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Dynamic Models of Simple Judgments:
II. Properties of a Self-Organizing PAGAN
(Parallel, Adaptive, Generalized Accumulator
Network) Model for Multi-Choice Tasks

Douglas Vickers1,3 and Michael D. Lee2

This is the second of two papers comparing connectionist and traditional
stochastic latency mechanisms with respect to their ability to account for
simple judgments. In the first, we reviewed evidence for a self-regulating
accumulator module for two- and three-category discrimination. In this pa-
per, we examine established neural network models that have been applied
to predicting response time measures, and discuss their representational and
adaptational limitations. We go on to describe and evaluate the network
implementation of a Parallel Adaptive Generalized Accumulator Network
(PAGAN), based on the interconnection of a number of self-regulating,
generalized accumulator modules. The enhancement of PAGAN through the
incorporation of distributed connectionist representation is briefly discussed.
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INTRODUCTION

In a previous paper, (Vickers & Lee, 1998), we reviewed evidence for
a self-regulating accumulator model for two- and three-category discrimina-
tion. We argued that this adaptive stochastic decision process possessed all
the essential ingredients of intelligent behavior, and was eminently suited
as a basic computing element, or module, in a larger network, that would
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be capable of carrying out more complex tasks. In this second paper, we
begin by examining a range of established neural network models that have
been recently applied to the prediction of response time measures in tasks
traditionally addressed by stochastic decision models. We argue that none
fully utilises the adaptive and representational advantages of the connec-
tionist framework, and go on to describe the neural network implementation
of a Parallel Adaptive Generalized Accumulator Network (PAGAN), in
which self-regulating generalized accumulator modules are linked into a
simple configuration.

Neural Network Models

Neural network models consist of simple representational elements,
referred to as ‘units’ or ‘nodes,’ which are interlinked by a set of weighted
connections. The processing of information is achieved by transferring
numerical ‘activation values’ between these representational elements in a
principled manner, mediated by the connection weights. Learning is accom-
plished through the modification of the connection weights, in accordance
with one or more learning rules. Useful treatments of neural network
models, adopting several complementary perspectives, are presented by
Anderson (1995), Arbib (1995), Haykin (1994), Hertz, Krogh, and Palmer
(1991), and Rumelhart (1989).

The attraction of the neural network framework with regard to cogni-
tive modeling is at least four-fold. First, computation within this framework
readily implements the ‘bounded’ or ‘constrained’ optimization processes
which characterize much of human cognitive behavior (e.g., Anderson,
1990; Gigerenzer & Goldstein, 1996; Simon, 1982), as evidenced by the
recent spate of neural networks which find reasonable solutions to computa-
tionally intractable combinatorial optimization problems such as the Travel-
ing Salesman Problem (for overviews, see Peterson & Söderberg, 1995;
Yuille, 1995). Secondly, neural network modeling, through the appropriate
assignment of ‘sensor’ and ‘effector’ units, can naturally accommodate the
view that human cognition can be realized only within an embodied and
situated agent (Brooks 1991a, 1991b; Norman 1993; cf. Glenberg, 1997).
Thirdly, neural network models are suited to the realization of the funda-
mental notion that mental representations are active and emergent phenom-
ena, rather than passive data structures overseen by some rule-driven execu-
tive (Cussins, 1990; Hofstadter 1985, ch. 26; Smolensky, 1988). Finally, there
are a large number of established learning rules, including unsupervised
and self-supervised rules, based on principles of self-organization and regu-
lation, and supervised rules, which require some form of external instruction
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or feedback. Hanson and Burr (1990, Fig. 1) present a useful taxonomy of
various neural network learning rules.

Establishing a Temporal Metric

To provide a model of reaction time phenomena, a neural network
model must be subject to some form of temporal metric. Unfortunately,
cognitive neural network models have predominantly focused on response
accuracy, rather than response time, as a measure of performance. This
has led to a situation in which large classes of neural networks cannot
readily be identified with any such metric. In particular, it is difficult to
derive sensible measures of processing time in neural networks with feed-
forward architectures. Within these models, information provided at an
input layer propagates to generate activation values at all subsequent layers.
Since the value of the inputs, coupled with the current state of the network’s
connection weights and other parameters, fully define activation value
across all units in the network, this propagation of information is not
measurable in terms of time.

Measures of information processing time are, however, readily derived
from neural network models in which the propagation of activation values
through the units has some component of recurrence. By this, we mean
that there is at least one unit which has architectural interconnections to
other units such that the current activation value of this unit will, at some
stage during the network’s evolution, affect its own subsequent activation
value. Therefore, unlike feed-forward networks, the propagation of activa-
tion information in recurrent networks does not terminate. While the pat-
tern of activation values across the units of a recurrent network may stabi-
lize, the flow of information underpinning the activation values does not
cease. Thus, if a neural network model is recurrent, it is natural to measure
the processing time since an input was presented in terms of the number
of iterative updates of activation values that have occurred.

Fully Connected Architecture

In surveying previous neural network models of response times, it is
helpful to distinguish between two broad classes of architectural recur-
rence—full recurrence and layered recurrence. As shown in Fig. 1, fully
recurrent networks possess a connection from every unit to every other
unit, and can profitably be viewed as non-linear dynamical systems which
evolve through the iterative updating of the patterns of activation values
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Fig. 1. An example of a fully recurrent neural net-
work architecture.

across the units. Within these networks, it is possible either to pre-determine
(typically using the outer-product form of the Hebbian learning rule), or
learn (typically through applying gradient descent optimization principles
to an error measure) sets of connection weights which implant attractors
in the state space of this dynamic system. Furthermore, as noted in McClel-
land’s (1991) discussion of neural network response time modeling, it is
also often possible with fully recurrent networks to define a global ‘energy’
function which can be shown to be (locally) minimized by the network’s evo-
lution.

Neural networks with this architecture, therefore, can be applied to
the modeling of response times by defining correspondences between pat-
terns of activation values across the units and various responses, and then
developing a set of connection weights within the model, either pre-deter-
mined or learned, which create point attractors at the system states identi-
fied with the responses. Accordingly, the generation of an overt response
is triggered whenever the network’s state is sufficiently close to that of a
response state.

