
1 Introduction
An important class of real-world questions that have been neglected in both experimental
and differential psychology have to do with problems of combinatorial optimisation,
for which there is no known algorithm that can be guaranteed to produce a definitive
solution within a practicable time. Such problems, which are ubiquitous in the fields
of mathematics and computer science, can often be stated simply and readily under-
stood. A typical example is the Euclidean version of the travelling salesperson problem
(TSP), which may be formulated as follows: Given a set of n interconnected towns,
with a specified distance between each pair, select a route that (a) visits each town
once and once only; (b) returns to the starting point; and (c) keeps the total distance
covered to a minimum. To arrive at a solution by comparing all possible routes
involves considering (nÿ 1)!/2 itineraries. This is feasible when n is a small number,
such as 5. However, when n is even moderately large, the combinatorial explosion of
possibilities means that it is no longer possible to arrive at a solution through an
exhaustive examination of all the alternatives. For example, when n is 25, the number
of possible itineraries is so great that a computer evaluating a million possibilities per
second would need almost 10 billion years to evaluate them all (Stein 1989).

More generally, the TSP is a member of the class of so-called NP-complete problems,
for which it is believed there is no algorithm that can be guaranteed to arrive at an
optimal solution within a feasible, polynomial time. That is, no algorithm can solve the
problem in a time proportional to nc, or better, where n is the number of relevant input
variables and c is some constant (Lawler et al 1985; Wilf 1986). Exponential algorithms
may exist, capable of solving the problem in a time proportional to cn. However, these
algorithms are infeasible for all but the smallest values of n. Such problems arise in
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thousands of naturally occurring situations that are well known and of practical
interest. Although definitive solutions cannot be guaranteed by strict algorithmic pro-
cedures, near-optimal solutions can often be obtained by a variety of heuristic methods
(Reinelt 1994).

2 Evidence for the influence of global-to-local perceptual organising processes
Despite the computational intractability of the TSP, there has recently been a grow-
ing interest in human performance on such problems (Graham et al 2000; Lee and
Vickers 2000; MacGregor and Ormerod 1996; MacGregor et al 1999, 2000; Vickers
et al 2001; Vickers et al, in press, b). One striking result, common to all studies
since Polivanova (1974), is that human performance on visually presented versions of
small-scale TSP tasks is comparable to that of the most successful computational
procedures. On this basis, MacGregor and Ormerod (1996) have concluded that the
solution processes employed correspond to natural, uniformly present, organising
processes of the visual system.

This conclusion is consistent with a variety of other findings concerning the sponta-
neously perceived or aesthetically constructed organisation of the nodes in TSP arrays,
as well as the judged goodness of alternative solutions, viewed as abstract patterns
(Polivanova 1974; Pomerantz 1981; Ormerod and Chronicle 1999; Vickers et al 2001).
In particular, MacGregor and Ormerod (1996) have proposed that participants use
the convex hull bounding an array as a first step in constructing a solution and that
this use is linked to a preference for organising stimulus elements into convex figures,
as suggested by Gestalt analyses of figure ^ ground differentiation (Palmer 1999, pages
282 ^ 283). On this basis, MacGregor et al (2000) have developed a computational
model that uses the convex hull to establish a sub-tour, into which the remaining nodes
are then serially inserted.

At first sight, there appears to be a significant amount of evidence consistent with
such a proposal (MacGregor and Ormerod 1996; MacGregor et al 1999, 2000). However,
this interpretation of the evidence has been questioned on a number of grounds. First,
human performance on more difficult, randomly constructed arrays does not appear
to be achieved by a uniform, species-constant perceptual process. Instead, there are
reliable individual differences, that are consistent over different problems, are corre-
lated with performance on other optimisation problems (for which the convex hull
has no relevance), and that are correlated with general intelligence (Vickers et al 2001;
Vickers et al, in press, a).

Second, as argued by Lee and Vickers (2000), the problem arrays employed by
MacGregor and Ormerod (1996) were constructed in a highly constrained way that,
as the authors themselves acknowledged, is very likely to have encouraged participants
to make use of the convex hull.

Third, although variations in a number of response measures have been cited as
evidence in favour of the convex-hull hypothesis (including an information-theoretic
measure of path uncertainty and standardised measures of the extent to which partici-
pants' solutions exceed known optimal values), different measures are cited on different
occasions, and the effects of separate independent variables (such as number of interior
nodes and the total number of nodes) have been confounded (MacGregor and Ormerod
2000; Vickers et al, in press, b).

Fourth, evidence that participants connect the nodes of the convex hull in order
of adjacency (while passing through interior nodes to do so) can at most count as
extremely weak corroboration of the hypothesis (Robert and Pashler 2000), since any
procedure that achieves optimal or near-optimal solutions will inevitably do likewise.

Fifth, as first pointed out by Flood (1956), because any solution must avoid inter-
sections to be optimal, and because any tour that fails to connect the nodes of the convex
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hull in order of adjacency must give rise to an intersection, any tour that follows the rule
of avoiding intersections must of necessity visit the nodes of the convex hull in order
(Quintas and Supnik 1965).

