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Color constancy. III. General linear recovery of
spectral descriptions for lights and surfaces
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We present a color-constancy algorithm that uses quantum-catch data from reflected lights to recover surface
reflectance functions and illuminant spectral power distributions. The algorithm recovers both surface and
light-source spectral properties simultaneously. The method works in all situations that were handled by
the earlier two-stage algorithms of Maloney and Wandell [J. Opt. Soc. Am. A 3, 29 (1986)] and D'Zmura and
Iverson [J. Opt. Soc. Am. A 9, 490 (1992); 10, 2148, 2166 (1993); 11, 1970 (1994)]. In addition, the method
handles problems that lie outside the scope of earlier algorithms. Using this method, a trichromatic visual
system can recover, when provided adequate information, spectral descriptions of arbitrarily high accuracy
for lights and surfaces. We determine conditions under which bilinear models can be used to recover color
properties uniquely with the new procedure, and we formulate an algorithm for checking whether a particular
bilinear model provides perfect color constancy. This research extends our analysis of linear methods for
color constancy begun earlier [J. Opt. Soc. Am. A 10, 2148, 2166 (1993)].

1. INTRODUCTION

Under simple viewing conditions the spectral properties
of a reflected light depend on the product of the spectral
power distribution of the light source and a surface's re-
flectance function. Variation in either light-source prop-
erties or surface composition induces variation in reflected
light. A remarkable fact of human color vision is that a
surface's color appearance is stable under conditions of
varying illumination.6 8 This phenomenon of color con-
stancy has prompted the development of algorithms to
estimate the spectral properties of a scene's illuminant
and its surfaces.9

-
20

In two companion papers we analyzed how well
two-stage linear recovery procedures can use bilinear
models to determine surface and light-source chromatic
properties from quantum-catch data.3'4 The applicabil-
ity of these two-stage procedures, like those of Maloney
and Wandell' and D'Zmura,2 is restricted by the need for
the number of photoreceptoral types to equal or exceed
either the dimension of the linear model for reflectance
or the dimension of the linear model for illumination.
A trichromatic visual system that uses a two-stage pro-
cedure is limited to recovering at most three spectral
descriptors for either surfaces or light sources.

We present here a general linear recovery procedure
that uses bilinear models to recover spectral descriptions
of reflectances and illuminants simultaneously. The pro-
cedure works in situations in which the dimensions of
the linear models for reflectance and illumination each
may exceed the number of photoreceptoral types. A vi-
sual system that uses this new algorithm can recover, in
principle, large numbers of spectral descriptors for both
surfaces and light sources. The scope of the recovery pro-
cedure extends to all color constancy problems3' 4 in which
both (1) the number of quantum-catch data compares fa-
vorably with the number of unknown spectral descriptors

to be recovered and (2) the number of surfaces providing
quantum-catch data compares favorably with the number
of spectral descriptors per surface to be recovered.

It is important to identify which bilinear models can be
used by a color constancy algorithm to recover the spectral
descriptors of surfaces and light sources uniquely. The
necessary and sufficient conditions for unique recovery
remain the same as those for the two-stage procedures3 :
the bilinear model must provide a one-to-one relation-
ship between quantum-catch data and sets of lit sur-
faces. We use this requirement to develop algorithms
that check whether a given bilinear model, with the pa-
rameters of a particular color constancy problem, provides
unique recovery.

We check the function of particular bilinear models in
general linear recovery. These checks involve models for
which the dimensions of both the reflectance and the il-
lumination models exceed the number of photoreceptoral
types. These tests of model function extend the classifi-
cation of linear methods for color constancy initiated in
the two companion papers.3 4 We find that many views
(provided by different light sources) of many surfaces are
needed for recovering high-dimensional spectral descrip-
tions of both surfaces and lights. We show that the gen-
eral linear recovery algorithm lets Achromatic systems,
where p 2 2, determine spectral descriptions of arbitrar-
ily high dimension.

In this paper we follow the format of the preceding
companion papers.3 4 We first introduce the recovery
algorithm (Section 2) and continue by discussing nec-
essary conditions (criteria) for unique recovery to be
possible (Section 3). The issue of whether a particular
bilinear model does, in fact, provide unique recovery is not
settled by these criteria. We are thus led, in Section 4, to
provide a model check algorithm that possesses necessary
and sufficient conditions. In Section 5 we check models
and carry out further analysis in an effort to classify
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color constancy problems. This research was described
elsewhere in preliminary form.2 1

2. GENERAL LINEAR RECOVERY
PROCEDURE
We were led to develop the general linear recovery algo-
rithm by noting that two-stage linear recovery procedures
are restricted by the need to invert certain bilinear model
matrices. In these two-stage procedures light-source de-
scriptors are recovered in a first stage, and reflectance de-
scriptors are recovered in a second stage,' or vice versa.2

The matrix inverses are needed for carrying out these
stages. In consequence, the dimensions of the recov-
ered spectral descriptions for either lights or surfaces
are restricted. However, such restrictions are not nec-
essary. The new algorithm avoids the inversion of bilin-
ear model matrices and so circumvents these restrictions.
It recovers in a single stage both light-source and sur-
face descriptors.

Each of the bilinear model matrices Bi for j = 1, ... , n
is of matrix dimension p X m, in which p is the number
of photoreceptoral types, m is the dimension of the lin-
ear model for illumination, and n is the dimension of the
linear model for reflectance (see Table 1 and Refs. 2-5).
Their entries (Bj)ki are defined as follows [Eq. (8) of
Ref. 1]:

(Bj)fi = | Qk(A)Aj(A)Rj(A)dA,

in which appear the photoreceptoral spectral sensitivi-
ties Qk(A), k = 1, ... , p; the illumination basis functions
As(A), i = 1, ... , m; and the reflectance basis functions
Rj(A), j = 1, ... , n. For a two-stage procedure to func-
tion, the bilinear model matrices must be of full rank, with
p 2 m. The p n model matrices Bi',3 in which the
roles of surfaces and illuminants are interchanged, pro-
vide a transposed recovery procedure that is constrained
by the requirement that p 2 n. In a companion paper
we show typical basis functions for illumination and re-
flectance as well as a set of photoreceptoral spectral sen-
sitivities (Fig. 1 of Ref. 3).

