ullman (1980, 374) and Hatfeld (1988), Section 1.

18 As Burge (2010, 504) points out, an odometer’s computation of the distance traveled de-
pends on the circumference of the tires (it records a tick for cach rotation), but the circum-
ference is nowhere represented. Hatfield (1988, 75) makes a similar point about a ‘tension

adder’; m and m are represented by small welghts placed on a pan and their sum repistered
by a pointer on the front of the device, but 1o algorichm is encoded,

of the one In
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If we now replace the slide rule designer or the computer pmgranlmwtl'
with the evolutionary pressures on our species,'” then the representationa
status of some element of the visual system can be assessed in the same way:
it depends on the function of the visual. system in the evolved human Drg}:;a_nc;
i, the function of that element within the visual system, ‘and the met Dl
It uses to perform that function.?’ Hatfield (1988, 63—6§) gweslthe ?xalr:]lpbe
of sceing a circle at a slant rather than an ?ll|p§e. This f_uncuon {'.r.::uf e
achieved by registering the retinal ellipse, registering slapt quﬂrmatlmlll | mn{;
vhading, and computationally combining these two, or it might b§ ac llev'e,
by a single registration of shading across .the retfmal elllpsel. Obvious Y::i.lt‘i
an empirical matter which of these algﬂrlt}lms is a;tually 1mplement§ ci'l
van be investigated by psychological experiments with carefully tlf;‘lE ) 1S-
ruptions or by physiological investigation of the neuroanatomy. 111 th ::sz
ways, we could determine whether or not, say, the projective I‘Etl;ﬂ S : pf
by itself is represented. But either way, 1_t’s not at ?111 obvious that this sort o
representation would involve a symbolic system.” e

S0, to return to our theme, we know that infants respond to conjunctions,
disjunctions, negations, and so on, but do they actua?.lly r{?pres:ﬂint c::he:_nhas
sich? As Burge notes (2010, 406), the‘ fact that we infer in accor WIL la
logical rule doesn’t imply that the rule is somehow encoded mhc:-ur piyc ﬂh-
oy, presumably in some language of thﬂqght. Our concern Eref, tll ough,
wn't with inference, but with simple logical structuring, alnd (fo UwLng
HMatfield) the representation needn’t be symbolic. The question is whether
the infant represents the stone as small and round, the apple as red or ngZT,
the coin as not a quarter. Assuming that sensory sensitivity tﬂlthesel worldly
leatures is adaptive,** a Hatfield-style answer to *thlS‘ question hinges }?]n
how that sensory sensitivity is achieved: d»::-fe:s the SCIEI’ItL{fIC story of that abi i
ity break down into psychologically sigmﬁcan’t parts, into rePresel:ltatmnad
components, such as the separate representations of projective shape an

19 In practice, determining what aspects of the visual system are adap;a;:n;s and {\;g;c; are
spandrels is a very difficult undertaking. See, e.g., Warren (2012) an 1;1 Erjt;}::l " .ical

20 Burge (2010), Chapter 8, soundly rejects accounts of representation .?Se g
lunction for reasons I don’t fully understand and won’t attempt to _Ex]:‘.-h:a.ate. | _

1 Does this mean that the frog is representing flies? Opponents of biological f.unctmnl m:riw.:ﬁ
stigpest that evolutionary considerations aren’t er:u}ugh to show that thE‘fmg 1S [;pll:f:lnthagt
flies as opposed to moving black dots, or even flies as {}ppnﬁjed to n;t ing at a gUb.Eﬁ -
i frog's detector will occasionally go off on its own. Regarding the first pu:jnt as s di i
further investigation, granting it now only for the sake nf‘argumgn!:, Hatfiel cnn;ez sf .
nevertheless, biological function “can serve as the basis for ascribing m.stgtes of t - rf;]g S
vinual system the content target fly/moving dot, or some such coarse-grained CF}ﬂtE‘t;]t. it :
“lalmong the functions of the frog's visual system is to represent sn}:all ??m%nttln{g}iut:
being there when they are, and not to represent tl'u.fl'l‘l*l as being '.'.'ht,‘l‘t.'.wl T.JT .t ey are i
fold, 1991, 122-1213), In other words, the I1i:.nluuu.:;1!.fumftmn account has room 2
the teop's detector as having mistired when iv goes off on its own,