3 Evidence for the influence of local-to-global perceptual organising processes
The above restrictions are severe in that they nullify much (if not all) of the evidence
cited in support of global-to-local processing through the application of a heuristic
procedure based on the convex hull. This suggests that it may be useful to consider an
opposite, local-to-global, account. For example, the standard nearest-neighbour (SNN)
algorithm solves TSPs by starting at a node, selected at random, and sequentially link-
ing the next-nearest neighbour to the last selected node (Golden et al 1980). Despite
its simplicity, the SNN algorithm has some attractive features as a model of human
TSP performance (MacGregor et al 2000), such as mimicking the serial, link-by-link
human production of solutions. Unfortunately, human performance on problems with
more than 20 nodes is superior to that of the SNN algorithm, which means that the
algorithm is at best incomplete as an account of TSP performance (Graham et al 2000).

In a recent paper, Vickers et al (in press, b) have suggested an alternative, locally
focused approach that has much in common with the SNN algorithm. According to
this approach, the visual system exploits spontaneous perceptual organisation based
on the identification of least-distance links between nearest neighbours. If such least-
distance links provide an initial, suggested structure for a TSP solution, then the TSP
task can be viewed as a hierarchical nearest-neighbour (HNN) procedure of connecting
up the nearest-neighbour clusters in as economical a way as possible.

There are many ways in which such a procedure might be realised. However,
irrespective of its precise implementation, such an approach has certain desirable
characteristics. First, because the least distances between the nodes in a random array
never cross, this hypothesis would account for the general avoidance of intersections
in TSP solutions (van Rooij et al 2003).

Second, because nearest-neighbour links may be assumed to be detected by a parallel
process, and because the number of nearest-neighbour clusters is a linear function of n,
the time taken by an HNN procedure would be expected to be a linear function of n, as
found by Graham et al (2000).

Third, there is some evidence that nearest neighbours play an important role in
the perception of structure and motion in random-dot patterns generally. For example,
Vickers et al (submitted, c) found that nearest neighbours, and minimum spanning
trees (MSTs) incorporating them, accounted well for the representation of random-dot
patterns (constellations in a desktop planetarium). [An MST is a structure, containing
no loops and linking all n nodes of a pattern with nÿ 1 edges, for which the sum of
the edge lengths is a minimum (Johnsonbaugh 2001)]. Nearest-neighbour statistics
also predicted mean links and cluster lengths, as well as the number of links and
clusters, detected by participants in random-dot patterns with varying numbers of
dots. In addition, these authors found that the extent of motion seen in random-dot
kinematograms varied inversely with dot density and was related to the mean distance
between nearest neighbours.

Fourth, as pointed out by Graham et al (2000), the applicability of the convex hull
is limited to closed TSP tasks and does not extend, for example, to open problems
of finding a shortest path between a starting node and a (different) finishing node.
In contrast, nearest-neighbour relations have potential applicability both to open and
to closed TSP tasks, as well as to a variety of other optimisation problems. For example,
Vickers et al (in press, a) examined the performance of a group of participants on
TSP, MST, and Steiner tree (ST) tasks. [An ST also connects all n nodes of an array,
with a minimal sum of edge lengths, but allows the introduction of additional nodes
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(Hwang et al 1992)]. These authors calculated a measure of path complexity for each
participant's solution to each problem. For each solution link, numbers 1 to n were
assigned, according to whether the nodes of that link were connected to the nearest (1),
second nearest (2), or nth nearest node, and the sum of these numbers was divided
by the number of links to give a measure of path complexity. The lower the path
complexity, the more the participant made use of nearest-neighbour links in arriving at
a solution. Vickers et al (in press, a) found that measures of path complexity corre-
lated strongly with performance (percentage above optimal) on each type of problem
(Pearson's r � 0:99, 0.98, and 0.88 for the TSP, MST, and ST, respectively; N � 48, in
each case). Thus, the spontaneous perception of structure, based on distances between
nearest neighbours, appears to play a significant role in a variety of tasks concerned
with finding minimal structures.

In short, the HNN approach is consistent with other arguments, mentioned pre-
viously, that the task of solving TSPs coincides with natural organising tendencies
of the visual system (eg those of Polivanova 1974; MacGregor and Ormerod 1996;
Ormerod and Chronicle 1999; and Vickers et al 2001). However, it implies that the
explanation of both the perception of organisation and of the initial stages in the solution
of TSP tasks is to be found in local-to-global processing, rather than the converse.

4 Experiment
Although the restrictions summarised earlier do not contradict the convex-hull hypoth-
esis, they do imply that it needs to be subjected to more stringent testing. In addition,
the possibility that performance is mediated by an opposite type of process seems
worth pursuing. MacGregor and Ormerod (1996) themselves suggest that one way in
which their hypothesis might be subjected to more exacting investigation would be to
remove the requirement to complete a circuit. A second way would be to employ
random configurations. A third way would be to increase the number of nodes in each
problem in order to provide more potential for participants to produce sub-optimal
tours and to display individual differences. The following experiment was undertaken
with these points in mind.

