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ABSTRACT 
Spherical functions arise in geophysics, medical imaging, 
and computer graphics. This  paper addresses two prob- 
lems involving spherical functions: determining when two 
spherical functions are 3-D rotated copies of each other. and 
averaging several noisy observations of a rotating spherical 
function. Our solution t,o both problems uses the spher- 
ical bispectrum, which is the generalization of the well- 
known Euclidean bispectrum. In this paper, we formulate 
the spherical bispectrum and show tha t  i t  is invariant un- 
der 3-D rotation of the underlying function and unbiased in 
the presense of additive Gaussian noise. We demonstrate 
an algorithm for recovering spherical functions from their 
bispectra. 

1. INTRODUCTION 

Spherical functions (functions whose domain is a sphere) 
are useful for modelling the earth's gravitat,ional field [I], 
describing the deformation of the heart surface during a 
cardiac cycle [2], and modelling reflectance from a spatially 
extended light source [3]. There are  two general problems 
involving spherical functions tha t  we address in this pa- 
per: how to determine when two given spherical functions 
are simply three-dimensional (3-D) rotated copies of each 
other; and how to average several noisy observations of a 
single spherical function tha t  is undergoing an unknown 3- 
D rotation in between successive observations. For similar 
problems, when the functions involved are defined on the 
real line, bispectral techniques are appropriate for the fol- 
lowing reasons [4]: (1) the bispectrum of any deterministic 
function on the real line is invariant under translation of 
the function; (3) the expected bispectrum of any zero-mean 
Gaussian noise process is identically zero; (3) the bispec- 
trum of most deterministic functions on the real line con- 
tains enough information to  enable recovery of the under- 
lying function. In  this paper we formulate the appropri- 
ate bispectrum for spherical functions, show that the new 
spherical bispectrum possesses attractive properties similar 
to (1)-(3) above, and demonstrate bispectral applications 
to the matching and averaging tasks mentioned above. 
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2. DEFINITIONS 

The bispectrum of any function f on R" is the Fourier 
transform of tha t  function's triple correlation. In this sec- 
tion, we demonstrate how to obtain the spherical triple cor- 
relation from its well-known analogue on Euclidean space. 

A .  Euclidean triple correlation 

triple correlation a3.j is defined by the integral 
Let f be any complex-valued function in  Ll(R"). Its 

a 3 , f ( s ,  1 )  = f ( z )* f (z  + s)f(. + t ) d z ,  (1) J,. 
where the asterisk * denotes complex-conjugation. Clearly, 
the triple correlation is invariant under translation of f, i.e., 
if there exists t such that h ( z )  = f ( z  + t )  for all z, then 
t i3 , / ,  = a 3 , f .  The bispectrvm -43,f  is the Fourier transform 
of the triple correlation. One finds easily tha t  

' 4 3 , f ( U ,  U )  = F ( u ) F ( v ) F ( f f l  + U)*, (2)  

where F is the Fourier transform of f [4]. In many cases, 
the bispectrum A3,f is unique to the underlying function f 
and its translates, i.e., if for some function h we have that  
A3,h = A3,j ,  then there exists 1 such that  h ( z )  = f ( z  + 1 )  
for all 1. For example, this is true if f is nonnegative and 
has compact support; for a detailed review of other cases 
where uniqueness holds. see [SI. 

The triple correlation for deterministic functions, as cal- 
culated in eq . ( l ) ,  is unbiased in additive Gaussian noise. To 
make that  precise, suppose tha t  we observe over a compact 
region K of IR" a signal r of the form r(z) = f(r) + n ( z ) ,  
where f is a deterministic function and n is a sample from 
a zero-mean stationary Gaussian process. If we subtract 
from r its mean value 7 over Ii, and set r' = r - 5, then we 
find that 

E [ a s , + ( s :  t ) ]  = a3,fl(s11). 