1 See footnote 19,



20 Penelope Maddy

of shading information in the multistage algorithm for seeing the circle at
a slant? For our case, given that the infant can represent stones, smallness,
and roundness, is her representation of a small, round stone related to other
representations in a way that merits describing it as a conjunctive repre-
sentation? This needn’t involve encoding in some language of thought any
more than the circle-at-a-slant case does, but it is a straightforward empiri-
cal question for experimental psychology and neuroscience.

If a definitive answer to this question is known, it isn't known to me, but
the study of visual working memory offers a hint of how a small part of it
might go. Evidence suggests that we’re able to store information about a
limited number of objects (around four) and their features over short peri-
ods of time. This raises the question of how several features of one object
are bound together: what distinguishes a scene with a vertical red bar and
a horizontal green bar from one with a vertical green bar and a horizontal
red one? One proposal is synchronized neural firing: a particular neuron
fires repeatedly to encode a single feature; when the repeated firings of the
neurons for two separate features are synchronized, they form a unit: “cell
assembly’.* In Hatfield’s terms, the initial firings represent red, green, hori-
zontal, and vertical bars; when the ‘vertical’ and ‘red” neurons fire in unison,
the resulting assembly represents a vertical red bar. The position I'm propos-
Ing, on pure speculation, requires that this isn’t exceptional, that rudimen-
tary logical structuring is widely represented, one way or another.

It all this is granted, what role is psychology playing in this philosophy
of logic? The ground of logical truth, what makes it true (where it is true),
is the objective logical structuring in the world, so there’s no trace of psy-
chologism. Psychology’s role, then, might be thought to be epistemological.
For example, a sufficiently externalist epistemologist, one who thinks the
evolutionary pressures responsible for our logical cognition produce a reli-
able process,** might conclude that we know (at least some of) the world’s
logical structure a priori. I prefer to leave the policing of ‘know’ and ‘a
priort’ to the specialists and to say only this much: we come to believe what
we do about the logical structures in the world on the basis of primitive
cognitive mechanisms, many of which we share with other animals, but our
evidence for the correctness of those beliefs comes from common sense and
its subsequent (partial) ratification by scientific means.

So far, this is a fairly slight philosophical impact for psychology, but I think
there’s an important moral concerning our philosophical preconceptions

23 See Vogel, Woodman, and Luck (2001) for discussion and references. Also Olson and Jiang
(2002).

24 This needn’t be a fallacious argument of the form ‘this evolved, therefore it's reliable’, In-
stead, it might run roughly along the lines teaced heres first sclence establishes that much of

the world is logically seructured; then psychology defends an evolutlonary story of how we
come to deteer and fepresent that stevcture,
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abourt logical truth. Because our logical beliefs rest on such primit.ive cogni-
tive mechanisms, it’s hard for us to see how things could be otherwise, hc:fw a
world failing to instantiate those rudimentary logical forms is even pﬂsmbl?.
When quantum mechanics shows us not only that a world can_tail to do t_hlS
but also that our very own micro-world so fails, often the result 1S tl_mt we find
(uantum mechanics deeply problematic, not that we take !mgic itself to ,be
contingent.?’ It seems to me that the psychology here is shﬂwmg us why we're
w0 easily inclined to believe that logical truth is necessary, a priori, f:rt?ln—a
stubborn preconception that vastly distorts our theorizing ai_mut it.*® It’s hard
(0 imagine a more valuable lesson for the philosophy of logic!