Let us now describe the bilinear model for quantum-
catch data in terms of model matrices and descriptors
for illumination and reflectance. Consider the quantum
catches received from a Mondrian8 comprising s surfaces
with different (i.e., for s ' n, linearly independent) re-
flectance functions that is lit, in turn, by u illuminants.
Each surface provides p quantum catches, so that the to-
tal number of quantum-catch data from v views of s sur-
faces is sup. Following D'Zmura and Iverson,3 we intro-
duce indices t and w, which run over the number s of
surfaces and number v of views, respectively. Then the
quantum catch qtwk of the kth photoreceptoral type pro-
duced by the tth surface viewed under the wth light is re-
lated to the n reflectance descriptors rtj, for j = 1, ... , n,
and the m illuminant descriptors awi, for i = 1, ... , m, in
the following way [Eq. (10) of Ref. 3]:

n m

qtwk Y r(B)kjaW.
j=1 =1

(2)

Note that the system expressed by Eq. (2) is a bi-
linear, viz., nonlinear system. We will now work
toward formulating an equivalent homogeneous linear
system. We introduce the p-dimensional data vectors
dtw [qtwi ... qtwp]T and m-dimensional vectors of illumi-
nant descriptors aw = [awl ... awm] [Eq. (11) of Ref. 3]:

n
dt = E rtjBjaw,

j=l
(3)

for t = 1, ... , s and w = 1, ... , v. We define the
pv-dimensional vectors d = [dtT ... dtT]T, the mv-
dimensional vector a = [alT ... avTiT, and the pu x mu
block-diagonal matrices

(4)

in which each of the blocks along the diagonal is By;
Eq. (3) thus takes on the form [Eq. (13) of Ref. 3]

n
dt = E rtjCja,

j=1
t = 1, ... , s. (5)

Table 1. List of Symbols

Bilinear model parameters (p m n v s)
p Number of photoreceptor types
m Illuminant model dimension
n Reflectance model dimension
v Number of views
s Number of surfaces

Functions of wavelength
A(A)

Ai(A)

L(A)
Qk(A)

R(A)
Rj(A)

Descriptors, vectors, and
aj, aw, a, A, z, Z
Pk, Bj
Ci

dt, D, Ak
eij, e, E

F
Gij
I
L
Pjt, P, , P

ri, rt, rtj, R, st, S

Miscellany
e, u

E, U

Q, D
This equation expresses the bilinear dependence of quan-
tum-catch data on surface and illuminant descriptors.

An illuminant spectral power distri-
bution

The ith illuminant model basis func-
tion, i = 1, ... , m

A reflected light
The kth photoreceptor spectral sensi-

tivity, k = 1, ... , p
A reflectance function
The jth reflectance model basis func-

tion, j = 1, ... , n

matrices
Illuminant descriptors
Bilinear model matrices
Block-diagonal bilinear model matri-

ces diag[Bj ... Bj]
Vector of descriptors to be recovered
Quantum-catch data
Variables relating two sets of reflec-

tances
Recovery matrix
Associated model matrices
Identity matrix
Model check matrix
Inverse of the matrix of reflectance

descriptors
Reflectance descriptors

Numbers of equations and monomial
unknowns, respectively, for the
generalized invertibility criterion

Numbers of equations and monomial
unknowns, respectively, provided
by a model check algorithm

Number sup of quantum-catch data
and number sn + um of unknown
descriptors to be recovered

.
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When s = n, the descriptors rtj can be regarded as*
elements of a square n X n matrix R. If the n s
faces viewed are different, i.e., the vectors formed by e,
surface's reflectance descriptors are linearly independE
then the reflectance matrix R is nonsingular, with inve

P= R'.

When Pjt is used to label the entries of the matrix P
follows that Eq. (5) can be rewritten in the form

n

E pjtdt - Cja = 0,
t=1

j = , ... n.

We have here the desired system of linear homogenei
equations. Note that the bilinear model matrices, rer
sented by the matrices Cj, j = 1, ... , n, have not b4
inverted. In consequence, the number p of photorec
tors need not match or exceed the dimension m of thE
lumination model, in contrast to the case with the ear
two-stage algorithms.'` 5

It remains to write the system of Eq. (7) in a m
convenient form, one in which the unknown descript
can be recovered by determination of the one-dimensio
kernel of a recovery matrix.2 `4 Let us introduce the 
1 vectors

homogeneous system of linear equations defined in Eq. (7)
can now be written compactly as

the
ur-
ich
ent,
rse

F8 = 0. (13)

This is the final form of the linear homogeneous system.
(6) The unknown descriptors are the components of the vector

8, and the quantum-catch data and the bilinear model
, t matrix entries determine the recovery matrix F.

The matrix F is the key to recovery. It depends in
part on data and in part on the numerical structure of
a bilinear model, represented by the matrices Cj, j =

(7) 1, ... , n. From elementary linear algebra, we see at once
that unique recovery, up to an arbitrary positive scalar,
is possible if and only if F possesses a one-dimensional

3US null space, i.e.,
ire-
3en
ep-
e il-
lier

ore
ors
nal

X

dim[ker(F)] = 1. (14)

A necessary condition for this to be true is that the num-
ber of rows in the matrix F equal or exceed the number
of its columns, minus one, a requirement that returns the
feasibility condition of D'Zmura and Iverson [inequality
(14) of Ref. 31 under the single restriction s = n:

pnv 2 n2 + mv - 1. (15)

Pj = [Pj ... Pjn]T j = 1, ... , n, (8)

which may be stacked, in order, to form a single n2 1
vector

p = [Pl' ... WTT. (9)

The vector p and the vm-dimensional vector a =
[all ... avm]T of illuminant descriptors form a complete
list of all unknown descriptors. It is convenient to form
a single (n2 + vm)-dimensional vector 8 from these:

= a * (10)

We use the pv-dimensional data vectors d, t =

1, ... , n, introduced above in Eq. (5), to form the fol-
lowing pv X n matrix D, which records all pnv quantum
catches:

From the matrices D and Cj, j = 1, ... , n, can be formed
the partitioned pnv X (n2

+ vm) recovery matrix F:

rD
10

F = 

L 

o ... o -c 1
D 0 C2

0 D -Cn

in which all entries are zero other than the n blocks of
data along the diagonal and the n blocks of bilinear model
matrices for multiple views in the last block column. The

The general linear recovery algorithm is thus as follows:
(1) use quantum-catch data and the bilinear model to
determine the matrix F [Eq. (12)]; (2) find the kernel
of the matrix, where reside the illuminant and (inverse)
reflectance descriptors.