Here f '  denotes the zero-mean function f - 7. 
B. Spherical triple correlation 

The Euclidean triple correlation in eq.( l )  is the integral 
of the Euclidean function f multiplied by two independently 
translated copies of itself. Therefore, the appropriate spher- 
ical triple correlation should integrate the spherical function 
f multiplied by two independently rotated copies of itself. 
To make _the analogy even more direct, we define a new 
function f on the 3-D rotation group S0(3) ,  in such a way 
that  if f undergoes a 3-D rotation, then f undergoes a cor- 
responding left translation on SO(3) .  We show later how 
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to const,ruct f from f, but for now let. f be an arbitrary 
function on SO(3). We define the triple correlation o f f  to 
be the integral 

G,,j(S,T) = J ~ ( R ) * ~ ( R s ) ~ ( R T ) ~ R .  ( 3 )  
SO(3)  

Here dR is the unique normalized Haar integral on S0(3 ) ,  
which is invariant under either left or right translation of 
f, i.e., 

J f ( R R o ) d ~  = J J ( R ) ~ R  = J j ( ~ ~  R ~ R .  (4) 

(The explicit form of the Haar integral in terms of Euler 
angles is contained in standard text,s [6].) By applying (4) 
to eq.(3), i t  is easily seen that  u 3 , i  is invariant under left 
translation of f on  SO(^). 

We now apply eq.(3) to spherical functions. Let S2 de- 
note the sphere of unit. radius in IR3, and let h = [U. 0, l]‘ 
denote the North pole (1 denot.es transpose). To each func- 
tion f on S’, let denote the function on SO(3) defined 
by the rule j ( R )  = f ( R h ) .  We define the spherical triple 
correlation of f to  be u 3 , j  in eq. (3) for the corresponding 
function f on SO(3).  This triple correlation is invariant 
under 3-D rotation of f. To see that ,  suppose h is another 
spherical function that  is a 3-D rotated copy of f. Then 
there exists a rotation Ro such that  h ( z )  = f ( R o z )  for all 
z E S’. Thus k ( R )  = h ( R k )  = f (R0RA)  = f ( R o R ) ,  or 
equivalently, the two functions are left trauslates of each 
other. and consequently u3,, j  = u 3 , , f .  

Now suppose we observe r ( x )  = f ( x )  + n(x)  on S 2 ,  
where f is a determinstic function and .n is a sample func- 
tion from a Gaussian, zero-mean, stationary process N .  As 
above, i t  may be shown that  

E [~3,i.’(S, T ) ]  ~ 3 , j , ( S ,  T), 
with i‘ and f’ denoting respectively the extensions to  SO(3) 
of the mean-subtracted functions 7 - F and f -7, the mean 
being evaluated on the sphere [7, pp 21-22]. 

3. BISPECTRUM FORMULA 

In this section, we calculate the Fourier represeiitation of 
the spherical triple correlation. Fourier analysis on the 
group SO(3) is determined by the irreducible unitary r e p  
resentations of the group [ 6 ,  Ch. I]. T h e  latter are matrix 
valued functions De. e 2 0 ,  whose coefficients are called 
generalized spherical harmonics. For each 1, the function 
Dl maps SO(3) into the group of unitary matrices of di- 
mension ?C + 1, in such a way that  De(RS) = De(R)De(S) 
for all S,  R. For any Lz function f on SO(3), we have the 
Fourier series expansion 

CO 

f ( R )  = t r  [ f (C)De(R)]  , 

where tr denotes matrix trace, and the Fourier coefficient 
matrices F are obtained from the matrix-valued integral: 

F ( e )  = / f (R )De(R) ‘dR .  

e=o 

so( 3 ) 

Here, the dagger t denotes matrix adjoint. T h e  transla- 
tion property of th_e Fourier coefficients is important  in the 
bequel: h ( R )  = f ( S R )  for all R if and only if H ( ! )  = 
F( t )De(S )  for all e. 