4.1 Method
4.1.1 Participants. A total of eighty-one students from the University of Adelaide and
the wider community served as volunteer participants in the experiment.

4.1.2 Stimuli. Fifty 30-node arrays were generated, in which the coordinates were
randomly selected according to a uniform distribution. Benchmark optimal or near-
optimal solutions were found for each problem, with the use of a simulated annealing
algorithm (Press 1992), according to whether the task was framed as an Open (O) or
a Closed (C) problem. Of the fifty 30-node arrays, five were identified as having the
same optimal solution for the Open and the Closed tasks, except for the longest link
in the case of the Open paths. A further five 30-node arrays were identified as having
the largest percentage difference in total length between the Open and the Closed optimal
solutions (minus the largest link). In addition, none of the optimal Open paths for these
arrays followed the points of the convex hull in order of adjacency.

The stimuli for the experiment comprised two subsets of five Same (S) and five
Different (D) 30-node arrays (which were the most populated arrays we could find
that could be partitioned in this way). Figures 1a and 1b show the shortest Open and
Closed solutions, respectively, for one of the arrays from subset S, while figures 1c
and 1d show the shortest Open and Closed solutions, respectively, for an array from
subset D.
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4.1.3 Design. Participants were randomly assigned to two groups, O ^C and C ^O.
Each group performed the experiment in two consecutive sessions of about 20 min
each, separated by a 5-min break. There were ten problems in each session. Group
O^C performed the Open path task for all ten problems, followed by the Closed tour
task for all ten problems. Group C ^O performed the Closed tour tasks first, followed
by the Open path tasks. Within each group, each participant performed the ten prob-
lems in a different, unique random order in each session. The stimuli for the Closed
tour tasks were the same as for the Open path tasks, except that they were reflected
about the 458 diagonal. No participant reported having recognised the transformed
and untransformed random configurations as otherwise identical.

4.1.4 Instructions. Participants were given instructions by way of an introductory
information sheet, in the form of verbal instructions by the experimenter, and by
means of instructions on the computer screen at the start of each session (which could
be re-displayed at any time by clicking on a button). Instructions for Open paths
emphasised that the path could begin at any node (town), but had to finish at a
different node (town). Instructions for Closed tours emphasised that the tour could
begin at any node, but had also to finish at that node. No indication was given that
self-intersecting solutions might be inefficient.

4.1.5 Procedure. Participants were tested individually or in small groups at well-separated
computers. Problems were presented, one at a time, in a 6 inch66 inch square in the
centre of a standard 16-inch computer display. Participants could begin at any point
by left-clicking on a node with the computer mouse. Then, whilst holding down the
mouse button, they drew a path by positioning the mouse cursor on a subsequent node

(a) (b)

(c) (d)

Figure 1. Examples of problem arrays and optimal solutions: the shortest Open (a) and Closed (b)
solutions for an array from the subset of Same problems; the shortest Open (c) and Closed (d) solu-
tions for an array from the subset of Different problems.
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and releasing the button, causing a straight line to be drawn between that node and
the previously visited node. By right-clicking on a link to select it, and then pressing
the `Delete' key on the keyboard, participants could undo any links they had drawn.
Participants were thus free to connect the nodes in any order, to work alternately from
two nodes, or to work in several separated clusters of nodes.

Participants signalled when they had completed a problem by clicking on a screen
button labelled `Proceed to next test'. At this point, if a participant's completed tour
was invalid (eg because not all nodes had been connected or because a node had
more than two links), a warning message was posted on the screen and the participant
was obliged to construct a valid solution before proceeding to the next problem.
In an effort to preserve motivation, the optimal solution was then displayed, with the
participant's own solution superimposed in light-grey (and slightly displaced), along
with his/her `score' (ie solution length, expressed as a percentage above the length of
the optimal solution). When they felt ready, participants clicked on the `OK' button
in the message box, and were presented with the next problem. Each session began
with a practice problem, followed by the ten test problems for the corresponding task.

5 Results
As described below, three measures of performance were examined: the relative
frequency of responses of a particular type; the extent to which total solution lengths
exceeded those of the corresponding optimal solutions; and a group measure of response
uncertainty. Frequency measures tallied the number of solutions containing inter-
sections and the number linking the nodes of the convex hull in order of adjacency.
To permit comparison across the different problem types, participants' solution lengths
were also expressed as a percentage above the benchmark solution length. Thus, a
participant's score for a perfect solution would be 0, and any solution that exceeded
the optimum would have a positive score. In addition, following MacGregor and Ormerod
(1996), an information-theoretic group measure of response uncertainty was calculated
for each problem. The frequency with which each point in the array was connected
with each other point was tabulated in an n6n matrix. Probabilities ( pi ) were
obtained by dividing the frequencies by the number of participants (81). Shannon's
(1948) standard information-theory formula [given in equation (1)], was then applied to
calculate the total response uncertainty (H ), with k being the total number of connec-
tions made by the participants.