The kernel of the recovery matrix F can be determined
numerically with a singular value decomposition, which
provides a basis for the null space of a singular matrix.2 2

In the event that (1) the matrix R of reflectance descrip-
tors is invertible, (2) the v vectors of illuminant descrip-
tors are linearly independent, (3) the feasibility condi-
tion [inequality (15)] is satisfied, and (4) conditions on
the matrices Bj developed in Sections 3 and 4 below are
met, than the singular value decomposition of F returns a
single nonzero vector 8 that contains the descriptors Pjt
and a i up to an arbitrary common scale; scaled re-
flectance descriptors rtj are recovered from the Pjt by ma-
trix inversion. Note that the algorithm recovers the de-
scriptors up to an arbitrary scalar, as it cannot discrim-
inate reflectances R lit by illuminants A from the scaled
reflectances KR lit by the reciprocally scaled illuminants
(1/K)A.

3. CRITERIA FOR GENERAL
LINEAR RECOVERY
There are two natural classes of color constancy problems
to consider. One involves two views of a set of surfaces.
Such a problem is (p m n v s) = (3 3 3 2 3), in which a
trichromatic visual system attempts to recover three de-
scriptors for each illuminant and surface when provided
data from two views of the three surfaces.2

-
5 The cases

that involve two views arise in situations in which the il-
lumination of a set of surfaces changes. This change can
occur in time, so that two different illuminants shine in
succession on a set of surfaces. This type of change was
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used by Land8 in his demonstrations of human color con-
stancy. The change in illumination can also occur across
space, as in the common situation in which outdoor sur-
faces, in partial shadow, are lit simultaneously by bluish
skylight and by the yellowish light from the solar disk.
The other class of natural color constancy problems in-
volves a single view of a set of surfaces.'

The general linear recovery procedure applies to al-
most every feasible problem in these two natural classes.
Indeed, general linear recovery applies to all prob-
lems handled by the earlier two-stage linear recovery
algorithms.1 -5 The feasibility criterion for general linear
recovery [inequality (15)], which was developed under the
restriction that the number s of surfaces equal (or exceed)
the dimension n of the reflectance model, subsumes the
problems feasible for two-stage linear recovery, as these
require the further restriction that the number of photo-
receptors p equal or exceed the dimension m of the model
for illumination and/or the dimension n of the model
for reflectance.

However, our primary focus in this paper will be on
problems in which two-stage recovery is impossible,
namely, on those in which the number p of photo-
receptors is less than the dimensions m and n for illumi-
nation and reflectance. In what follows we first examine
necessary conditions (criteria) for unique recovery to be
possible. In Subsection 3.A we discuss briefly the re-
striction s 2 n. In Subsection 3.B we derive a criterion
that rules out problems in which there exist illuminants
that are invisible to bilinear models with the problem's
parameters. We extend this criterion in Subsection 3.C
to a more general test of whether there exist sets of lit
surfaces that are invisible. This test of a particular bi-
linear model generalizes the necessary condition, met in
our analysis of two-stage linear recovery,3 that bilinear
model matrices be of full rank. In Subsection 3.D we
derive a further inequality among problem parameters
that extends the criterion pv > n for two-stage recov-
ery to problems where p < m, n. Finally, we consider
the transposition of general linear recovery and resulting
criteria in Subsection 3.E.

A. Restriction s n
The first necessary condition is that the number s of
surfaces equal or exceed the dimension n of the model
for reflectance. To see this, note that for linear recov-
ery to be possible the reflectance descriptors rtj in Eq. (5)
must form an s X n matrix R of full rank: a unique left
inverse for R with entries pjt is needed for unique recov-
ery. No linear scheme can recover reflectance descrip-
tors if s < n, because the absence of unique inverses for (1)
the s X n matrix R of reflectance descriptors and (2) the
p X m model matrices Bj, j = 1, ... , n, disallows manipu-
lation that would provide a system of linear equations.
The transposed criterion for illuminant descriptors is dis-
cussed in Subsection 3.E below.

B. Criterion p + v > m
A further necessary condition for unique recovery is ex-
pressed by the inequality

p + v> m. (16)

types and the number v of views must exceed the dimen-
sion m of the model for illumination. If, for some particu-
lar problem, this inequality does not hold true, then one
can find invisible illuminants that cause recovery proce-
dures with the problem's parameters to fail.

Note that in problems where p Ž- , inequality (16)
holds automatically. We argue here that the criterion
is a necessary condition in problems where p < m.
The block-diagonal matrices Cj of Eqs. (4) and (5) are
of matrix dimension pv mv, and if p < m, then
dim[ker(Cj)] > v(m - p) for j = 1, ... , n. If there exists
a vector of illuminant descriptors a = [aiT ... avT]T with
linearly independent constituents a,, ... , a, such that

n

a E nker(Cj),
j=1

(17)

then recovery must fail: Eq. (5) shows that the quantum-
catch data are identically zero for such illuminants.

The condition on the bilinear model matrix constituents
Bj of the block-diagonal matrices Cj for such invisible
illuminants to exist is that Bjaw = 0 for w = 1, ... , v.
This undesirable situation can occur if dim[ker(Bj)] -v,
and we must rule out this possibility. By hypothesis,
dim[ker(Bj)] m - p, so we insist that m - p < v, which,
on rearrangement, produces the criterion inequality (16).

C. Generalized Invertibility Criterion on
Model Matrices When p < m
Although inequality (16) lets us eliminate color-constancy
problems for which recovery must fail, we can derive
stronger conditions by ruling out the possibility that there
are invisible surfaces. If in Eq. (5) there is some illumi-
nant vector a0 for which the vectors Cia0 , ... , CQa are
not linearly independent, then there are surfaces that give
rise to zero quantum catches under a. Such invisible
surfaces can be superimposed upon any solution rt of
Eq. (5). That is, there exist reflectance descriptors r°,
j = 1, ... , n, not all zero, such that

(18)
n

rCjaO = 0.
j=1

In matrix form this equation reads as

n

rBjA = 0,
j=1

where the v columns of A hold the vectors of illuminant
descriptors a, 0 , w = 1, ... , v, which are linearly indepen-
dent, by hypothesis. We thus infer from Eq. (19) that the
p rows of the p m matrix yn=l rj0Bj lie in the subspace
of dimension m - v that is orthogonal to the v columns of
A0 . In analogy to the derivation of the model-check algo-
rithm for two-stage linear recovery,3 we see that all sub-
determinants of Y. rBj of size in - v + 1 must vanish.
This provides e homogeneous polynomial equations of de-
gree m - v + 1 in the n unknowns rjo, j = 1, ... , n, where
e is the product of two binomial coefficients:

e =(m-v+ )( -v+1 (20)

(19)

In words, the sum of the number p of photoreceptoral
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essary and sufficient that these equations have only the
trivial, zero solution:

riJ = 0, j = 1, ... , n. (21)

Note that the number of equations must be positive, and
examining the first binomial coefficient shows us that p 2
m - v + 1, which is equivalent to inequality (16). When
m > v, we can linearize the equations3 by expressing them
in terms of the distinct monomials of degree m - v + 1,
and the number u of these unknowns is

an + m - v
u M- v + 1 (22)

Thus, to rule out invisible surfaces, it is sufficient that
this linearized system of homogeneous equations have
no nontrivial solution, in which case the only invisible
surface is, in fact, the null, zero surface. This criterion
generalizes the requirement, posed earlier for two-stage
linear recovery,3' 4 that the bilinear model matrices be of
full rank.