). Arnithmetic

Obviously, any patch of the world with logical structuring into ‘Dbjects with
properties, standing in relations, will also have number properties: so many
ubiccts, so many with this particular feature, so many standing in this I:e'la-
tion to this particular individual, and so on. When it comes to our cognitive
aceess to those number properties, though, it’s well-known that the flrst f()l.'ll'
or 50 have special status: infants’ expectations about how many objects will
appear behind a screen after individual objects have been added or remmfed
ate accurate up to three; adults can hold three to four Gb]ECFS in working
memory?” and track three to four objects through complex motions, but these
abilities break down quickly for higher quantities. Nonhuman gmmals shar;
these abilities and limitations, indicating another primitive cognitive system.”

he mechanism underlying these abilities—the object-tracking or parallleli md:;
viduation system—apparently includes so-called object files of mid-level vision,*
which follow obijects spatiotemporally and encode features as they go (“it’s a

15 1 suspect many of us have heard our fellow philosophers assert with great confidence that
quantum mechanics must be false on a priori grounds. | | |

I See Maddy (2014a), Chapter 6, for a comparison of this conclusion with the late Wittgen-
stein's take on logic. {2 |

3 Feigenson (2011) describes how visual working memory can encode more than f“."," utl'a
worth of information by ‘chunking’, as when we remember a phone number by dividing it
o three blocks of digits, or one of her infant subjects remembers two cats m:u.] two umi
hut not four individual cats. (See also Carey (2009, 149-150).) The *‘chunk” is often r::rr:rr:.r;
(0 as 4 ‘set’, exhibiting the higher ranks that differentiate sets from mere aggregates. | ongce

1 | ' N i |

sppealed to analogous considerations (€.g., In Maddy (1990, 165), but for what it's waorth,
I'm no longer convineed anything essentially ‘higher order” 1s involved in such cases. Seeing
wir cats and two cars could just be a particular way of seeing the cats and the cars, not a
way of seelng something else (a set of cats, a set of cars), |

18 See Maddy (2007, 319<326), for more on the story in this and the following three para
wraphs, with relerences, See Carey (2009), ¢ hapter 8, tor her rh‘tl.mr.-mnn. | '

10 Kahneman et al, (1992), See Maddy (2007, 255-257, 319=320) for a briel e isnion with

folerencoes,
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bird, it’s a plane, it’s Superman”), and visual working memory, which keeps visual
information accessible over short periods.*” The two are closely intertwined, with
some evidence of complementary emphasis on tracking over motion and reten-
tion of object properties, respectively.’’ Though the infant expectation experi-
ments are often described in arithmetic terms—1 + 1 =2, 3 - 2 = 1—it’s widely
agreed that these representations are not truly numerical: not ‘3’, but the simply
logical ‘a thing, another thing, and yet another thing’, most likely the opening
of three successive object files.’* In cases of ‘subitizing’—immediate recognition
(without counting) of up to three or four objects—perhaps visual working mem-
ory is engaged, but again, mostly likely through the opening of three distinct
information slots* rather than an explicit numerical representation.

Yet another primitive system we share with other animals is sensitive to
approximate quantities: it can distinguish one dot from three more easily than
two dots from three (the ‘distance effect’); it can distinguish two dots from
three, but not eight dots from nine (the ‘magnitude effect’).’* The mecha-
nism for this is so far unknown (at least to me), but neurological studies on
monkeys suggest a two-step process that begins with a group of neurons that
encode locations of objects, ignoring other features, and then feeds into an
array of neurons whose responses are bell-shaped curves, each peaking at a
certain number,”® This model would explain the distance effect—the ranges
of firing for ‘one-neuron’ and ‘three-neurons’ overlap less than those for ‘two-
neurons’ and ‘threesneurons’—and the magnitude effect—the bell curves for
large numbers are broader. In any case, this is clearly a more quantitative
system than the object tracker, but it can’t truly be said to represent cardi-
nality. Burge (2010, p. 482) suggests a return to the ancient notion of ‘pure
magnitude’, neither continuous nor discrete, but nevertheless stands in ratios.
However that may be, what matters for our purposes is that features of the
world’s logical structure are being represented, albeit only approximately.3®

30 See, e.g., the references in footnote 23,

31 See Hollingworth and Rasmussen (2010). The two are often lumped together without com-
ment, or even identified.

32 Burge points out, “There need be no use of conjunction or negation in the perceptual repre-
sentation (as in: this is a body and this is a body and this is not that)” (Burge (2010, 486).
He’s right: it’s unlikely that anything like this is encoded in a language of thought. But in
Hatheld’s terms, the opening of three successive object files could represent the correspond-
ing logical feature of the scene.