H � ÿ
Xk
i�1

pi log2 pi . (1)

5.1 Comparisons between performance on Open and Closed problems
5.1.1 Relative frequency measures. Out of the total of 1620 solutions (20 for each of
eighty-one participants), only 0.7% contained an intersecting pathway (5 out of 810 Closed
and 6 out of 810 Open pathways).

All Closed solutions for both Same and Different problems adhered to the cyclic
order of the convex hull. However, 26% of Open solutions for Same problems and
55% of Open solutions for Different problems did not follow the nodes of the convex
hull in order of adjacency.

5.1.2 Deviations from optimality. The mean percentage deviations from optimality are
listed in table 1. From table 1, it may be seen that performance on Open Same problems
was consistently poorer than that on Closed Same problems (averaging 6.2%, as opposed
to 4.7%, respectively). Performance on Open Different problems was also poorer than
that for Closed Different problems (averaging 8.1%, as opposed to 4.9%, respectively).
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As can be seen from figure 2a, in the case of Same problems, performance on
Open tasks (as measured by the mean percentage deviation from the optimal length)
was a linear function of performance on Closed tours, with the correlation between
performance on Open and Closed tasks being given by Pearson's r � 0:93. In the case
of Different problems, illustrated in figure 2b, the mean percentage deviation from
the optimal length for Open problems was also an approximately linear function of
performance on Closed tours, with Pearson's r coefficient of 0.64.

5.1.3 Response uncertainty. Measures of response uncertainty for each problem are
listed in table 2. From table 2, it appears that performance on Open Same problems
consistently showed about the same response uncertainty as that on Closed Same
problems (averaging 21.8%, as opposed to 21.4%, respectively). Performance on Open
Different problems showed slightly less response uncertainty (though not consistently)
than for Closed Different problems (averaging 21.4%, as opposed to 23.3%, respectively).

Figure 2c shows response uncertainty on Open Same tasks, as a function of that
on Closed Same tasks. The best description of the relation is a linear one, with a
correlation of r � 0:93. Figure 2d shows the same relationship in the case of Different
tasks. Again, the best description is a linear function, with a correlation of r � 0:91.

5.1.4 Individual differences. As detailed above, overall mean performance on Open
problems is related to that on Closed problems. The relation between performance on
different problem types is also seen when mean percentage deviations from optimality
for individual participants are correlated between different tasks and problem types,
as summarised in table 3. Because they are each based on 81 pairs of scores, these
correlations are all strongly reliable.

5.2 Performance across Open and Closed problems as a function of objective measures
of solution difficulty and complexity
To date, the two independent measures of problem characteristics that have been
investigated are the total number of nodes and the number of nodes on the convex
hull (or, equivalently, the number of interior nodes inside the convex hull). However,
as Lee and Vickers (2000) point out, the number of hull-bound points approaches
an asymptotic value of around 12 for arrays with more than 50 points. With 30 nodes,
the expected variation in the number of hull-bound nodes in a sample of randomly
distributed nodes is very restricted (mean � 8:2; SD � 1:1). Although it is possible to
select arrays with greater or lesser numbers of hull-bound points, it is not known how
such selection might interact with other geometrical properties of the arrays that might be

Table 1. Means, standard deviations, and minimum and maximum values for percentage deviations
from optimality for each Same and Different problem under Closed and Open task instructions.

Task Same problems Different problems

S1 S2 S3 S4 S5 D1 D2 D3 D4 D5

Closed tours
mean 3.30 4.81 6.59 2.73 6.01 5.56 5.02 5.28 5.59 3.16
minimum 0 0 0 0 0.16 0.12 0 0.04 1.23 0
SD 4.44 4.57 5.35 3.04 4.26 4.65 3.95 3.59 3.70 3.71
maximum 21.31 27.65 20.26 11.98 26.69 20.39 19.99 19.91 22.94 17.50

Open paths
mean 5.63 6.63 7.80 3.87 6.82 10.33 8.38 10.37 6.12 5.13
minimum 0 0 0 0 0.09 0 0 0 0 0
SD 4.88 6.16 4.79 4.57 4.79 5.87 5.69 8.50 5.54 5.35
maximum 19.25 28.96 21.34 20.57 26.20 25.85 32.36 64.55 28.39 20.77
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Table 2. Measures of response uncertainty for each Same and Different problem under Closed
and Open task instructions.

Task Same problems Different problems

S1 S2 S3 S4 S5 D1 D2 D3 D4 D5

Closed tours 16.2 22.8 24.0 12.4 31.4 25.9 25.0 29.4 23.7 12.4
Open paths 20.7 21.3 26.1 12.1 28.9 24.8 27.1 26.3 17.8 11.2
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Figure 2. Performance measures on Open tasks as a function of the corresponding measures
for Closed tasks: the relation for percentage deviations from optimality for the five Same
problems (a) and the five Different problems (b); and the relation for response uncertainty for
the five Same problems (c) and for the five Different problems (d).