The triple correlation is a function on SO(3)  x S 0 ( 3 ) ,  
and therefore requires for its Fourier expansion Kronecker 
products of the Dt matrices. T h e  (k,C)-th Fourier coeffi- 
cient matrix of u 3 , j ,  which we denote A, , j (k ,C) ,  is com- 
puted by the integral 

J J a , , j ( S , T )  [Dk(S)t @ De(T)’] dSdT, 
SO(3)  S O ( 3 )  

where @ denotes the matrix Kronecker product. By the 
Clebsh-Gordan formula, the matrix D k ( S ) @ D e ( T )  reduces, 
when S = T ,  into the following direct sum of smaller ma- 
trices : 

C k e  [Dk+e(s) @ Dk+e-i(S) @ . . .  @ Dp-cl(S)] cLe ( 5 )  

Here C ~ C  is the unitary matrix of Clebsh-Gordan coefficients 
(independent of S ) ,  and & denotes matrix direct sum. 

The discussion above gives us the machinery required 
to compute the spherical bispectral coefficients [7, pg 781. 

Proposition 1 Let f be any Lz functzon on SO(3) wuath 
Fourier coeficzents E ( Q ,  C 2 0. For each k und e, we have 

.J?,J~. c )  = [ E ( k )  a E ( [ ) ]  ckC [ E ( k  + e ) t @  
P ( k  + e - I)+ . . . e E(p  - e l ) + ]  cle. 

Intuitively, the spherical bispectrum formula follows from 
the Euclidean formula (2) by taking into accout the Kronecker- 
product decomposition formula (5) on the group SO(3). 
(For the group R, the  Kronecker-product decomposition 
of irreducible unitary representations is simply the familiar 

If f is any function on the sphere, and f is its extension 
to SO(3) by the North pole method of $11, then we call A 3 , y  
the .spherical bispectrum of f. 

expression e*xz.etu2 = 1 

4. BISPECTRUM RECOVERY ALGORITHM 

The formula in Proposition 1 suggests that  i t  is possible to 
extract the underlying Fourier coefficients recursively from 
the bispectrum. We demonstfate below an algorithm ac- 
complishing this for functions f defined on S 0 ( 3 ) ,  and later. 
we show how the technique applies to spherical functions. 

Our algorithm makes use of the following facts from 
matrix theory ([a]). First. any positive definite matrix H 
has unique “positive square root”, i.e., a positive definite 
matrix H i  such that  H f  H f  = H .  Second, any nonsingular 
matrix A has a unique polar decomposition A = H+I:,  
where H+ = (AA’):. and U is a unitary matrix. 

Now let L > 0, and let f be any real-valued_ function on 
SO( 3) whose Fourier coefficients are such t h a t P ( I )  is a non- 
singular matrix for each e < L.  and furthermore, P ( e )  = 0 
if e > L. Since f is real-valued, it is easily shown that 

1 1  

1 
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det [P(1)]  is a real number. Assume, for now, that it is 
positive. Our algorithm for recovering from its bispec- 
trum A 3 , j  proceeds in three steps. 

1. Since f is real-valued, F ( 0 )  is a real number, and 
1, A 3 , j ( O , 0 )  = P ( 0 ) 3 .  and thus E ( 0 )  = by Prop. 

y-. 
2 .  We estimate the first Fourier coefficient matrix E(  1). 

Because E ( 0 )  is. by assumption, a nonzero real num- 
ber, we use the formula in Prop. 1 and find tha t  

The  matrix on the right hand side above is posi- 
.4, f ( l 0 )  1 tive definite. Let F ( l )  = (w): be its positive 

square-root. It can be shown ([7, pp 116-1181) that 
if E(1) is constructed in this way, then there exists S 
in SO(3) such that  

P(1) = P ( l ) D I ( S ) .  