33 See Chesney and Haladjian (2011) for evidence that subitizing and object tracking rely on
a shared visual mechanism.

34 See, e.g., Carey (2009, 118-137) and Dehaene (2011).

35 See Dehaene (2011, 247-254) and Nieder (2011).

36 Oddly enough, on small numbers, where the two systems overlap, the infant’s object-track-
ing system appears to override the approximate system. For example, they prefer a box
where three treats have been placed to a box where one or two treats have been placed, bur
when the numbers are two and five, beyond the object tracker's capacity, they perform at
chance—despite the fact that the ratio s big enough for the approximate system to detect
eanily, Sow Carey (2009, BANS, 119141, 1531485,
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So far, we're in step with the nonhuman animals, still far short of humffn
stithmetic. The leading theory is that what sets us apart is the child’s abil-
ity to combine the proto-numerical fruits of the object-tracking system and
the approximate system via her command of the counting sequence.’” ‘One,
iwo, three . . . is first learned as a verbal nonsense scheme—such as ‘eeny,
meeny, miney, moe . . . —and the act of reciting it while ;':roiriltiing to each of
A proup of objects in turn is just play, of no numerical 51gmf1cgm:e. Young
‘hildren do realize that the use of the word ‘one’ correlates with the pres-
e of a single object, with a single opened object file or a single item
i visual working memory, but the sense of larger number wgrds comes
aily gradually, between two and a half and three and a half: first ‘two’ 1s
sssociated with the presence of an object and another; a few mﬁnths later,
‘thiee’, and maybe even ‘four’, gains meaning from the object-tracking sys-
(i This far the nonhuman animals can follow, but what happensf next
i uniquely human: apparently the child notices that an extra object 1n the
wene corresponds to the next number in the counting sequence, and s.ud—
denly, the true meaning of counting becomes clear: the last number recited
i the procedure is the number of objects in the scene.

[t's sometimes assumed that this is the end of the story of how humans
come to a full understanding of arithmetic, but it isn’t, for at least two rea-
sons, First, consider a child who knows how to count and knows there are
Yumt as many’ of these as those when the same nu.mber word resultsi from
cotnting these as those. That is, she knows that it she counts 7 ch}ldrﬂn
and n cookies. she’ll be able to give each child exactly one cookie with no
conkies left over. Richard Heck makes the case that a child can knf::w e}ll
this without having the notion of a one-to-one correspondence, which 1is,
alter all, ‘very sophisticated” Heck (2000, 170). Of course, when she counts,
e forms what we understand to be a one-to-one correspondence, but she
needn’t understand it as such; she’s just implementing the counting proce:
dure,"” So this is one respect in which the child still hasn’t grasped a notion
wome consider essential to the concept of ‘cardinal number’.

Another tempting assumption is that a child who understands that one
more object corresponds to the next number word must also understand

Y Mere again, Plaget was in disagreement. See Dehaene (2011, 30=36) for an amusing ac:
sount of how the empirical results were misinterpreted. | |

W Some hold thar the object-tracking system isn't involved, that the underlying ;nm:huﬂmtﬂ
hete v the approximate number system (ANDS) (see, €., Piazza (2011)), which is most
precise for small numbers. Dehaene (2011, 256-259), who once enrrusted small numbers
i the ANS (what he calls ‘the number sense’), explains what changed his mind,

W Meck also notes that the child can understand ‘just as many’ without understanding counts
W there are juse as many vookies as ehildren if she can make sure everyone his rum;tlvluriu
conkie with none left over, Fle then shows how the Peano axioms ean be derived with “juist
an many' i place of Frege's ‘oneosme vorespondence’,
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that there’s no largest number.*’ The only empirical study touching on this
question that I know of, Harnett and Gelman (1998), actually aims to show
that it’s relatively easy for children to learn that the number sequence has
no end—easy compared to learning fractions!—so its design includes more
coaching than would be ideal for present purposes. Still, children in kin-
dergarten and first grade®! did quite poorly on questions such as “is there
a biggest number of all numbers?” and “is there a last number?” They did
somewhat better but still far from perfectly on leading questions such as “if
we count and count and count, will we ever get to the end of the numbers?”
and “can we always add one more, or is there a number so big we’d have
to stop?”, despite having been primed with exercises in counting larger and
larger numbers.*