Table 3. Pearson's r correlations between percentage deviations from optimality (averaged over
problem instances within each task and problem type) for different pairs of task and problem
type. Each correlation is based on 81 pairs of mean scores.

Task Closed Open

Same Different Same Different

Closed
Same 0.61 0.48 0.47
Different 0.51 0.55

Open
Same 0.70
Different
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important for locally focused perceptual processing. Moreover, although MacGregor
and Ormerod's (1996) convex-hull hypothesis would suggest that the convex hull might
retain its perceptual salience in the case of Open problems, there is no other strong
reason to believe that the number of hull-bound points would be relevant to solution
difficulty in such problems.

In a first attempt to grapple with such problems, therefore, we devised three objective,
independent measures of solution difficulty and complexity. Each of these measures
can be applied to both Open and Closed TSP tasks.

5.2.1 Self-intersections. The first is a measure of the overall potential of any array to
produce self-intersecting paths (SIs), and it is intended to gauge the extent to which a
participant's solution behaviour might be guided by the constraint of (deliberately or
incidentally) avoiding crossed paths. It consists simply of counting, for each array, the
number of segment pairs that potentially intersect.

5.2.2 Path complexity. The second measure is an index of path complexity (PC) for a
given solution, that is similar to that employed by Vickers et al (in press, a), but
that, in this case, is intended to gauge the extent to which a given array might present
difficulty in continuing a path for a locally focused nearest-neighbour (NN) algorithm.
The measurement procedure uses the benchmark solution for the problem. This identi-
fies a set of links between the nodes, as illustrated for an elementary tour in figure 3a,
for which an SNN algorithm would yield the optimal solution. In this simple case,
each node will be connected to its nearest neighbour on one side and to its second
nearest neighbour on the other side. Thus, each link will have associated with it two
orders of proximityöone order contributed by each node. These orders can be repre-
sented by positive integers and summed for each link.

In the case of the tour shown in figure 3a, the total of these summed orders of
proximity is 96. When divided by the number of links (32), this yields the number 3.0
as an index of the average proximity order for each node. This is the minimum possible
for a Closed tour, in which the optimal tour connects only nearest neighbours. Thus,
the amount by which the average proximity order for a Closed tour exceeds 3 provides
an index of the difficulty of that configuration for an NN algorithm. In the case of
Open paths, the minimum average proximity order is 3ÿ [1=(nÿ 1)], where n is the

(a) (b) (c)

Figure 3. Illustrations of the application of the path complexity measure: a Closed tour, for which
the nearest neighbour algorithm provides the optimal solution (a) [Each node is connected to its
nearest neighbour (1) on one side and its second nearest (2) on the other. Thus, the proximity orders
for each of the 32 links in this tour are (1� 2), and the path complexity measure is 96=32 � 3:0
(while the proportion of potential crossings is a high 32.7%)], and two tours [(b) and (c)] similar to
those in the present experiment, but differing in their proportions of potential crossings (25.2% and
21.4%, respectively) and in their path complexity measures (4.17 and 4.87, respectively).
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number of nodes. Figures 3b and 3c show examples of tours of varying path complex-
ities and with different numbers of potential crossings.

5.2.3 Proportion of common nearest-neighbour links.According toVickers et al (submitted, c),
an important source of local information concerning visual structure is provided by the set
of (least) distances between the nearest neighbours in a pattern. A sequentially executed
procedure, such as the SNN algorithm, starts at one node and consecutively links up the
least distance remaining at each step. Thus, for each starting position of the algorithm, there
will be a number of least-distance links that this particular SNN solution shares with the
optimal solution. The proportion of common nearest-neighbour links (CL) is the mean
number of links (averaged over all n starting positions) that the SNN algorithm shares
with the optimal solution. When this proportion is high, it is assumed that the problem
lends itself to a local processing procedure based on detecting least distances. Conversely,
when CL is low, it is assumed that the problem will be more difficult, because the solution
is quite different from the naturally seen perceptual structure.

Whereas the path complexity index, PC, is calculated from the optimal solution, the
proportion of common links, CL, takes into account all possible SNN solutions. There-
fore, although we might expect these measures to be inversely related, there is only
a moderate correlation between the two for the problems in this experiment (Pearson's
r � ÿ0:67 and ÿ0:87; N � 10; for Closed and Open solutions, respectively). Although
the sequential nature of the SNN algorithm makes intersections possible, the least-
distance constraint means that crossed paths will generally be avoided.

5.3 Prediction of deviations from optimality and response uncertainty
To examine how the theoretical measures of stimulus arraysöSI, PC, and CLörelated
to the deviation-from-optimality and response-uncertainty performance measures, we
undertook a simple linear-regression analysis. There are eight possible linear models,
comprising the three theoretical measures. These range in complexity from one where
performance is assumed to be constant, and not affected by the measures, up to a
four-term linear combination that includes all three measures plus a constant. The
remaining six models include a subset of one or two of the theoretical measures plus
a constant, and have intermediate complexity.