D. Criterion pv > n + 1 for Problems Where p < m
We showed3 that the inequality pv > n is a necessary
condition for two-stage linear recovery. This inequality
states that the product of the number p of photoreceptors
and the number v of views must exceed the dimension n
of the model for reflectance. It generalizes to multiple
views the inequality p > n for single views proposed by
Maloney and Wandell.1 Yet the inequality pv > n de-
pends on the assumption that p 2 m, and it happens
that we can strengthen the inequality in problems where
p < m.

Substituting p < m into inequality (15), we find that

pnv > pv + n2 - 1, (23)

and, subtracting pv from both sides, we find that

pv(n - 1) > (n - 1)(n + 1). (24)

In all cases of interest, the quantity n - 1 is a positive
integer, and inequality (24) simplifies to

pv > n + 1. (25)

This is a necessary condition on color constancy problem
parameters when the number p of photoreceptors is less
than the dimension m of the model for illumination.

E. Transposition
As is the case for two-stage linear recovery,3 the roles
of surfaces and light sources may be interchanged in
the general recovery procedure. This interchange leads
to a restatement of the inequalities on the problem pa-
rameters presented above. In particular, one needs a
sufficient number of independent views: v m. Fur-
thermore, the criterion p + v > m becomes p + s > n
under transposition, and the criterion pv > n + 1 when
p < m becomes ps > m + 1 when p < n.

we argued in the companion papers, 3 4 such criteria in-
volve restrictions mainly on the parameters (p m n v s)
of a color-constancy problem. Other than ensuring in-
vertibility, the criteria ignore the structure of the bilin-
ear model matrices [Eq. (1)]. Furthermore, the criteria
do not take into account the structure of recovery matrices
F [Eq. (12)], which are crucial to the recovery algorithm.

For recovery to be possible for all valid sets of quantum-
catch data, it is necessary and sufficient for a bilin-
ear model to provide a one-to-one relationship between
sets of lit surfaces and quantum-catch data, up to an
arbitrary positive scalar.' In cases in which the num-
ber p of photoreceptoral types equals or exceeds the di-
mension m of the model for illumination, formalizing
the requirement for a one-to-one relationship leads to
a model check algorithm3 for two-stage linear recovery.
The model check algorithm is used to test whether a par-
ticular bilinear model provides a recovery algorithm that
works perfectly with appropriate data.4

The need for a one-to-one relationship between
quantum-catch data and sets of lit surfaces also leads
to model check algorithms for general linear recovery.
The algorithms work in situations in which the number p
of photoreceptors is less than both the dimension m of the
model for illumination and the dimension n of the model
for reflectance. In Subsection 4.A we present a linear
model check algorithm that expresses necessary and suf-
ficient conditions for perfect recovery in cases in which
the number v of views equals (or exceeds) the dimension
m for illumination. In Subsection 4.B we discuss the
nonlinear problem met in situations in which the number
of views is fewer (v < m).

A. Necessary and Sufficient Check for
Problems Where p < m and v = m
We use the methods introduced in the companion
papers3 4 to formulate necessary and sufficient conditions
for unique recovery by bilinear models in cases in which
the number v of views matches the dimension m of the
model for illumination. The result is a model check al-
gorithm that works by (1) using a bilinear model to create
a model check matrix and (2) checking the dimension of
the kernel of the model check matrix. If the dimension
is one, then the bilinear model provides unique recovery.

Let us first rewrite Eq. (3) as

n

Dt = I rjBjA,
j=1

(26)

by taking the illuminant descriptors and quantum-catch
data from each view to fill a column of the matrices A and
D, respectively. The matrix A of illuminant descriptors
has dimension m X v, the bilinear model matrices are
p X m, and the data matrices are p x v. Now suppose
that a second set of surfaces lit by a second set of lights
gives identical data. By Eq. (26),

n n

Dt = E stiBiZ = E rtjBjA,
i=1 j=l

t = 1, ... , s = n. (27)

4. MODEL CHECK ALGORITHM

A recovery algorithm with parameters that meet the feasi-
bility criteria presented in Section 3 need not work. As

If recovery is to be unique, then the only way for the two
sets of surfaces under their respective light sources to give
rise to identical data is for the reflectance descriptors rtj

M. D'Zmura and G. Iverson
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and stj to be identical, up to some scale factor, and for the
illuminant descriptor matrices A and Z to be identical, up
to the reciprocal scale factor.

By hypothesis (s = n), the matrix S of reflectance de-
scriptors sj is invertible, so leading from Eq. (27) to

n

BiZ = E eijBjA,
j=l

(28)

where
n

eij = Y ,itrtj,
t=l

(29)

in terms of the elements 0-it of the matrix S-1 [Eq. (36)
of Ref. 3]. Multiplying Eq. (28) on the right-hand side

Continue by defining the matrix X, of dimension pm X
n, and the matrices Y, i = 1, ... , n, each of dimension
pm X 2 :

(B,),,

(Bi)im

(BI)pm

... (Bn) 1

*-- (Bn) 1.

... (Bn)pm

(35)

[-(]3i)ll *** -(Bi)lm] 0

. m

............................................................................

[-(Bi)pl *** -(Bi)pm] 0

. m

by A-', we find that

n

BiH = eijBj,
j=l

Use the matrices X and Yj, i = 1, ... , n, to construct the
model check matrix L of Eq. (33) as follows:

(30)

(31)

where

H = ZA-1.