Explaining their answers, the six-year-olds might suggest that we have to
stop counting “’cause you need to eat breakfast and dinner” or “because we
need sleep”, or that we couldn’t then start up again where we left off because
“you forget where you stopped”. There’s even a hint at mortality: if we try
to add one mote after counting to a very big number, “I guess you’ll be old,
very old”. Though answers like these were classified as ‘unacceptable’, there
15 a straightforward sense in which the children have it right: there are prac-
tical limitations on how far we’re inclined to count, and even physical limits
on how far we could count.*® The young children aren’t wrong exactly;
they're just failing to grasp the spirit of the question. What’s being asked is
whether there's any limit to how far we could count, in principle.

I contrast to the kindergarteners and first graders, the second graders*
in this study generally answered the questions as they were intended: there
15 no largest number, period. Closer analysis of the experimental results led
Harnetr and Gelman to the observation that the children in a position “to

benetit from a conversation that offers cues” (p. 361) were those who could
count beyond 100:

Once children master the sequence from 1 to 20 and the list of decade
words, they have most but not all of the vocabulary they need to apply
the recursive procedures by which larger and larger numbers are gener-
ated. As they count beyond 100, they come to learn that not only the
digits, but also the decade terms, are recycled over and over. | Younger]|

40 For a bit more on the line of thought in the remainder of this section, see Maddy (2014b).
41 Averaging just under 6 and 7 years old, respectively.

42 One group of subjects in one of the studies was questioned about the largest number, etc..

before the counting exercises. Their performance was even worse than the group who did
the counting exercises first.

43 Russell once remarked that running through an infinite decimal expansion is “medically
impossible™ Russell (193576, 143),

449 Averaging just under 8 years old,
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lc|hildren are still at work memorizing the teens and decade terms and

are less able to appreciate that the count sequences is systematic.
(Harnett & Gelman, 1998, 361)"

1hus suggests, as the psychologist Paul Bloom proposes, that

the generative nature of human numerical cognition develops only as a
result of children acquiring the linguistic counting system of their culture.
Many, but not all, human groups have invented a way of using language

to talk about number, through use of a recursive symbolic grammar.
(Bloom, 2000, 236)

1 lis would mean that children’s belief in the infinity of the numbers derives
ltoum their belief in the infinity of numerical expressions, not vice versa:

1]t is not that somehow children know that there is an infinity of num-
bers and infer that you can always produce a larger number word,
Instead, they learn that one can always produce a larger number word
and infer that there must therefore be an infinity of numbers.

(Ibid., 238)

I this way, our question—how do we come to believe there’s no largest
number?—is pushed back one step to how do we come to believe that there's
no largest numerical expression?

Harnett and Gelman’s studies show that it’s quite easy for children to
caime to this view once they’ve appreciated the intricacies of the systematic
peneration of numerical expressions. What'’s striking is that they don’t seem
hothered by concerns about the practical or physical limitations on, for
pxample, the length of those numerical expressions or the breathe needed
1o utter them or the need to stop for lunch—all that apparently matters
W prasping the recursive character of the rules of formation. Why is t"h::
tended ‘in principle’ reading of the question more natural here when it's
posed for numerical expressions than it was when posed for the numbers
themselves? To engage once again in rank speculation, I suggest that this
traces to the recursive element of the innate linguistic faculty, whatever it is
i our genetically endowed cognitive machinery that underlies our bility
o inderstand and produce indefinitely varied and complex linguistic items:

All approaches agree that a core property of [the linguistic faculty|
iy recursion . . . | The linguistic faculty] takes a finite set of elements

A8 Though Harert and Gelman speak of “recursive procedures by which lurger and larger
nininbers are generated s obviously, they've talking about Hnguistic procedures that gener
ate nimurioal expressions, (Understanding that adding one results o a larger number wis
another predictor for sucoesstul response o the vues, )
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and yields a potentially infinite array of discreet expressions. This
capacity . . . yields a discrete infinity (a property that also character-
1zes the natural numbers).