We fitted each of the eight models to both the deviation-from-optimality and
response-uncertainty data using the method of maximum likelihood, and evaluated
which of the models provided the best account. Because the models have different
complexities, deciding which is the best model cannot be done solely through compar-
ing their levels of fit or correlation (Roberts and Pashler 2000). Accordingly, we used
the Bayesian approach to model selection (eg Kass and Raftery 1995; Myung and Pitt
1997; Pitt et al 2002), which balances the competing demands of fit and complexity.
This means that the theoretical measures chosen by Bayesian methods for inclusion
in the best linear models can be interpreted as providing the account of the data that
is the most accurate and parsimonious.

A succinct summary of the outcomes of evaluation procedures by our Bayesian model
is given by the odds ratios known as Bayes factors (Kass and Raftery 1995). For two
competing models, Mi and Mj , the Bayes factor is given by Bij � p(DjMi )=p(DjMj ). This
ratio measures how much more likely it is that the data, D, would be observed if model Mi

rather than Mj , was the true model.
Computationally, we estimated Bayes factors using an index called the Bayesian

information criterion (BIC; Schwarz 1978) that is simple to calculate, given the fit and
parametric complexities of our eight models. For a model, M, with K parameters,
and having maximum likelihood parameterisation y � under the likelihood function p(.)
to data D with N samples, the BIC is given by BIC � ÿ2 log p(DjM, y �)� K logN.
Qualitatively, it can be seen that the BIC decreases as the log-likelihood fit of a
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model to data improves, but increases as additional parameters are included in the model.
Accordingly, the model with the minimum BIC value corresponds to the most likely
model. The Bayes factors for quantifying how much more likely this model is than the
others can be estimated by using the approximation: BICi ÿ BICj � ÿ2 logBij .

We assumed that both the deviations from optimality and response-uncertainty data
were normally distributed with common variance, and so used the likelihood function,

p�DjM, y� �
Y
i

1

s
������
2p
p exp ÿ�di ÿ d̂i �2

2s 2

" #
,

where d̂i is the prediction made by model M at parameterisation y for the ith datum.
This assumption has the advantage of being sensitive to the precision, s, of the empiri-
cal data. Precision values were estimated by using the variance across participants for
deviation from optimality (Lee 2001), and by bootstrapping (Efron and Tibshirani,
1986) for response uncertainty.

Table 4 details the Bayesian analysis for the eight linear models in relation to the
deviation from optimality measure of performance. Each row corresponds to one of
the possible models, and each column corresponds to a problem type, as defined by
whether an Open or Closed tour was required through Same or Different stimulus
arrays. Each entry in the table gives the Bayes factor for the model on the problem
type, in relation to the best model for that problem type, followed, in brackets, by the
correlation of the model at its maximum-likelihood parameterisation. The most likely
model for each problem type, with a Bayes factor of 1.0, is highlighted in bold.

For example, the first column in table 4 shows that the most likely linear model
for Closed tours on Same arrays includes the NN and SI theoretical measures, and
that this model correlates r � 0:97 with human performance. The more-complicated
linear model that uses all three theoretical measures is 1.29 times less likely, even
though it has a correlation of r � 0:99. The Bayes factors also show that linear models
that use only the NN theoretical measure, and those that use the PC and NN theoretical
measures are, respectively, 29.72 and 65.63 times less likely. All of the remaining models
are more than 100 times less likely than the one that uses the NN and SI measures.

Because Bayes factors are odds, they have a natural meaning based on gambling,
and so can be interpreted for `significance' in terms of the standards of scientific evidence
required for a problem, rather than by reference to conventional critical values.

Table 5 details the Bayesian analysis for the eight linear models in relation to the
response-uncertainty measure of performance, in the same format as table 4.

Table 4. Evaluation of all possible linear models with the use of the theoretical measures against
deviation from optimality, broken down in terms of Closed and Open tours through Same and
Different stimulus arrays. The odds against each model being true, in relation to the most likely,
are shown first, followed by the correlation of the model in brackets. The most likely model for
each problem type is highlighted in bold.

Model Closed tours Open tours

Same arrays Different arrays Same arrays Different arrays

Constant 4100 (0.00) 4100 (0.00) 4100 (0.00) 4100 (0.00)
PC 4100 (0.46) 2.59 (0.89) 9.01 (0.90) 4100 (0.78)
NN 29.72 (0.87) 1.00 (0.92) 1.00 (0.97) 4100 (0.69)
SI 4100 (0.52) 4100 (0.68) 4100 (0.74) 1.82 (0.90)
PC�NN 65.63 (0.87) 1.77 (0.94) 2.13 (0.97) 4100 (0.78)
PC� SI 4100 (0.60) 5.79 (0.89) 10.58 (0.92) 1.00 (0.96)
NN� SI 1.00 (0.97) 2.22 (0.92) 2.11 (0.97) 1.05 (0.94)
PC�NN� SI 1.29 (0.99) 3.67 (0.94) 4.11 (0.98) 1.97 (0.95)
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6 Discussion
6.1 Comparisons between performance on Open and Closed problems
Given that participants in the Closed tasks almost always avoided intersections, and
produced near-optimal solutions, it follows logically that their solutions must follow
the convex hull in sequence. On the other hand, the contrasting result that 55% of
solutions for the Open Different problems failed to follow the convex hull suggests
that, if participants are influenced by the convex hull, then it is ineffective in the case
of Open problems (although this conclusion must be qualified, since none of the
optimal solutions to these problems completely obeyed the convex-hull order). How-
ever, since the optimal solutions for both the Open and Closed Same problems were
identical, it is remarkable that as many as 26% of solutions for Open Same problems
failed to connect the nodes on the convex hull in order of adjacency. If performance
on TSP tasks were largely determined by the automatic perception of a global aspect,
such as the convex hull, then there is no obvious reason why it should not be equally
effective in the case of Open problems, particularly when the optimal solution to these
problems does follow the convex hull in cyclic order.