3. If L = 1, then we are done. Otherwise. t!ie follow- 
ing recursion produces matrices F ( 2 ) .  . . . , F ( L ) ,  such 
that  for all 2 5 t' 5 L we have tha t  p(1) = E(c )De(S )  
for the  same S as in Step 2 .  Since we know p(l)  ant1 
i13.j(1, I ) ,  we obtain p ( 2 )  from the upper-left 5 x 5 
submatrix of the following 9 x 9 matrix: 

Explanation: all terms above are known, and if we 
substitute for F(1) and A 3 , j ( 1 ,  l ) ,  and use the reduc- 
tion formula (5),  then we find that  

[ D z ( S ) ' E ( 2 ) ' ]  @ [D, (S) tE( l ) ' ]  E ( 0 )  

The upper left 5 x 5 submatrix of the right hand 
side is exactly the matrix [ F ( ? ) & ( S ) ]  ', and we set 
its adjoint equal to p ( 2 ) .  Having obtained P ( 2 ) ,  we 
estimate $'(e) for any e > '7 from the adjoint of the 
upper left ( 2 l + 1 )  x ('7e+l) submatrix of the following 
matrix: 

T h e  same argument as above shows tha t  p ( l )  = 
P ( t ) D t ( S ) .  After iterating the recursion until e = L ,  
the function f on SO(3) obtained by Fourier series 
expansion with the coefficients E ( ( ) ) ,  p (  I ) ,  . . ., p ( L ) ,  
is such tha t  f ( R )  = f ( S R )  for all R. 

The assumption tha t  det[F(l)]  > 0 is not critical. In- 
stead of selecting P ( 1 )  t,o be the positive definite square root 
of F ( l ) P ( l ) ' ,  we may choose P ( 1 )  to  be any square root 
such that  de t [P(  I ) ]  = det[F(  l)], e.g., by multiplying the top 
row of the positive definite square root matrix by -1 if nec- 
essary. We do not know det[F(1)] a priori, but if we store it 

as "side information" along with the triple correlation, then 
we obtain a complete (left) translation-invariant descrip- 
tion for any real-valued bandlimited function on SO(3) .  
Note that det[E( l)] remains invariant under translation on 
S 0 ( 3 ) ,  i.e., if f ( R )  = i ( S R ) ,  then B ( 1 )  = h ( l ) D l ( S ) ,  
but since d e t [ D ~ ( S ) ]  = $1 ([9, pg 471) we obtain that  
det[P(1)] = det[b( l ) ] .  To  sum up, any real-valued ban- 
dlimited function f on S 0 ( 3 ) ,  whose coefficient matrices 
are all nonsingular up to the bandlimit, can be recovered 
completely-up to  a single left translation on S0(3)-if 
both its triple correlation and the value of det[E(l)]  is 
known, and the algorithm described above is used. 

5. SPHERICAL FUNCTIONS 

The algorithm described in the previous section is formu- 
lated for functions on S 0 ( 3 ) ,  but  we need additional steps 
to use i t  for spherical functions. Let f be the extension t o  
SO(3) of a spherical function f via the North pole mapping. 
The Fourier coefficient matrices E ( O ) ,  E ( 1 ) ,  . . . of any func- 
tion f obtained in chis way have at most rank 1. To prove 
this, consider tha t  f is invariant under any rotation Q tha t  
leaves the North pole fixed, i.e., 

~ ( R Q )  = ~ ( R Q & )  = ~ ( R L )  = J ( R ) .  

The set of all rotations Q tha t  fix the North pole forms a 
subgroup Q of SO(3). Thus  we can average each Fourier 
coefficient matrix E ( [ )  over Q in without changing the value 
of the coefficient. It is easily shown tha t  this implies E ( [ )  = 
PtE(t ') ,  where 

Pe = J, De(Q)dQ. 

The matrix Pe is an orthogonal projection, whose elements 
are zero everywhere except for the exact center-of the ma- 
trix, which has the value l ;  thus  the  rank of F(E) cannot 
exceed one [7, pg 951. 

Although _the Fourier coefficients of an extended spher- 
ical function f are singular, we may augment them so tha t  
they become nonsingular, compute the resulting bispec- 
trum, and then use the recovery algorithm in fIV. This 
allows us to  average multiple observations of a rotating 
spherical function, a procedure tha t  is described in  $VI. 
We focus now on the method of constructing nonsingular 
Fourier matrices. 