(Hauser, Chomsky, & Fitch, 2002, 1571)

The suggestion is that this linguistic capacity is what produces our intuitive
grasp of the ‘in principle’ question.

Assuming this sketch of the psychology is roughly right—a big assump-
tion, subject to empirical test—the consequences for the philosophy of
arithmetic are fundamental. Simple arithmetical claims such as 2 + 2 = 4
and 12 < 191 are ordinary facts about worldly logical structures (where
they’re present), but the subject matter of mathematical arithmetic—the
standard model, what we now think of as an omega-sequence—doesn’t
depend on any contingent features of the actual world, which may or may
not be finite. Insofar as arithmetic is ‘about’ anything, it’s about an intuitive
picture of a recursive sequence of potentially infinite extent—an intuitive
picture we humans share thanks to the evolved linguistic faculty common
tO our species.

Now, we all tend to believe that the structure of the standard model
of arithmeric, that simple omega-sequence, 1s coherent, unique, and deter-
minate. But if it’s really just a matter of an intuitive picture, what reason
do we have to believe these things? As Wittgenstein once asked, “What if
the picture began to flicker in the far distance?” (RFM, V.10). Our innate
cognitive structuring may well give rise to these firm convictions, but if the
story told here is correct, our capacity for mathematical arithmetic could
be a mere spandrel, generated just by the way we evolved toward lan-
guage, and even if it is an adaptation in itself, that’s no guarantee of reli-
ability.*® Under the circumstances, we reflective beings should want more
support for our faith in the cogency of an omega-sequence than just our
brute inclination to believe it. I think there are facts we can appeal to, but
they’re hardly conclusive: our biological similarity as humans is reason to
think your intuitive picture is more or less the same as mine; the apparent
coherence of the picture, plus long experience of the species with math-
ematical arithmetic, provides some evidence for its consistency; the lack
of any important independent statement comparable to the Continuum
Hypothesis (CH) suggests it may be fully determinate.*” But our sense that
arithmetic is more secure than that may be an illusion—another valuable
lesson from psychology!

46 See the fallacy described in footnote 24.

47 There's an analogous question for set theory, where the relevant intuitive preture—the it-
erative hierarchy—secems 1o rest on three elements: recursion (presumably based in the
same cognitive faculey as the standard model of arithmetic )y the combinatorial notion of
an arbiteary subset, not beholden to any rule, definition, of construction (perhaps related
to Heck™s "very sophisticared” oneaosone correspondence?); and Cantor's putsy bet on the

3,
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Conclusions

| hough psychologists sometimes take their work to support a brand of anti-

realism about mathematics—Stanislas Dehaene’s influential lenberlSefnse,
lor example, bears the subtitle How the Mind Creates Mathematics—in fact,

their skepticism doesn’t extend to the contingent l{)gical!num’erlcal structure
I've been attributing to the world or our cognitive access to It:

L

| Alrithmetic . . . draw[s] upon a store of fundamental_knﬂwledge accu-
mulated over millions of years of evolution in a physical world which,

o e + %
at the scale we live it, is . . . numerically structure
\ (Dehaene in Dehaene and Brannon (2011, 187),
emphasis added)

his type of straightforward realism breaks down, I’'ve suggested, with the

potential infinite, the standard model of arithmetic, where attention to the

prychological facts reveals that our cognitive arch_it_ecture d-:_:rf:s, in a sensc, ‘crt?:
ate’ the subject matter under investigation. In gddltmn to this pﬂSIthE; seman:n.
or metaphysical conclusion, empirical work in psychml'ﬂgy alsp um,mierﬂ t, ¢
less-than-firm underpinnings of some of our f{rmest phﬂﬂmphmal pr?ugnccp-
Hons: that logic is necessary and that arithmetl‘c is obviously cnger]ut (co hercr::i
unliue, determinate). This valuable therapeutic helps free the phi {?scalp‘ 1es B
these subjects from traditional baggage and sets them on a more }utzi n;mru;_..
In these ways, psychological inquiry stands to play a central and highly benefi-

vlal role in our philosophizing about the a priori disciplines.
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