Subtracting from each of the n Eqs. (30) its left-hand-side
leads to the homogeneous system of equations

0 
. n

X YnJ

From Eq. (33) we see that the necessary and sufficient
condition for a bilinear model to recover descriptors
uniquely, in cases where p < m and m = v, is that

n

I eljBj - BH = 0,
j=l

n

enjBj -BnH = 0.
j=l

dim[ker(L)]= 1. (38)

In the case in which the kernel of model check matrix L is
of dimension one, then the vector w of Eq. (34) contains
only the scaling solutions:

(32)

This system provides n blocks of pm linear equations in
the n2 + M2 variables eij and hij, where the latter M2

variables hij are the elements of the matrix H of Eq. (31).
The system can be written in the compact form

Lw = 0, (33)

where the matrix L has dimensions npm X (n2
+ m

2
) and

the vector w has dimension n2 + M2 . The vector is
defined to be

hi, ... him ... hmi ... hmml 7'. (34)

ell - ejj = 0

eij = 0

hi - h = 0

for j = 2, ... ,n,

for i j,

for j = 2, ... ,m,

for i j,

(39)

The linear model check algorithm, then, tests whether
the npm (n2 + m

2
) matrix L of Eq. (37) has a one-

dimensional kernel. The algorithm is based on a singu-
lar value decomposition4 of the model check matrix L.
Passing this test is both necessary and sufficient for a
particular bilinear model to recover descriptors perfectly.
In Section 5 below we present results of applying this al-
gorithm to particular bilinear models.

0 [-(Bi)ll *** -(Bi)lm]

* (36)

0 [-(Bi)pl * * * -(B)pm]

(37)
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B. Sufficient Checks for Problems
Where p <m and v <m
In cases in which the number v of views is less than
the dimension m of the illumination model, the necessary
and sufficient conditions for unique recovery lead to a
set of nonlinear equations. This holds true in the situa-
tion of present concern, namely, general linear recovery
in cases where p < m, and also for situations in which
two-stage linear recovery procedures work.3 4 However,
we find that we can linearize the nonlinear equations to
produce model check algorithms that express sufficient
(but not necessary) conditions for unique recovery.

We have found two such algorithms for the class
of problems in which p < m. The first follows from
developments like those in the companion papers.3'4

Unfortunately, the homogeneous systems of linear equa-
tions that are produced by this model check algorithm are
very large. This fact prompted us to apply the analy-
sis of Iverson and D'Zmura5 to the present problem.
In cases in which the dimension n of the model for re-
flectance equals or exceeds the dimension m of the model
for illumination, a second model check algorithm results
that produces more compact systems of equations. The
second algorithm also has limited applicability, as dis-
cussed below. We make available both of these algo-
rithms through a technical report.2 3

5. RESULTS

Here we present results of classifying color constancy
problems that are met when (1) the number p of pho-
toreceptors is less than both the dimensions m and n of
the models for illumination and reflectance and (2) the
number s of surfaces equals or exceeds the dimension
n of the reflectance model. The difficulty in performing
model checks in cases in which the number v of views is
less than the dimension m of the illumination model leads

us to limit our scope to those problems where v = m, for
which we have a necessary and sufficient model check al-
gorithm (Subsection 4.A). For these problems we exhibit
bilinear models with the problem parameters that can be
used to recover spectral descriptions uniquely, when pos-
sible. We follow Section 2 (Methods) of the companion
paper,4 to which the reader is referred.

We consider, in turn, dichromatic problems (Subsec-
tion 5.A), trichromatic problems (Subsections 5.B and
5.C), and, more generally, p-chromatic problems, for p 2 2
(Subsection 5.D). We show the results of checks of par-
ticular bilinear models (Subsection 2.B of Ref. 4) with
components listed in Table 2, together with the spectra
of singular values of exemplary model-check matrices
(Subsection 2.C of Ref. 4).

A. Dichromacy
Figure 1 shows results for general linear recovery of spec-
tral descriptions by dichromatic systems. The format of
the diagrams follows that of similar figures in the com-
panion paper (e.g., Fig. 1 of Ref. 4) and is detailed in the
caption.

Results for problems with a three-dimensional illu-
mination model are shown in Fig. 1A. The positive
result for the problem with parameters (p m n v s) =
(2 3 2 3 2), indicated by the circle, follows from trans-
position [entailment (d) of Ref. 4) of the positive result4

for (2 2 3 2 3). The problem with parameters (2 3 3 3 3)
fails totally, as indicated by the X. This total failure is
suggested by the failure of the model-check algorithm for
the 36 models with these parameters that can be formed
from the appropriate components of Table 2. The to-
tal failure of (2 3 3 3 3) can be shown analytically: the
proof3 of the failure of models of the form (2 2 2 2 2)
is readily extended to show that all models of form
(2 c c c c), c 2 2, also fail totally. We leave this proof to
the reader. Figure 1A indicates, finally, that there are

Table 2. Tested Bilinear Model Components

Photoreceptors Illuminants Reflectances

Two dimensions
Smith-Pokorny2 4 protanope Judd et al. 25 Cohen2 6

Smith-Pokorny deuteranope Dixon27 Parkkinen et al.2 8
Smith-Pokorny tritanope Fourier (1, sin) Fourier (1, sin)

Fourier (1, cos)

Three dimensions
Smith and Pokorny24 Judd et al.2 5 Cohen26

Hurvich and Jameson29 Dixon27 Parkkinen et al.2 8
CIE 100 observer3 0 Indoor (D65, A, F2 )30 Fourier
Stockman et al. 2°-10° observer31 Fourier
Sony XC-007 CCD RGB
Sony XC-711 CCD RGB

Four dimensions
Judd et al.25 Cohen26

Dixon2 7 Parkkinen et al.2 8

Fourier Fourier

Five dimensions
Fourier Parkkinen et al.2 8

Fourier

Six+ dimensions
Fourier Fourier

M. D'Zmura and G. Iverson
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m =3 (n =3)
* * * 0

* x * .
12/13 18/18 2425 30/34

[12113 [18/18] [24125] 130/34

* 0 * 0
0/22 36/180 336/872 1512/3075
[a101 [121151 [161221 [20131]

* * 0 0
0/12 1/135 28/736 21012750
[4/7] [6/121 [8l19] [101281

O 1 2 3 4 5
n=s (m=v)

B p=2
m =4 (n =4)

* * * * 

1610 At472 5 32/32 40/41 * 48/52
116/20] *2125] [3212] 140/41]-. 148/52]

:.............. ............ ......
* * * * 0

0/31 28/450 784/3648 588019700 258721
[121161 [18121] [2428] [3037 80181

[36/481
* 0 0 0 0

0121 01405 64 3512 960919375 3
[81121 [121171 [161241 [201331 79515

[24/44
* 0 0 0 0
0/9 01270 112776 45/16625 495/

[4/81 [6/131 [8120] [101291 71415
[12140]

in Fig. 1A for the problem (2 3 4 3 4). The total fail-
ure for (2 4 4 4 4) is again suggested by the failure
of model checks and is an instance of the failure of
(2 c c c c), c 2 2. Finally, the model check algorithm
shows that there are bilinear models with parameters
(2 4 5 4 5) that work perfectly.