Anderson’s (1991, see also Anderson, 1995, ch. 15) application of the
‘Brain-State-in-a-Box’ (BSB) neural network to the modeling of response
times is one example of this approach. Anderson (1991) examines the BSB
model’s performance on a ‘same-different’ discrimination task across a set
of stimulus vectors with a range of different pair-wise similarities. Primarily,
the evaluation of the simulation results takes the form of a qualitative
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discussion of various features of the response time distributions across
different levels of response accuracy and stimulus similarity. Ratcliff and
van Zandt’s (1996) application of a BSB network model to a signal detection
task involves only a minor reinterpretation of the stimulus vectors used by
Anderson (1991), and incorporates an evaluation through comparison with
empirical data. In essence, the conclusion of Ratcliff and van Zandt (1996)
is that ‘‘the BSB model does an extremely good job of predicting the
experimental data, except for aspects of the data involving error reaction
times and individual differences in sequence effects’’ (p. 31). It is arguable
that the second of these deficiences constitutes a serious challenge to almost
all reaction time modeling. However, after attempts to redress the first
deficiency, Ratcliff and van Zandt (1996) conclude that ‘‘we have found
no reasonable way to get the BSB model to produce a few extreme errors
with fast reaction times’’ (p. 31), and argue that this inability may well be
a fundamental property of the information processing dynamics of BSB
models.

Ruppin and Yeshurun (1991) and Chappell and Humphreys (1994)
develop other cognitive models, based on fully recurrent networks, which
are primarily concerned with atemporal cognitive phenomena, but do con-
sider response time performance. Ruppin and Yeshurun (1991) employ
simulated mean response times to evaluate their model in relation to serial
position and memory retrieval effects, while Chappel and Humphreys
(1994) demonstrate that the latency distributions of their model qualita-
tively match those empirically found and, more generally, emphasize the
advantages of using sparsely distributed representations (cf. Kanerva, 1988;
Keeler, 1988).

Layered Architecture

A second form of neural network recurrence involves units being
grouped into distinct ‘lateral inhibition layers,’ which replace the units
themselves as the architectural ‘atoms’ of the network. In a lateral inhibition
layer (see Grossberg 1976, 1980) each unit has an inhibitory connection to
every other unit, whilst possessing an excitatory connection to itself. Basi-
cally, therefore, units in lateral inhibition layers ‘compete’ for activation
values in a manner which is sensitive both to the received input, and the
contextual configuration of various alternatives represented by the units.

The lateral inhibition-based ‘interactive activation architecture,’ shown
in Fig. 2, underpins one of the earliest and most impressive cognitive models
which considers response time issues, namely, the letter-perception model
described by McClelland and Rumelhart (1981; see also Rumelhart &
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Fig. 2. An example of an interactive activation architecture.

McClelland, 1982). Within this model, units in the lower-most layer corre-
spond to simple geometric features, such as the crossbar of a letter ‘t,’ units
in the next layer correspond to the letters themselves, and units in the
uppermost layer correspond to words composed of these letters. Although
McClelland & Rumelhart (1981) primarily employ response probabilities
as measures of model performance, the time course of the generation of
these response probabilities is also seen as an important feature of this
evaluation. For example, the response time for the model to recognise a
letter as part of a four character word is demonstrated to be faster than
when the letter is presented alone.

The dominant contemporary layered architectural paradigm, known
as GRAIN (McClelland, 1991), is a direct descendant of the interactive
activation model. The primary difference between the two approaches is
that the mutual interconnections established between layers of GRAIN
networks are constrained to be purely excitatory. The motivation for the
exclusion of inhibitory connections between layers is discussed by Usher
and McClelland (1995), and concerns problems inherent in the possibility
of units within one layer ‘over-inhibiting’ a unit corresponding to a plausible
alternative at a subsequent layer. Instead, the necessary comparison of
plausible units within a given GRAIN layer is accomplished solely by
lateral inhibition.

The GRAIN class of models also differ from both McClelland and
Rumelhart’s (1981) letter-perception model and Anderson’s (1991) BSB-
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based model in their incorporation of intrinsic processing variability. Ander-
son (1991) suggests that the determinism of the BSB model may be appro-
priate to the extent that experimental factors, such as the sequence of the
stimuli presented, are responsible for the variability of response times in
relation to the same stimulus. While acknowledging this claim, McClelland
(1991) introduces processing variability on the grounds that ‘‘there are
surely many other factors (mood, context, motor preparation, accommoda-
tion of the eye, etc.) that introduce trial-to-trial variation’’ (p. 660). In any
case, as noted by Usher and McClelland (1995), and pursued by Ratcliff
and van Zandt (1996), there is considerable scope for the extension of
BSB-type models to incorporate processing variability.

Ratcliff and van Zandt (1996) also employ their signal detection task
to evaluate a GRAIN-based model. Their particular model contains three
layers and incorporates adaptive learning capabilities through learning rules
based on mean-field theory, the discrete counterpart of the Boltzmann
learning algorithm (see Hertz, Krogh, & Palmer, 1991; Peterson & Hartman,
1989). Ratcliff and van Zandt (1996) summarize their findings by noting
that the model ‘‘captures some features of the data’’ (p. 24), but also has
limitations. These include: the mistaken prediction that ‘‘error responses
[are] almost always slower than correct responses’’ (p. 24); an inappropriate
prediction of an excessive number of lengthy response times; and an inabil-
ity to capture sequential effects because of the fundamental assumption
that learning is dependent on external feedback.

Usher and McClelland (1995) explore the response time modeling
capabilities of a simpler GRAIN-based model which incorporates only an
input and a response layer. Inter-layer excitatory connections are estab-
lished only from the input to the response layer, and there are only two
units in the lateral inhibition response layer. These two units are aligned
with the potential responses associated with a two-choice task, although
Usher and McClelland (1995) note the ease with which an extension can
be made to a multi-choice paradigm through the addition of further re-
sponse units. The GRAIN assumption that the representation of an input
varies stochastically is implemented through the addition of Gaussian noise
to the activation values of the response units received from the input units.
Unlike the GRAIN-based model examined by Ratcliff and van Zandt
(1996), Usher and McClelland’s (1995) model does not incorporate any
form of learning.