Measured in terms of percentage above the optimal tour length, performance on
the Open problems was consistently somewhat poorer than that on the corresponding
Closed problems (7.1%, as opposed to 4.8%, respectively). A possible reason for this
is that, theoretically, an Open tour problem with n nodes is equivalent to a Closed tour
problem with n� 1 nodes (Lawler et al 1985: 22; Reinelt 1994: 32).

For the problems used in the present experiment, this implies that the Open problems
have some 30 times the number of alternative pathways to consider than do the Closed
problems. However, the decrement in performance is far short of this order. Indeed,
the increase of 2.3% in percentage above optimal is closer to the order that would be
expected if performance were a linear function of the number of nodes. Evidence that
participants' deviations from optimality and solution times both appear to be linear
functions of the number of nodes has been presented by Graham et al (2000). The present
result and the linear relationships found by Graham et al both are to be expected on
the local-to-global approach described in section 1.

The finding that deviations from optimality and response uncertainty on Open
problems both appear to be approximately linear functions of those on Closed problems
suggests that, notwithstanding the irrelevance of the convex hull to Open problems, the
two tasks appear to share a significant amount of processing. The result that, for
deviations from optimality, the relationship appears to be more reliable in the case of

Table 5. Evaluation of all possible linear models with the use of theoretical measures against
response uncertainty, broken down in terms of Closed and Open tours through Same and Different
stimulus arrays. The odds against each model being true, in relation to the most likely model, are
shown first, followed by the correlation of the model in brackets. The most likely model for each
problem type is highlighted in bold.

Model Closed tours Open tours

Same arrays Different arrays Same arrays Different arrays

Constant 4100 (0.00) 4100 (0.00) 4100 (ÿ0.00) 4100 (0.00)
PC 4100 (0.86) 60.24 (0.97) 4100 (0.74) 4100 (0.82)
NN 4100 (0.71) 4100 (0.95) 4100 (0.53) 4100 (0.93)
SI 4100 (0.70) 4100 (0.71) 4100 (0.43) 4100 (0.74)
PC�NN 4100 (0.91) 1.00 (0.99) 4100 (0.88) 4100 (0.94)
PC� SI 4.80 (0.97) 4100 (0.97) 4100 (0.74) 4100 (0.89)
NN� SI 4100 (0.72) 4100 (0.95) 4100 (0.53) 1.00 (0.99)
PC�NN� SI 1.00 (0.99) 1.22 (1.00) 1.00 (0.96) 1.01 (0.99)
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Same problems, rather than Different ones, can be attributed to the fact that the
configurations of the optimal solutions for Open and Closed problems were identical
for Same problems, while the configurations of optimal solutions for Open and Closed
tasks were quite different in the case of Different problems.

On the local-to-global approach proposed by Vickers et al (in press, b), performance
on both Open and Closed TSP tasks is mediated by the perception of structure, as
identified by the pattern of least distances in an array. According to this approach,
the proportion of common links should be related to performance on TSP tasks. As illus-
trated in figure 4, for both Same and Different arrays, this objective measure for
Open tasks is an approximately linear function of the value of the measure for Closed
tasks with the same arrays. The fact that this relation mirrors that found empirically
lends support to the view that a major part of the processing shared between Open and
Closed tasks is concerned with the identification of structure by means of least distances.

Meanwhile, the finding that there are reliable individual differences in performance
on the problems in this experiment is at variance with the absence of such differences
reported in the studies of MacGregor and Ormerod (1996), and MacGregor et al
(1999, 2000). On the other hand, the evidence for individual differences confirms similar
results by Vickers et al (2001), Vickers et al (in press, a), and Vickers et al (in press, b).
The simplest explanation for the apparent discrepancy between the two sets of results
is that the problems employed by MacGregor and his colleagues were generally much
simpler, both in terms of the numbers of nodes and the constraint used in their
construction, than the more populated random arrays employed in the latter set of
experiments. In consequence, we surmise that performance in the first set of studies
was probably limited by a ceiling effect.