In Fig. 2 are shown spectra of ordered singular values
of model check matrices for exemplary bilinear models.
As described in Section 2 of Ref. 4, one determines such a
spectrum by computing a singular value decomposition of
a model check matrix and ordering the singular values
from greatest to least. We then check whether there
is a plunge between adjacent values in the spectrum of
ordered singular values of five log units or greater. We
take such a plunge to indicate the presence of a nontrivial
kernel, and the number of small singular values indicates
the rank of the kernel.

Figure 2 shows the spectra for exemplary models
with parameters (2 3 3 3 3), (2 3 4 3 4), (2 4 4 44), and
(2 4 5 4 5), from bottom to top. The kernels of the matri-
ces are dimensions three, one, four, and one, respectively.
A model passes the necessary and sufficient test posed by
the model check algorithm (Subsection 4.A) if its matrix
has a kernel of dimension one, so that these spectra indi-
cate failure for (2 3 3 3 3) and (2 4 4 4 4) and success for
(2 3 4 3 4) and (2 4 5 4 5). Although all problems of form
(2 c c c c) must fail, the numerical results suggest that
there may be perfect recovery procedures for all problems
of the form (2 c c + 1 c c + 1) or, by transposition, of the
form (2 c + 1 c c + 1 c). We investigate this possibility
more fully in Subsection 5.D below.

0 1 2 3 4 5 6
n=s (m=v)

Fig. 1. Results for dichromatic bilinear models: A, the case
in which the illumination model has dimension three (p = 2,
m = 3 or by transposition p = 2, n = 3); B, the case in which
the illumination model has dimension four (p = 2, m = 4 or
by transposition p = 2, n = 4). The format is like that used
in Fig. 1 of Ref. 4. The horizontal axes mark the dimension n
of the reflectance model, which is taken equal to the number s
of surfaces, and the vertical axes mark the number v of views.
The solid lines divide cases that satisfy the necessary conditions
pnv 2 n2 + vm - 1 [inequality (15)] and p + v > m [inequality
(16)]. The number of quantum-catch data Q = svp and the
number D = sn + vm of spectral descriptors to be recovered are
indicated for each problem by the bracketed pair [Q/D] beneath
the appropriate point. The dotted lines divide cases that satisfy
the necessary condition for the sufficient test provided by the first
nonlinear model-check algorithm, namely, that El 2 U1 [Eqs. (A5)
and (All) of Ref. 23]. The pair El/Ul is shown directly beneath
each point. In cases where m = v (top rows), a necessary and
sufficient model check examines the rank of a system of npm
equations in n2

+ m2 unknowns [Eq. (33)]; these two values are
shown directly beneath such points. An X marks problems for
which recovery fails totally. The circled points mark problems
for which there are perfect recovery algorithms. Parameters for
transposed problems are indicated in parentheses at the tops of
the diagrams and along their axes.

bilinear models with parameters (2 3 4 3 4) that function
perfectly.

In Fig. 1B are shown results for dichromatic prob-
lems with a four-dimensional model of illumination.
The positive result for the problem (2 4 3 43) fol-
lows from transposition of the positive result shown

0

0)

'-

C
U1)
CY)
0
-J

-10

-20

-30
1 10 100

Index
Fig. 2. Spectra of model check matrices for exemplary dichro-
matic bilinear models. Plotted are the ordered singular values
of the model check matrices for exemplary bilinear models that
combine the Smith-Pokorny protanope 24 the CIE daylight basis
for illumination,2 530 and the Fourier basis for reflectance (see
Table 2). The bottom two graphs pertain to Fig. 1A (p = 2,
m = 3) and are spectra for matrices of models with parame-
ters (2 3 3 3 3) (bottom, with a kernel of dimension three) and
(2 3 4 3 4) (second from bottom, with a kernel of dimension
one). To pass this model check, a matrix must have a kernel of
dimension one, so that the results indicate failure for (2 3 3 3 3)
and success for (2 3 4 3 4). The top two spectra pertain to
Fig. 1B (p = 2, m = 4) and are from model check matrices for
models with parameters (2 4 4 4 4) (second to top), with a kernel
of dimension four, so failing the check, and (2 4 5 4 5) (top), with
a kernel of dimension one, so passing the check.
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B. Trichromacy
Figures 3A, 3B, and 3C show results for trichromatic
problems of form (p m n v s) = (3 4 n v s), (3 5 n v s),
and (3 6 n v s), respectively. With trichromatic systems
one encounters feasible problems for which both the num-
ber p of photoreceptoral types and the number v of views
are less than the dimension m of the illumination model.
Beneath the points marking such problems are shown the
numbers of equations and unknowns involved in the first
nonlinear model check algorithm described elsewhere by
us in format El/Ul [Eqs. (AS) and (All) of Ref. 23]. The
dotted lines divide cases for which model checks are pos-
sible, in principle, from those that are not. The first
model check involves systems of equations that are pro-
hibitively large. The number Q of quantum-catch data
and the number D of descriptors to be recovered are shown
in bracketed format [Q/D] beneath all points.

Figure 3A shows results for problems with a four-
dimensional model of illumination and reflectance model
dimension n less than or equal to six. We have re-
sults only for problems in the top row, for which the
model check algorithm of Subsection 4.B is applicable.
The positive results for the problems (3 4 2 4 2) and

Fig. 3. Results for trichromatic bilinear models: A, the case
of four-dimensional models of illumination (p = 3, m = 4, or by
transposition p = 3, n = 4); B, the case of five-dimensional models
of illumination (p = 3, m = 5, or by transposition p = 3, n = 5); C,
the case of six-dimensional models of illumination (p = 3, m = 6,
or by transposition p = 3, n = 6). The circles mark problems
that are shown by the model-check algorithm to support perfect
recovery procedures. See the caption for Fig. 1 and the text for
further details.