Usher and McClelland (1995) consider data from time-controlled signal
detection tasks, and show that their model predicts that, at short times, or
for easy tasks, d9 will increase as the square root of processing time, as
predicted by most fixed sample models. At longer times, their model pro-
duces d9 curves that converge exponentially to asymptotic behavior, as
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observed by Wickelgren (1977). They go on to examine the time-controlled
speed-accuracy tradeoff in some detail, following Loftus, Busey, and Send-
ers (1993) in assuming that the probability of a correct response, corrected
for guessing, is given by Pc 5 2P 2 1, where P is the probability of a correct
response and Pc is the corrected estimate. However, it may be noted, in
passing, that this correction for guessing makes assumptions about the
relative proportions of ‘catastrophic’ and ‘process-induced’ errors, which
may not be justified (Pietsch & Vickers, 1997). These assumptions, in turn,
are related to questionable assumptions about the representation of incom-
ing stimulus elements (e.g., that there is no effective capacity limitation).

Usher and McClelland (1995) also evaluate the behavior of their model
in information-controlled, ‘standard’ choice reaction time tasks. A limiting
case of their model, in which there is neither leakage nor lateral inhibition,
is equivalent to a continuous-time version of an accumulator process. They
compared the distribution of reaction times obtained for their network
of leaky, competing, laterally-inhibited accumulators with data from an
experiment by Vickers, Caudrey and Willson (1971), in which observers
were required to judge the relative frequency of sequences of light flashes
on the left- or right-hand of two lamps. They found a good qualitative fit
to the pattern of latency-probability functions, obtained by plotting the
mean reaction time for a response against the probability of making that
response for different relative frequencies of the two stimulus alternatives.
The shapes of empirical response time distributions for correct and incorrect
responses were also well described.

Finally, Lacouture and Marley (1991; see also Lacouture and Marley
1995) use a three-layered variation on the well-established ‘auto-encoder’
(Ackley, Hinton & Sejnowski, 1985) connectionist network to model abso-
lute identification and choice reaction time tasks. The architectural recur-
rence of their network resides in the ‘decision module,’ which consists of
a layer of integrator units which accumulate activation values through self-
connections, and fire once they reach a set threshold. This decision layer
may be thought of as a lateral inhibition layer without inhibitory connec-
tions, and with self-excitatory connections greater than unity which function
as ‘gain’ parameters. Lacouture and Marley (1991) focus upon modeling
the identification of unidimensional stimuli, and argue on both theoretical
and empirical grounds that this is best achieved by using a hidden layer
with only one unit. Stimuli are represented by Gaussian distributions, with
appropriate activation values being coarsely distributed across the units in
the input layer. Learning is accomplished using gradient-descent principles
applied to an error measure which appends to the standard mean-squared-
error term an additional ‘penalty’ or ‘regularizing’ term measuring the
variance of the squared error. Lacouture and Marley (1991) argue that this
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variance term corresponds to a form of ‘selective attention’ which leads
the network to attempt to learn to identify each stimulus in a set with
equal accuracy.

Lacouture and Marley (1991) demonstrate their model’s ability to
capture classic set-size effects (e.g., Merkel 1885), effects on changes in d9,
and range effects. They also suggest plausible means by which established
features of reaction time distributions (Luce 1986) and differences in the
latencies of correct and incorrrect responses might be accounted for using
the same basic network architecture.

EVALUATION OF NEURAL NETWORK APPROACHES

Modeling Possibilities

Inevitably, the fact that applying the neural network framework to
response time modeling is a relatively recent development means that a
number of promising avenues are currently unexplored. There are a large
number of established recurrent network architectures which have not been
directly applied to the modeling of response time phenomena. One obvious
candidate is the Adaptive Resonance Theory (ART) (see Grossberg 1982,
1987a, 1987b) family of models, particularly ART-EMAP models (Carpen-
ter & Ross, 1995) which include evidence accumulation mechanisms remi-
niscent of those employed in the accumulator module we described in part
I. The class generically known as ‘sequential network architectures’ (see
Hertz, Krogh & Palmer, 1991) also afford an architectural flexibility which
might prove useful in attempting to provide natural psychological interpre-
tations for various components of the model. Finally, bi-directional associa-
tive memory networks (Kosko 1988) constitute a compromise between
fully-recurrent and layered architectures which seems worth exploring to
gain further insight into the relative merits of both architectural approaches.
Beyond these possibilities, there remain countless network configurations
which might sensibly and profitably be applied to the modeling of response
time phenomena.

Similarly, a number of established cognitive models, founded upon
recurrent neural networks, remain largely unexplored in relation to re-
sponse time issues. A typical example is provided by the connectionist
implementation of schematic memory structures developed by Rumelhart,
Smolensky, McClelland and Hinton (1986). In this model, a set of units
corresponding to household furniture and room properties, such as ‘small,’
‘cupboard,’ and ‘table,’ is placed in a fully connected architecture. By
considering the network’s stable state when the activation values of some
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units are fixed at certain values, Rumelhart et al. (1986) argue that room
schemata such as ‘kitchen,’ ‘dining room,’ and ‘bathroom’ are naturally
emergent properties of the model. Although response times are not used
to evaluate the model, the fully recurrent nature of the network means
that response time measures, such as the number of processing iterations
needed to include a ‘toaster’ in a ‘kitchen,’ are readily available. It is possible
that a consideration of such measures would provide useful additional
perspectives on the neural network modeling of response times.

Current Shortcomings

All of these neural network models (or potential models) of response
times hold promise, and it is perhaps too early to make definitive judgments
regarding their various merits. However, there are a number of aspects of
these models in which shortcomings suggest themselves, and there are also
a number of aspects in which clear deficiencies are evident.

First, perhaps only one of the models which focus primarily on response
times employs principled distributed representations. While several of the
fully-recurrent iterate-to-attractor type of models employ distributed repre-
sentations of a sort, it is difficult to provide an objective and psychologically
well-founded means of generating appropriate stimulus representations for
a given experimental task. In Ruppin and Yeshurun’s (1991) modeling, for
example, the only representational guidance is that the similarities between
various distributed stimulus patterns (as measured by a Hamming metric)
‘‘reflects’’ (p. 384) the similarity of the stimuli. Anderson’s (1991) generation
of representations is guided in much the same way. While the method by
which these distributed stimulus representations are generated remains
largely unconstrained, it seems pertinent to recall Smolensky’s (1987, cited
in Smolensky 1988) general warning that ‘‘a poor representation will often
doom the model to failure, and an excessively generous representation may
essentially solve the problem in advance’’ (p. 69).