The evidence for consistent individual differences across tasks and problem types
suggests that, for each participant, there is a substantial overlap in the way these differ-
ent task and problem types are processed. Such differences are clearly inconsistent
with the view that TSP solutions are largely determined by a uniform, species-constant
perceptual process. Although this conclusion by itself does not rule out the kind of
global processing proposed by MacGregor and Ormerod (1996), it does open the way
for more locally focused mechanisms, possibly integrated under top ^ down control.
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Figure 4. The proportions of common links for the five Same Open problems (filled circles)
and the five Different Open problems (empty circles) as a function of the proportions for the
five corresponding (Same and Different) Closed problems.
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6.2 Prediction of performance across both Open and Closed problems
More light is thrown on the nature of the shared processing between problem types
when we examine the relationships between performance measures and the three objec-
tive indices of path difficulty and complexity.

In this respect, the results are reasonably clear. In the case of deviations from
optimality, the most accurate and parsimonious predictive model is one based either
on common links alone or on a combination of common links and the number of
potential self-intersections. These results are consistent with a local-to-global HNN
procedure, in which the perceived organisation in an array plays an important role,
in the initial stages of the solution process for both Open and Closed problems,
through the identification of least-distance links between nearest neighbours. Accord-
ing to this account, the difficulty associated with a problem is determined by the extent
to which the naturally seen pattern of least-distance structure is represented in the
optimal solution and by the extent to which the later stages of path construction are
facilitated by the avoidance of intersections.

In the case of response uncertainty, the most accurate and parsimonious model is
one based on common links, in conjunction with either orömost generallyöboth path
complexity and potential self-intersections. Given that response uncertainty measures
the variability in the choices made by different participants at each of the nodes, rather
than summarising a common tendency, it is not surprising that the best account of
the data is based on all three measures. What these results imply is that, although the
proportion of common links is a good predictor of the extent to which participants'
solutions approach the optimum, this factor does not explain the variability in these solu-
tions. To explain response uncertainty requires taking into account the way in which
common links are integrated into a complete path. That is, in integrating structures
based on nearest-neighbour clusters, response uncertainty is determined by the extent
to which participants are obliged to consider more complex paths, involving higher-
order (second-, third-, ...) nearest neighbours, as well as by the extent to which they
succeed in reducing the number of alternatives by avoiding intersections.

On the approach proposed here, performance on visually presented TSP tasks is
indeed mediated by normal processes of perceptual organisation, as suggested by
Polivanova (1974), MacGregor and Ormerod (1996), and by Vickers et al (2001). How-
ever, the perceptual processes involved do not appear to be global-to-local ones, based
on the convex hull, but are predominantly local-to-global ones, based on the detection
of nearest-neighbour clusters. This conclusion is consistent with other recent findings
concerning the importance of nearest-neighbour relations for the perception of structure
and motion in dot patterns (Vickers et al, submitted, c).

On the other hand, individual differences in performance appear to arise, not
from variations in the way in which nearest-neighbour clusters are detected, but from
the ways in which different participants connect up these clusters into a complete
solution. This hierarchical interpretation corresponds closely to the description, given
by participants in the experiment of Graham et al (2000), of the strategies they used.
Indeed, our HNN hypothesis is structurally very similar to the hierarchical model of
Graham et al, although it assumes a different process for the detection of clusters
and leaves open, for the present, the question of how the clusters are put together to
make a path.

Meanwhile, our results may also be given an interpretation that differs in another
subtle, but important, way from that proposed by MacGregor et al (1999). These authors
collectively ascribe their results to the operation of natural, perceptual organising
tendencies and suggest that the relative ease with which participants produce high-
quality solutions to TSPs may be because the task requirements of the TSP `̀ happen to
conform to natural tendencies of the perceptual system'' (MacGregor and Ormerod 1996,
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pages 538 ^ 539). An alternativeöand quite differentöperspective is that the perception
of some form of minimal structure is a natural tendency of the perceptual system, and
Gestalt principles represent different instantiations of this tendency.

7 Conclusions
The results of the present study call into question the notion that performance on
TSP tasks is mediated by a global-to-local processing, based on the convex hull. There
is no evidence that a hull-based process is employed in Open problems or that it
transfers from Closed to Open problems. In contrast, there is good evidence that
participants depend on the same kind of primary information in both Open and
Closed problems. In general agreement with previously published interpretations, the
nature of this information seems to be strongly determined by natural, automatic
organising tendencies of the visual system. However, the present results provide strong
evidence for the view that performance in both Open and Closed tasks is based on
local-to-global processes of detecting structure, based primarily on the detection of
nearest-neighbour clusters. On this view, TSP performance is influenced by the same
processes of perceptual organisation as are involved in the perception of visual struc-
ture and motion generally.

There is also good evidence for reliable individual differences that are consistent
with shared processing between different tasks and types of problem. These differences
appear to be associated with variations in the way in which nearest-neighbour clusters
are integrated into a solution, rather than with differences in the efficiency with which
such clusters are detected.

In turn, these conclusions suggest a reversal of perspective, in which the perception
of organisation itself may perhaps usefully be thought of as the perception of minimal
forms of structure.
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