(3 4 3 4 3) follow from transposition of the positive
results4 for (3 2 4 2 4) and (3 3 4 3 4), respectively. The
model check algorithm shows that there are bilinear
models with parameters (3 4 4 4 4), (3 4 5 4 5), and
(3 4 6 4 6) that work perfectly. Exemplary spectra for
these three problems are shown in Fig. 4. The bottom
curves show that the kernels of model check matrices of
exemplary bilinear models with parameters (3 4 4 4 4),
(3 4 5 4 5), and (3 4 6 4 6) have dimension one, so that
the models pass the check.

In Figure 3B are shown results for trichromatic prob-
lems with a five-dimensional model of illumination.
The positive results for the problems with parameters
(pmnvs) = (35252), (35353), and (35454)
follow from transposition of the positive results for
(32525) and (33535), found in Ref.4, and for
(3 4 5 4 5), shown in Fig. 3A. Continuing toward the
right of Fig. 3B, the model check algorithm shows that
there are bilinear models with parameters (3 5 5 5 5)
and (3 5 6 5 6) that work perfectly. The middle two
curves in Fig. 4 present exemplary spectra for these
two problems.

Results for trichromatic problems with a six-
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Fig. 4. Spectra of model check matrices for exemplary trichro-
matic bilinear models. The Smith-Pokorny2 4 trichromat and
the CIE daylight basis253 0 were used in combination with
Fourier reflectance models. The spectra shown are, from
bottom to top, for the problems (3 4 4 4 4), (3 4 5 4 5), (3 4 6 4 6),
(3 5 5 5 5), (3 5 6 5 6), and (3 6 6 6 6). The spectra show that
the corresponding model check matrices had one-dimensional
kernels, so passing the check. See the text for further
discussion.

dimensional model of illumination are shown in Fig. 3C.
The positive results for (3 6 3 6 3), (3 6 4 6 4), and
(3 6 5 6 5) follow from transposition of positive results
for (3 3 6 3 6), found in Ref. 4, for (3 4 6 4 6), shown
in Fig. 3A, and for (3 5 6 5 6), shown in Fig. 3B. The
model checks for (3 6 6 6 6) are successful; the top curve
in Fig. 4 depicts an exemplary spectrum for this problem.

There are only three problems in Fig. 3 for which the
second nonlinear model check algorithm described by
us elsewhere23 is possible. These problems meet two
necessary conditions: (1) that the dimension n of the
reflectance model equal or exceed the dimension m of
the illumination model and (2) that the number E2 of
equations equal or exceed the number U2 of unknowns
[Eq. (B8) of Ref. 23]. The problem (3 4 4 3 4) provides a
system of size E2/U2 = 168/120, the problem (3 5 5 4 5)
provides a system of size E2/U2 = 450/300, and the prob-
lem (3 6 6 5 6) provides a system of size E2/U2 = 990/630.
We have not implemented this model check algorithm.

C. Capacity of a Trichromatic Bilinear System
There are infinitely many choices of parameters that
define feasible color constancy problems. In particu-
lar, all problems of the form (p m n v s) = (3 c c c c),
c a positive integer, are feasible. In Fig. 3 we indi-
cate the success of schemes with parameters (3 4 4 4 4),
(3 5 5 5 5), and (3 6 6 6 6); similar results for (3 2 2 2 2)
and (3 3 3 3 3) were found in earlier work.4'5 One nat-
urally wonders whether there are bilinear models with
parameters (3 c c c c) for arbitrarily high c that provide
unique recovery.

Figure 5 provides some numerical evidence. The fig-
ure shows the spectra of singular values for the
model check matrices of exemplary bilinear models
with parameters (3 c c c c) for 3 c ' 31, c odd. The
exemplary models comprise the Smith-Pokorny2 4 fun-
damentals and the Fourier models for reflectance and

illumination; the latter are of dimension c and have their
highest frequency components at frequency (c - 1)/2.
The upper limit 31 stems from our choice to approximate
functions of wavelength using the 31-dimensional vectors
that arise in sampling the interval 400-700 nm at 10-nm
intervals.4 The number v of views is identical to the
dimension m for illumination, viz., v = m = c, so that the
linear model check algorithm can be applied. Figure 5
shows that each of the exemplary models gives rise to
a model check matrix with a kernel of dimension one:
each model passes the check.

The numerical results lead to the following conjecture:
a trichromatic visual system can recover arbitrarily high
numbers of descriptors per illuminant and reflectance
when provided adequate information. We now prove this
claim for problems with parameters of the form (3 c c c c),
to which we apply the analysis based on Schur's lemma3 2

that was introduced by Iverson and D'Zmura. 5

We define the three c X c bilinear model matrices Pk,

k = 1, 2, 3, with entries (.6k)ii = (Bj)ki [see Eq. (1)], SO
providing one bilinear model matrix per photoreceptoral
spectral sensitivity.5 We use, these matrices to rewrite
Eq. (26) as follows [Eq. (4) of Ref. 5]:

Ak = RkA, k = 1, 2, 3, (40)

in which the data matrices Ak have entries qtwk [see
Eq. (2)] and dimension n X v and the matrix of re-
flectances R has entries rtj and dimension n X n.

Suppose now that surfaces with reflectance descriptor
matrix R lit by sources with descriptor matrix A give rise
to quantum catches that are identical to those produced

3
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Fig. 5. Spectra of model check matrices for exemplary trichro-
matic bilinear models with parameters (3 c c c c) for 3 s c • 31,
c odd. Plotted on a log axis are the ordered singular values
of the model check matrices for these models. We scaled
the spectra to stagger the maximal singular values along the
vertical axis at half-log-unit intervals. The parameters of
the models whose spectra are shown are, from bottom to top,
(33333), (35555), (37777), (39999), (3 1111 1111),
(3 13 13 13 13), (3 15 15 15 15), (3 17 17 17 17), (3 19 19 19 19),
(3 21 21 21 21), (3 23 23 23 23), (3 25 25 2525), (3 27 27 27 27),
(3 29 29 29 29), and (3 31 31 31 31). Each has a kernel of
dimension one and so passes the necessary and sufficient model
check. See the text for further discussion.
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by surfaces with reflectance descriptor matrix S lit by
sources with descriptor matrix Z:

Rp 1 A = SkZ, k = 1, 2, 3.

We want to identify bilinear models for which the only
possible solution to Eq. (41) is that where S = KR and
A = (1/K)Z for some constant K. Note that the c X c
matrices S and A are invertible, by hypothesis, so leading
to

Efk = PkH, k = 1, 2,3,

where E = S-'R and H = ZA- 1 . For problems of the
form (3 c c c c) the c c matrices pk k = 1, 2, 3, are
invertible, producing

For color-constancy problems with parameters
(3 c c c c), for arbitrarily large c, we can thus al-
ways construct bilinear models with modified gamma
matrices that share no common nontrivial invariant
subspace. By Schur's lemma, the matrix E is a scalar
multiple of the identity, and so the bilinear model pro-
vides a one-to-one relationship between lit surfaces and
quantum-catch data, up to an arbitrary positive scalar.