Of the layered connections model, those which are GRAIN-based use
entirely local stimulus representations, although this practice is regarded
by McClelland (1991) as a feature that ‘‘arises not as a matter of principle
but as a simplification’’ (p. 656), and Usher and McClelland (1995) make
a similar concession. The stimulus representations used by Lacouture and
Marley (1991), however, given their close correspondence to those devel-
oped by Shepard and Kannappan (1991) from a first-principles theory of
mental representation (Shepard 1987), seem more promising. Furthermore,
the extension of their representational approach to multidimensional stim-
uli has been anticipated by Shepard and Tenenbaum (1991), although La-
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couture and Marley (1991) suggest that developing an appropriate configu-
ration for the hidden layer within their architecture for the multidimensional
case is a non-trivial exercise.

Secondly, the ability of the response time neural network models to
learn is often either inappropriate or remains to be implemented. The
predominance of pre-learning, evident in the derivation of the models of
Anderson (1991), Ruppin and Yeshrun (1991), and Chappell and Hum-
phreys (1994), effectively precludes consideration of the learning which
occurs during an actual experiment. Usher and McClelland (1995) discuss
ways in which this type of learning might be incorporated in their model,
including, in particular, a self-organizing learning rule. However, these
features are not incorporated in the modeling they report. Even those
models which address response time issues less specifically, such as the
letter-perception (McClelland & Rumelhart, 1981) model, have connection
weights which are entirely pre-determined. One which does incorporate a
significant learning component is the GRAIN-based model evaluated by
Ratcliff and van Zandt (1996). Unfortunately, however, one of the most
decisive conclusions made by Ratcliff and van Zandt (1996), following their
empirical evaluation of this model, is that the feedback-driven assumption
on which the learning rules are founded is inappropriate. Once again,
the modeling of Lacouture and Marley (1991) appears more promising,
although the ‘selective attention’ justification for their learning rule, while
plausible, is somewhat qualitative and heuristic. The more principled learn-
ing rules they suggest, based largely on notions of information preservation,
remain to be fully implemented and evaluated.

Ironically, these two criticisms, involving issues of representation and
adaptation, are directly aimed at areas which were identified earlier as
potential strengths of the neural network modeling approach. A third gen-
eral weakness relates to the overwhelming explanatory burden borne by
the nature of the architectural recurrence in many models. The means by
which overt decisions are triggered in all of the models we have described
are relatively simple. Proximity to a response state in a fully recurrent
network, or the attainment of a threshold activation value in a response
unit of a layered network, are typically the sole mechanisms for converting
underlying information processing into response behavior. Effectively,
therefore, the ability of these models to accommodate response time phe-
nomena is the result of the rich interconnectedness of the network architec-
tures which perform the bulk of the information processing.

From this perspective, Anderson’s (1991) practice, also canvassed by
Ruppin and Yeshurun (1991), of not establishing every connection in a
fully recurrent architecture, suggests that the density of unit interconnection
consequently required by recurrent architectures may be inappropriate.
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Usher and McClelland (1995) provide a biological rationale for the GRAIN
network architectures they advance, but we are inclined to concur with
Ratcliff and van Zandt’s (1996) view that ‘‘until the models become truly
models of neural functioning, ‘‘neural plausibility’’ should be attended
to but not be decisive in decisions about processing’’ (appendix 1). Our
reservation concerning the massive interconnectedness of some recurrent
architectures, particularly fully recurrent architectures and those based on
lateral inhibition layers, is based more on issues of model interpretability
and computational tractability. In particular, it seems likely that sophisti-
cated decision rules could lessen the computational burden on the network
architecture, thus reducing the required density of architectural intercon-
nections and facilitating the intuitive identification of meaningful compo-
nents.

PAGAN

With these weaknesses of previously suggested neural network models
of response times in mind, a neural network implementation of the adaptive
accumulator module, described by Vickers and Lee (1998), would appear
to hold some promise. Fortunately, it is generally easy to recast traditional
stochastic latency models, such as the random walk, diffusion and accumula-
tor models, as neural network models, by employing the types of network
structure described by Lippman (1987). In particular, self-organizing learn-
ing rules would naturally implement the self-adjustment of standards in
the model. In a similar fashion, the confidence-based threshold adjustment
rule is a form of self-supervised learning, where the ‘teacher’ values are
derived internally from the over- and under-confidence accumulators of
each module. Quite possibly, other neural network learning techniques
could be applied to extend the model. However, the empirical necessity
for such extensions would need to be established beforehand.

Structure and Processing of PAGAN

Figure 3 shows a representation of a module within the proposed
PAGAN (Parallel Adaptive Generalized Accumulator Network) model in
information-flow terms. This corresponds to the self-regulating accumulator
module for three-category judgments described by Vickers and Lee (1998),
except that this version is configured to make only judgments of identity,
or equality (v 5 s), between a variable stimulus, v, and a standard, s. As
a result, the evidence accrual processes leading to the response outcomes
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Fig. 3. A PAGAN identification module.

v . s and v , s are assumed to be inoperative and are therefore not shown.
In other respects, however, the operation of this identification module is
similar to that of the original three-category mechanism. On a given trial,
successive values of the representation of a presented variable, v, are com-
pared with those of a remembered standard, s, and the momentary positive
and negative (v 2 s) differences are separately accumulated until the evi-
dence, te, for an identification response reaches or exceeds a threshold
value, ke. That is, unlike the situations considered by Vickers and Lee
(1998), where both variable and standard are assumed to be externally
presented, this application deals with tasks in which a variable is presented,
and has to be identified as equal to an internally stored standard (or, more
usually, to one of a number of standards). The latter situation is exemplified
by choice reaction tasks, in which subjects must identify which one of a
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(usually linear) array of stimuli has been presented (Welford, 1980), and
by absolute identification experiments, in which the linear ordering of the
possible standards, such as a set of line lengths, is more explicit (Lacouture &
Marley, 1991; 1995).