Since F ( t )  = PeE(t),  the  entries of the 2t+l-dimensional 
matrix E ( t )  are zero except for the middle row. Assume 
that a t  least one of the middle row elements is nonzero; 
then we may substitute for the  2 l  remaining rows linearly 
independent vectors so tha t  the resulting matrix, denoted 
P(t ' ) ,  is nonsingular. (We are finding a nonsingular matrix 
P [ e )  such tha t  $( l )  = P ~ p ( l ) . )  Moreover, -we may choose 
the additional vectors so tha t  the  function f defined by the 
coefficients P(O), P ( l ) , - .  . ., P ( L )  is real-valued. 

Now the function f is uniquely determined by i ts  bis- 
pectrum A3, j  up to  a 3-D rotation, i..e, from A3,j  we can 

recover Fourier coefficients P such that  for spme S and all 
0 5 l <  L ,  we have P ( l )  = p ( l ) D t ( S ) .  We then obtain the 
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original Fourier coefficients (up to a 3-D rotation) by com- 
position : Pep( [ )  = f i ( t ) D t ( S ) .  Thus the bispectrum of f 
uniquely determines i. and consequently also the original 
spherical function f, up to  a 3-D rotation. 

6. APPLICATIONS 

We outline two applications of the spherical bispectrum, one 
to  matching spherical functions, and the other to  averaging 
multiple views of a rotating Spherical function. 

Since the spherical bispectrum is invariant under 3-D 
rotation of the underlying function, we check whether two 
spherical functions y and q are simply 3-D rotations of each 
other by comparing their bispectra. The  bispectrnm test 
has  two appealing properties. First, the recovery algorithm 
in $4, although formulated for functions on SO(3) with non- 
singular coefficients, shows tha t  bispectral coefficients are 
potentially powerful enough to  uniquely determine the un- 
derlying function and its translates. Second, the insensi- 
tivity of bispectral coefficients to  additive Gaussian noise 
suggests that  any test involving matching bispectral coeffi- 
cients should be insensitive to  measurement noise. In prac- 
tice, however, the bispectra of rotated copies of the same 
fuiiction will not match exactly, and thus we need to check 
if their difference is less than some threshold, where the 
latter is determined by measuring or calculating the prob- 
ability distribution of the bispectral coefficients. We leave 
this topic for future investigation. 

Suppose now tha t  we have several noisy observations fi . 
. . ., fn ,  of a single spherical function f. where the function 
may be rotating by an unknown amount in between succes- 
sive observations, and the noise is independent in each ob- 
servation. Since the signal is rotating, simply averaging the 
observations would average out the signal. Instead, we may 
use the following bispectral technique to average the noise 
without averaging out  the signal. For each observation, we 
compute the spherical bispectrum, and average the result- 
ing bispectra over all the  observations. In doing this, we are 
averaging noise without averaging out information about 
the signal. Unfortunately, we cannot apply the algorithm 
of $4 to  recover the original signal from the averaged spher- 
ical bispectrum < A3,i  >, because the underlying Fourier 
coefficient matrices are singular. However, we may recover 
the underlying signal if we select any one of the observa- 
tions, say fn, form the augmented function fn  on SO(3) 
with nonsingular coefficients, and compute the bispectrum 
A,,fn. T h e  nonzero coefficients of < A 3 , j  > form a proper 
subset of the coefficients of A,,fn, and thus we may improve 
signal-to-noise ratio in the reconstruction by substituting in 
the appropriate locations of each matrix A,,,* (k, e) the co- 
efficients of the averaged matrix < A, , j (k ,  t) >. Numerical 
results obtained by using this procedure will be reported in 
future work. 

7 .  SUMMARY 

ing functions on the 3-D rotation group from their bispec- 
tra, and we describe how that  algorithm may be used with 
spherical functions by augmenting the Fourier coefficient 
matrices. Finally. we describe applications of the spherical 
bispectrum to the problem of checking whether two spheri- 
cal functions are simply 3-D rotations of each other, and to  
the problem of averaging multiple views of a single rotating 
spherical function. 
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In this paper, we formulate the appropriate bispectrum for 
spherical functions, and show that  it in unbiased in Gaus- 
sian noise and invariant under 3-D rotation of the under- 
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