Note that the ability to specify associated model ma-
trices G 21 and G 31 that force the scaling solution is tan-
tamount to specifying bilinear model matrices Pk, k =
1, 2, 3, that provide perfect recovery. Perhaps the sim-
plest of many ways to construct model matrices Pk, k =
1, 2, 3, given suitable G 21 and G 31, is to pick an arbitrary
invertible fi1 and set 132 = G 2 1131 and 0 3 = G 3 1 1-

1k7EOk = H, k = 1, 2, 3.

It follows at once that

3-1'Efik = l- 1Ep 1 , k, I = 1, 2, 3. (44)

Let us define the associated model matrices G k1 = k1I-51,
in terms of which Eq. (44) becomes

EG kl = G kE, k, = 1, 2, 3,

and we see that E commutes with each of the associated
model matrices. Following Iverson and D'Zmura,5 it suf-
fices to consider two of these matrices, say, G 21 and G 31-

By Eq. (45),

[E, G 2 1 ] = O=[E, G3 1 ], (46)

where the symbol [A, B] denotes the commutator
AB-BA.

By Schur's lemma,5 ' 3 2 if G 21 and G 31 share no common

nontrivial invariant subspace, then the matrix E is a
multiple of the identity matrix; i.e., the two sets of surface
reflectances are related by a single positive scalar, and the
two sets of light sources are related by the reciprocal of
that scalar. It thus suffices to show that one can always
find matrices G 2 1 and G 31 , for arbitrarily high c, that have
no common nontrivial invariant subspace.

Let us choose G 21 to possess distinct eigenvalues. It
follows that G 21 can be diagonalized, and without loss of
generality we take

= F1
G 21 

- c] 

It now follows from Eq. (46) that matrix E is diagonal,
because the components [E, G 21]ij of the commutator are
eij(A - cx); and, because the eigenvalues of G 21 are
distinct, the off-diagonal components of E, namely eij for
i # j, must vanish.

Consider now the components [E, G 31]ij of the commu-
tator [E, G 31]; these are (eii - ejj)g ij, where 9gij are the
components of G 31. Since these expressions vanish for all
i, j by Eq. (46), the simplest way to ensure that eii = ejj
for all i, j = 1, 2, ... , c, is to construct G 31 so that 9 ij 0 °
for some i and all j. This can always be done.

D. Capacity of a Polychromatic Bilinear System
The result of Subsection 5.C shows that there are trichro-
matic systems that can recover c descriptors, c 2 2. It
must be the case that there are systems with greater
numbers of photoreceptoral types that can also recover
c descriptors, c 2 2. We can easily reduce such a sys-
tem to a trichromatic system, for which we know re-
covery is possible, simply by ignoring the responses
of the excess photoreceptoral types. This argument is
equivalent to one that applies entailment (a) of Ref. 4:
(3 c c c c) (p c c c c), p > 3. We conclude that there
are p-chromatic visual systems that can recover c de-
scriptors for both illuminants and reflectances, for p 2 3
and c Ž 2.

In contrast, all bilinear models with parameters of the
form (2 c c c c) produce recovery algorithms that fail to-
tally, which follows by extending the proof4 of the total
failure of the special case (2 2 2 2 2).

We investigated further chains of problems of this sort.
We performed successful model checks of all problems of
the form (2 c c + 1 c c + 1), for 3 ' c ' 29. The success
of these model checks implies success, through entail-
ment (a) of Ref. 4, for problems of form (p c c + 1 c c + 1)
for p 2 2 and 3 c c c 29 (and their transposes). Al-
though we have not proved the existence of perfect re-
covery algorithms for arbitrarily high c in these chains,
we are confident that this is the case.

The successful results of the further model checks, per-
formed on models with illuminant and surface parameters
limited to a maximum value of 31, suggest that there are
many chains, including(p c c+2 c c+2), (p c c+3 c c+
3), (p c c+4 c c+4), and (p c c+5 c c+5), forp 2 3 and
c 2 3, for which recovery works perfectly for a wide vari-
ety of bilinear models.

6. DISCUSSION

Our goal has been to describe and analyze a general al-
gorithm that recovers spectral descriptions for lights and
surfaces simultaneously, using linear methods. This si-
multaneous recovery is possible whenever the number of
surfaces equals or exceeds the number of reflectance de-
scriptors to be recovered per surface. The general lin-
ear recovery procedure can be used for all color constancy
problems amenable to two-stage linear recovery. 3' 4 Gen-
eral linear recovery has a broader scope because the num-
ber of photoreceptoral types need not equal or exceed the
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dimension of the model for illumination. The problems
that are not amenable to general linear recovery form a
relatively small class that are inherently nonlinear.2

Like the linear model check algorithm for two-stage
linear recovery, 3 4 that for general linear recovery works
well to classify bilinear models. Yet the nonlinear model
check algorithm for general linear recovery, met in cases
in which the number v of views is less than the dimension
m for illumination, leads to linearized systems of equa-
tions that are usually too large for us to treat numerically.

Analytic methods suffice to show that there are infinite
chains (p c c c c), p 3 and c 2 2, of color-constancy
problems for which general linear recovery works
perfectly. This result supports the intuition that poly-
chromatic systems can use reflected lights to determine
spectral descriptions of arbitrarily high dimension when
provided adequate information. Of course, this does not
imply that an arbitrary polychromatic visual system has
this property. Yet the successful results of our numeri-
cal tests through c = 31, with the empirically motivated
trichromatic systems of Table 2, suggest that standard
trichromatic systems have a very high capacity for recov-
ering spectral descriptions.

Numerical results suggest that there are a number
of chains, including (p c c + 1 c c + 1) for p 2 and
(p c c+2 c c+2), (p c c+3 c c+3), (p c c+4 cc+4),
and (p cc +5 c c+5) for p 3, for which recovery
works perfectly for a variety of bilinear models. Fur-
ther chains are feasible if the base number of photorecep-
toral types is increased [for example, if p Ž 4, the chain
(p c c + 6 c c + 6) is feasible], and we conjecture that all
such chains provide perfect recovery schemes that can
work to arbitrarily high accuracy.
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