A particular feature of this identification module is that the response
threshold is expressed in terms of the sum of the totals of the unsigned
(v 2 s) differences minus their modulus. This means that evidence is directly
accrued in favour of an identification response, rather than this being a
default conclusion from a failure to find some difference. On each trial,
the confidence, ce, in the identification response that eventuates is compared
with a target level of confidence, CE, and the amount of over- or under-
confidence is accrued in the respective secondary, or control accumulators
(over-confidence, to, in one accumulator and underconfidence, tu, in the
other). As soon as one of these totals reaches a predetermined threshold,
K, this triggers an internal adjustment. If a critical amount of over-confi-
dence has been accrued, then the threshold, ke, in the primary accumulator
(which is responsible for the identification response), is reduced. Con-
versely, if a critical amount of under-confidence is accrued first, then the
primary response threshold is increased. The amount by which the threshold
is increased or decreased is proportional to the difference between the
amounts of over- and under-confidence accrued at the time that one of
these totals reaches the critical amount, and an internal adjustment is
triggered. (In other words, the internal adjustments are themselves propor-
tional to the ‘confidence’ that an adjustment is appropriate).

Meanwhile, the coefficient of proportionality, x, serves to determine
the coarseness of control exerted by the secondary accumulators. It does
this in conjunction with the thresholds assumed for these accumulators.
For the present, these are simply assigned a uniform, moderate value.
(However, in principle, any parameter of any accumulator process could
be altered by any other accumulator process.) Similarly, the coefficient
of proportionality is also assigned a uniform value (x 5 0.75), which is
intermediate between what produces minimal, trial-to-trial adjustments in
the primary thresholds (0.25) and a value that gives rise to intermittent but
more dramatic changes (e.g., 2). As shown by Vickers (1979, p. 211), the
coarser the control exercised, the lower the dicriminative efficiency of
the system.

In the identification module shown in Fig. 3, there is only one overt
response. In order to apply the model to choice reaction and absolute
identification tasks with multiple response alternatives, all that is required
is to assign one such module to each of the representations, or remembered
standards, corresponding to each response alternative. For example, Fig.
4 shows an array of four adaptive identification modules, appropriate for
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Fig. 4. A PAGAN array of four adaptive identification modules.

a 4-alternative choice reaction or absolute identification task. On any given
trial, the presented stimulus is compared simultaneously by each module
with the standard assigned to that module. The process resembles a horse-
race, in which the eventual overt response is determined by the first module
to reach its threshold. When this happens, the evidence in favor of that
particular identification response is then compared with the evidence ac-
crued in favor of the nearest single response (in the case of end responses,
at the extremes of a linear array), or with the average of that accrued in
favor of the two nearest neighboring responses (in the case of responses
in intermediate positions), to give a measure of the confidence with which
that decision is reached. Other conventions for assessing confidence are also
conceivable. However, this approach was chosen because it is arithmetically
simple and involves the same kind of local comparison as in the original
three-category decision module. It also plausibly represents the way in
which we might expect an observer to operate. (For example, if an observer
identifies a variable as being equal to the smallest standard, we might expect
them to consider the second-smallest standard as a possible alternative
response. However, it seems less likely that the observer would consider
the largest standard as a possible alternative, to be used in assessing the
confidence with which the actual identification response was made.)

Each module in this array preserves the nonlinear characteristics and
dynamical properties of the original three-category module. These include:
the assumption of a fixed rate at which sensory input is sampled, which
provides a temporal metric for the operation of the model; a nonlinear
relation between stimulus difference and the probability of a particular,
overt response (and between theoretical confidence measures, averaged
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over trials, and the probability of an internal threshold adjustment); hystere-
sis, or a differential response to steady increases or decreases over trials
in the value of a presented variable; and the capacity to adapt, despite
constant parameter values, to any change in the range or distribution of
presented values of the variable stimulus or in the prior probabilities of
any of the response alternatives. At the same time, the response of each
individual module depends upon the existence and behavior of all other
modules in the array. Conversely, the performance of the array, as a whole,
is not deducible from the sum of the histories of the individual modules
considered in isolation. Thus, the PAGAN model inherits the nonlinear,
dynamical properties of its component modules, while acquiring a new set
of properties, which are not intuitively obvious from its composition. A
small selection of its properties are described below.

Demonstrations of PAGAN

Figure 5 illustrates the evolution of the totals in the ‘‘equals’’ accumula-
tors over successive iterations (time). In this case module 4 is the first to
reach a (current) threshold of 15. As in the simple, three-category case, it
may be assumed that target levels of confidence are set by the observer so

Fig. 5. ‘‘Equals’’ accumulator totals for 8 PAGAN modules during
an identification trial.
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as to make certain classes of response with, on average, a certain degree
of confidence. Once these levels are set, the system will automatically
configure the thresholds of the individual modules so as to adapt to any
change in the pattern of stimuli presented to it. The list of potential experi-
mental manipulations is too long to consider here. However, it is useful to
look at a number of situations where some comparison with empirical data
can be made.

Effects of Set Size

Figure 6 shows how the mean number of observations required by the
PAGAN model to make a correct identification response increases as a
(slightly S-shaped) function of (the logarithm of) the number, n, of alterna-
tive stimuli (and standards). The form of this increase is closely similar to
that of the classical data of Hick (1952) and Merkel (1885), as plotted by
Laming (1966). Meanwhile, Hale’s (1968, 1969) finding that the times for
errors in multi-choice experiments were shorter than those for correct

Fig. 6. Mean response times, produced by PAGAN, vs. log (base
2) of number of stimulus response alternatives for 2, 3, 4, 5, 6, 8
and 16 choice identification.
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responses, irrespective of whether instructions emphasized speed or accu-
racy, is also echoed by the present model, as shown in Fig. 7.

The relation between predicted response time and the number of
response alternatives, shown in Figs. 6 and 7, is a consequence of the
assumption that the standards corresponding to each response alternative
must be accommodated within a finite representational space. As the num-
ber of response alternatives is increased, the represented standards become
crowded together and are less discriminable. Increasing the number of
response alternatives should therefore lead to less accurate responding, as
predicted by the model and found empirically. However, the accompanying
predicted and observed increase in response time is also an important
consequence of the self-regulation of thresholds of the individual modules.
As shown by Vickers (1979, p. 258), in the absence of such adaptation, a
simple horse-race model would predict that increasing the number of re-
sponse alternatives should lead to faster responding, particularly for the
less discriminable alternatives, such as those in the middle of a linear array.
The reason is that rival alternatives, which are linked to standards that are
quite different from the standard associated with the ‘correct’ module,
provide only poor competition for that module. However, as more standards
are added, and are packed more closely together, competition for the
module in question is intensified. When the number of response alternatives

Fig. 7. Mean correct and incorrect response times, produced by
PAGAN, for 3, 4, 5, 6, and 8 choice identification.
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is increased, therefore, we should expect the correct module to win less
often, but in a faster time on average. In contrast, in the adaptive version,
when input to a module becomes less discriminable, the threshold for that
module is automatically increased. This results in longer response times and
serves to counteract, though not to completely cancel, the accompanying
increase in the number of errors.

Serial Position Effects

A second set of striking qualitative correspondences between theory
and data concerns the predicted and empirical patterns of serial position
effects obtained when accuracy and response times are considered sepa-
rately for each of a linear array of different stimuli, each presented for
identification in terms of one of a similar array of standards. Figures 8(a)–(c)
illustrates the performance of the PAGAN model in a range of multi-
choice tasks. In general, end stimuli are associated with faster and more
accurate responses, particularly when the degree of choice is low (e.g., 3
or 4). However, the interplay between stimulus discriminability and serial
position, on the one hand, and the adaptive adjustments in threshold levels,
on the other, means that, with higher degrees of choice (e.g., 8), the middle
stimuli can also show an advantage with respect to both speed and accuracy.
Figure 9 shows the asymptotic mean criterion levels reached by the system
after 5,000 trials, and part of their evolution towards this asymptote. A
pattern of empirical results, qualitatively similar to the early stages of this
evolution, has been reported by Welford (1971, 1973), Nettelbeck and

Fig. 8. Performance of PAGAN across 5,000 trials for 3, 4, 5, 6, and 8
choice identification, in terms of (a) criterion levels, (b) response accuracy,
and (c) response time.
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Fig. 9. The evolution of criterion levels in PAGAN over 5,000
trials for an 8 choice task.

Brewer (1976) and Smith (1977). A convenient summary of similar end
and bow effects in serial list learning and symbolic comparison studies is
given by Leth-Steenson (1998).

A number of alternative explanations of such effects have been ad-
vanced. These include an end anchor strategy (Trabasso & Riley, 1975;
Trabasso, Riley, & Wilson, 1975), an end-inward scanning process
(Woocher, Glass, & Holyoak, 1978), and a response bias explanation (Birn-
baum & Jou, 1990). However, such explanations are inevitably ad hoc. In
contrast, in the PAGAN model, end and bow effects follow as a direct
consequence of the nature of a linear array, terminated at each end; no
further special mechanism is necessary. Moreover, the model makes predic-
tions concerning detailed changes in the relations between accuracy, re-
sponse time, and confidence, on the one hand, and stimulus position in the
linear array, as the number of response alternatives is increased.

Speed-Accuracy Tradeoffs

A rich variety of other behavior and predictions can also be explored
without any major development of the model. For example, Fig. 10 presents
illustrative speed-accuracy tradeoff functions for individual responses as
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Fig. 10. Mean response accuracy of PAGAN vs. mean time required
for a correct response for 4 choice identification with varying levels
of target confidence.

target levels of confidence for a 4-choice identification task are subjected
to global increases. Such negatively accelerated functions are typical of
tradeoff relations between the percentage of correct responses and mean
response time as the subject’s degree of caution is varied (e.g., Pachella,
Fisher, & Karsh, 1968; Pew, 1969; Schouten & Bekker, 1967; Swenssson,
1972; Taylor, Lindsay, & Forbes, 1967). In addition, the less bowed func-
tions, obtained with the more difficult middle identifications is consistent
with Swensson’s finding that ‘‘increased stimulus difficulty . . . clearly
seemed to make tradeoff functions less steep,’’ while ‘‘unlike estimates of
tradeoff slopes, the intercept estimates showed little systematic change with
stimulus similarity (1972, p. 27).

Manipulations of Relative Caution

Finally, the readiness to make one or another response can also be
manipulated, with results that capture the qualitative features of the results
obtained in corresponding empirical studies. For example, Vickers (1979,
pp. 273–283) has presented simulation results for a situation in which the
target level of confidence for the fifth response in an array of eight is
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lowered, while the target levels for all other responses are maintained at
a constant value. This simulation of the PAGAN model is intended to
mimic an experiment in which the subject is instructed to watch particularly
for one specific stimulus (in this case, the fifth). As shown by Vickers, the
effect of this differential reduction in target confidence for one response
is to make simulated responses to the corresponding stimulus faster, more
likely to be correct, and (in defiance of the usual relations holding between
these three dependent variables) less confident. At the same time,
neighbouring responses become somewhat less accurate. Although re-
sponses to the two end stimuli, remain virtually unchanged, those to the
seventh stimulus become slightly faster, while those to the second stimulus
in the array become slower. Meanwhile, predicted confidence measures for
all except the end stimuli are very slightly reduced.

Although these simulation results provide predictions that are both
detailed and complex, they accord well with the few results on this topic.
For example, in an 8-alternative choice reaction task, in which subjects
were instructed to be especially ready to respond to the fifth or the sixth
stimulus in a linear array of eight, Welford (1973) found that response
times for the primed stimulus were substantially reduced, as were, to a
lesser extent, responses to adjacent stimuli in the same (upper) half of
the array. Conversely, times for responses in the other (lower) half were
increased, while times for the two end stimuli remained virtually unchanged.
Analogous results were obtained by Welford (1973) in a similar experiment,
in which subjects were instructed to be especially ready to respond to
stimuli in either the left or the right half of the array. As shown by Vickers
(1979, pp. 282-3), the PAGAN model is successful in capturing the qualita-
tive features of these results also. More generally, the behavior of the model
is consistent with general suggestion by Falmagne (1965) and Audley (1973)
that differential preparation should be associated with short response times
and absence of special preparation with relatively longer times.

Effects of Changes in Experimental Conditions

Despite the dynamic interaction between response modules, evident
in these examples, the above experimental manipulations are all designed
to investigate primarily static properties of any process of choice reaction
or absolute identification. They correspond roughly to the manipulations
of response bias, caution, and discriminability considered by us at the
beginning of our first paper on the self-regulating individual decision mod-
ule Vickers and Lee (1998). Nevertheless, as shown by the evolution of
the threshold levels in Fig. 9, the PAGAN model does not behave in a
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static way, even within the framework of a static experimental design.
Although the parameters of the model remain constant throughout a simu-
lated experimental session, its behavior changes continually, with the result
that, at any given trial, the response of the model is a function of its entire
past history of stimuli and responses.

As we have tried to indicate, the PAGAN model will adapt automati-
cally, continually and differentially to any change in the number of different
stimuli presented, in the mean, range, and distribution of their values, and
to any change in the frequency with which they are presented (i.e., to any
imaginable experimental manipulation within the fields of choice reaction
and absolute identification). Unlike alternative models, including that of
Lacouture and Marley (1991; 1995), such adaptations and improvements
with practice are made without the need for any external feedback or training
whatsoever. Since most human adaptation, learning, and improvement with
practice is unsupervised, and takes place without the need for trial by trial
feedback, this self-organising feature constitutes a major advantage of the
PAGAN approach. Also in contrast to many models, whose predictions
are limited to the small subset of experiments, that they were specifically
designed to explain, the predictive scope of the PAGAN model far exceeds
the currently available empirical evidence. For instance, the model makes
detailed predictions concerning the accuracy and distributions of response
time and confidence measures for each possible stimulus-response pairing
in a multiple-alternative task. However, few (if any) experiments analyse
this number of response measures in such fine detail.

A further important set of predictions concerns the ways in which the
PAGAN model might adapt to changes in conditions within a particular
experiment. For example, Vickers and Lee (1998) described adaptations
by the individual three-category module to progressive changes in the
magnitude (and sign) of differences between a variable and a standard
stimulus, and also examined the response of the module to step changes
in the probability of alternative responses. As evident from its performance
in the above static situations, the PAGAN model will respond adaptively
to any such change. For example, if the model is first exposed to a complete
set of variable values (evoking each of the alternative responses), and is
then presented with a subset of these values, it will automatically adjust
its threshold values so as to maintain the target levels of confidence. As
illustrated above, these target levels may be individually predetermined
(because subjects can decide to concentrate on a particular stimulus), or
the same target level may be assumed for all responses. In the latter case,
it will be the average confidence over all responses that the model seeks
to maintain. Unfortunately, while data from the psychophysical method of
limits and from vigilance studies provide some illustration and test for the
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individual module, such experimental designs have not been used in tasks
with multiple response alternatives.

Noise and Optimality

The PAGAN model also possesses a number of incidental but interest-
ing properties that follow directly from its basic assumptions. For example,
although the ‘greater’ and ‘lesser’ accumulators will receive input from a
variable and a standard stimulus that are noise-free, provided their values
are different, none of the three accumulators will receive any input from
a noise-free variable and standard that have the same unvarying value.
This means that the presence of variability in values of the variable and/
or those of the standard is essential to the operation of the model. Further,
as shown by Vickers (1979, pp. 284–290), the adaptive adjustments, made
by the model in response to increases in noise, are such that it is possible
to identify an optimum noise level. Above or below this level, the model
performs less efficiently, in the sense of producing fewer correct responses
in unit time. In addition, this optimum level is related to the number and
discriminability of the stimulus alternatives (i.e., to task difficulty), as well
as being determined by the target level of confidence. Although the notion
of an identification process that depends upon the stimuli in question being
at least momentarily different may seem paradoxical, the existence of noise
at all levels in the human nervous system can safely be assumed. Moreover,
the simulated occurrence of optimal levels of efficiency with varying
amounts of noise, and their interaction with task difficulty and target confi-
dence, is reflected in empirical phenomena, such as the U-shaped relations
between activation and various measures of efficiency in human perfor-
mance, often referred to as Yerkes-Dodson effects (Broadhurst, 1959;
Eysenck, 1955; Welford, 1968). As pointed out by Broadbent (1965), these
effects also show interactions between motivation and task difficulty.

Multidimensional Stimuli

Finally, it should be stressed that the model presented here has been
developed to account for the pattern of results obtained in studies of choice
reaction or absolute identification. For this reason, it is assumed that the
standards have already been learned (and have stable representations) and
that the modules are tuned to registering variations in the stimulus with
respect to the relevant dimension (e.g., position in a linear array or line
length). However, by adding further linear arrays of modules in parallel,
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the network could easily be extended to enable it to identify stimuli varying
on several dimensions, and to show a preference for those dimensions on
which the stimuli can be most effectively discriminated. In the same way,
by utilising the latent capacity of each module to make ‘greater’ and ‘lesser’
decisions as well as ‘equal’ ones, such a network could quickly adapt so as
to classify multidimensional stimuli into different categories in an optimally
efficient way. For example, in a paired comparisons task, with multidimen-
sional stimuli, such a network would automatically adjust so as to be more
ready to make relative judgments on the basis of the most discriminable
dimension(s). The capacity of each module to make greater, lesser and
equal decisions, even when these may be redundant, also means that the
network can use such decisions to revise its standards, to generate new
standards in an unsupervised way, or to scale stimuli in terms of a number
of given standards. Moreover, because of the modular nature of the ap-
proach, it is not difficult to maintain a morphological correspondence be-
tween the structure of the task and that of the model, so that its application
to new tasks is relatively straightforward.

Further Extensions of the PAGAN Model

PAGAN seems to address two of the three weaknesses of neural
network response time models described earlier. The dynamics of PAGAN
are comparatively simple, operating within a modular architecture that is
only locally connected, and learning is accommodated naturally within the
model in the form of both self-organization of internal stimulus standards,
and the adaptive setting of confidence-based decision criteria. Not supris-
ingly, therefore, the most immediate potential extension of PAGAN af-
forded by a neural network interpretation, comes through the remaining
criticism relating to the distribution of information. In this regard, recent
results by Pietsch and Vickers (1997), involving the capacity properties of
information accumulation within PAGAN have strong implications for the
way in which stimulus information is assumed to be represented in networks
of stochastic modules, such as PAGAN.

Pietsch and Vickers (1997) challenge the ‘leaky’ accumulation model
adopted by Usher and McClelland (1995), based on empirical data gathered
from a task, like that of Vickers et al. (1971), in which observers discrimi-
nated the relative frequency of sequences of visual or auditory stimuli.
Pietsch and Vickers evaluated numerous models, using multiple compari-
sons between response patterns of 47 individual (and pooled) observers
and predictive measures based on separate simulations for each of 300 trial
sequences. They found that results were clearly inconsistent with mecha-
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nisms of discrete sampling (with random registration failure), retroactive
attenuation, or accumulation with leakage over time. Instead, the data
implied that the memory of clusters of similar stimuli was represented as
a set of discrete micro-representations. All of these might be accessed as
part of the decision-making process, provided they were retained. However,
any number of them might be lost (completely) during the course of a
trial.

Pietsch and Vickers (1997) conclude that a ‘loose capacity’ model of
the evidence accumulation process provides the best account of the data.
The loose capacity account assumes that information is stored as a set
of discrete micro-representations, which represent clusters of consecutive,
identical stimulus elements (e.g., a run of flashes on the same side). These
are subject to an all-or-nothing form of loss, rather than to any progressive
reduction in value. The stochastic loss of micro-representations can poten-
tially be induced by any additional registration of input, but with a probabil-
ity which depends on the number of units held in memory at the time.
Thus the loose capacity model is intermediate between accounts based on
interference by subsequent activity and those based on a strict, fixed limit
to the number of items that can be held at one time. This process implies
a probabilistic steady state capacity in terms of information storage, but
also allows considerable flexibility in this capacity.

Although it is not immediately obvious how to achieve a neural net-
work implementation of this loose capacity mechanism, which is directed
at modeling the representation of a stimulus varying within the space of a
single trial, it is possible that trial-by-trial representations might be well
captured by some form of distributed memory within a neural network.
For example, Leth-Steenson (1998) has described a connectionist process
for learning the linear ordering of symbolic stimuli, based on the pairwise
relations between adjacent stimulus items, and has argued that this process,
in conjunction with parallel evidence accrual processes, can give a good
account of a range of results (including end and bow effects) from a symbolic
comparison task. Meanwhile, the information storage properties of various
neural networks have been widely explored, particularly relating to ‘cross-
talk’ in associative memories (e.g., Knapp & Anderson, 1984; Kohonen,
1984; Willshaw, Buneman & Longuet-Higgins, 1969) and the ‘catastrophic
forgetting’ phenomenon (e.g., French, 1991; Kruschke, 1993), in which
connection weight changes which store new information concurrently serve
to remove substantial amounts of previously stored information. Indeed,
it is precisely these types of considerations which catalysed the development
of the sparsely distributed memories mentioned earlier, and we suspect
that these types of neural network memory structures could act as loose
capacity mechanisms. However, the justification of this claim requires the
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specification of an exact means by which this correspondence is achieved,
and this is obviously a priority for future research.

CONCLUSION

The strengths of neural network models have generally been seen as
the capacity for learning and generalization, the ability to achieve solutions
to otherwise intractable optimization problems, and the potential for distrib-
uted representation of stimulus information. Conversely, a perceived weak-
ness of cognitive models developed within the neural network framework
is that their flexibility and complexity make empirical verification difficult.
In contrast, the comparatively well-researched features of simple judg-
ments, and the relatively constrained development of the traditional sto-
chastic latency mechanisms which have evolved to account for them, means
that, while there is not consensus on the theoretical mechanisms involved,
the most plausible candidates share a number of family resemblances. At
the same time, only one group, which may labelled as accumulators or
parallel stochastic integrators, has been extensively developed to account
for the pattern of confidence ratings, as well as the accuracy and response
time measures, which characterise performance in simple judgments tasks.
Moreover, it is only within this group that a demonstrated potential exists
for capturing dynamic aspects of performance adjustment, adaptation, self-
regulation, and unsupervised learning.

In comparing the strengths and weaknesses of neural network and
stochastic latency models, with respect to their accounts of simple judgment,
our review suggests that the most fruitful approach may not be to regard
these as opposing categories of model. Both styles of modeling share a
number of assumed processes (such as integration over time, memorial
representation, and activation thresholds), and it is not difficult to construct
a neural network representation of a stochastic latency model. It seems
arguable that the best strategy is to attempt to combine what seem to be the
most advantageous features of each modeling framework. As an example of
this strategy we have outlined a PAGAN model, based on a parallel array
of self-regulating generalized accumulator modules.

Such an approach would seem to have a number of advantages. Firstly,
in the form of confidence, it embodies a workable mechanism for self-
regulation (which, incidentally, has considerable empirical justification, as
well as being plausible from a Bayesian perspective). Secondly, it is open
to extension and development to account for other sources of control (e.g.,
by the independent adaptation of referents or standards, or by shifts in
starting values). Thirdly, the modules making up the system do not simply
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transfer excitation, but transmit the results of processing. This increased
computation means that each module is essentially a self-contained, intelli-
gent unit (cf. Minsky, 1986), and there is much less need for the network
to be more richly interconnected than is computationally efficient or neuro-
physiologically plausible. Fourthly, the modules can be connected in a
variety of ways, so there is no obvious constraint on the kind of network
architecture in which they can be embodied.

Where both stochastic latency mechanisms and (paradoxically) neural
networks both appear to be deficient is in the simplifying assumptions
usually made concerning the representation of information. Evidence re-
cently to hand clearly shows that, at least in the case of temporally extended
stimuli, consisting of a series of elements, it may be necessary to assume
that these elements are represented in a distributed form (e.g., as a set of
discrete micro-representations), rather than in the form of a condensed
summary or tally. In addition, it seems likely that it will be necessary to
take into account the human observer’s limited, if flexible, capacity for
such representation. In developing a neural network implementation of
models such as PAGAN this aspect emerges as a priority for future research.
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