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Abstract

The secretary problem is a recreational mathematics
problem, suited to laboratory experimentation, that
nevertheless is representative of a class of real world
sequential decision-making tasks. In the ‘full infor-
mation’ version, an observer is presented with a se-
quence of values from a known distribution, and is
required to choose the maximum value. The difficul-
ties are that a value can only be chosen at the time
it is presented, that the last value in the sequence is
a forced choice if none is chosen earlier, and that any
value that is not the maximum is scored as completely
wrong. We report a study of human performance on
full information secretary problems with 10, 20 and
50 values in the sequence, and considers three differ-
ent heuristics as models of human decision-making. It
is found that some people achieve near-optimal lev-
els of accuracy, but that there are individual differ-
ences in human performance. A quantitative evalua-
tion of the three heuristics, using the Minimum De-
scription Length criterion, shows inter-individual dif-
ferences, but intra-individual consistency, in the use
of the heuristics. In particular, people seem to use
the heuristics that involve choosing a value when it
exceeds an internal threshold, but differ in how they
set thresholds. On the basis of these findings, a more
general threshold-based family of heuristic models is
developed.

Introduction
Many real world decision-making problems are sequen-
tial in nature. A series of choices is made available
over time, and it is often efficient (and sometimes even
necessary) to make a selection without waiting to be
presented with all of the alternatives. On long cross-
country drives, for example, people refill their cars at
one of a sequence of towns on the route, without know-
ing the price of fuel at subsequent towns. This type of
sequential decision has a continuous utility function.
People aim to choose the cheapest price, and measure
their success by how much their purchase exceeded this
minimum.

Other sequential decision-making tasks have bi-
nary utility functions, where any incorrect decision is
equally (and completely) incorrect. For example, con-
sider being a witness for a police line-up, where, be-
cause of the circumstances of the case, the offender

is known to be in the line-up. Police line-up policy
demands that suspects are presented one at a time,
may only be viewed once, and that a suspect must
be identified at the time they are presented (e.g., Ste-
blay, Deisert, Fulero, & Lindsay 2001). Suppose also
(unrealistically, we hope) that the police insist that a
suspect be identified, and indicate that they will force
the identification of the last person in the line-up if
none of the previous people are chosen. The aim is to
choose the offender, and any misidentification has the
equally bad outcome of selecting an innocent suspect.

This decision-making scenario has the same essential
features as a recreational mathematics problem known
as the ‘secretary problem’ (see Ferguson 1989 for a his-
torical overview). In secretary problems, an observer
is presented with a sequence of possible choices, and
must decide whether to accept or reject each possi-
bility in turn. The number of choices in the complete
sequence is fixed and known, and only the rank of each
possibility, relative to those already seen, is presented
to the observer. If the observer chooses the best pos-
sibility in the sequence, their decision is correct, and
any other choice is regarded as incorrect.

Variants of the secretary problem have been consid-
ered that change or relax different parts of the problem.
In particular, the full information version of the secre-
tary problem, sometimes known as the ‘Cayley’ prob-
lem, presents observers with a score from a known dis-
tribution for each possibility, and the goal is to choose
the maximum score in the sequence. Rank information
corresponds to the assumption that witnesses keep a
relative ordering of people in line-ups, whereas value
information corresponds to the assumption that wit-
nesses evaluate some continuous measure of the prob-
ability that a person is the offender. In either case, the
secretary problem has the important feature of using
the same binary utility function as the line-up deci-
sion. The goal is to choose the actual offender, and
any incorrect decision is equally wrong.

Problem Solving and Secretary Problems
Human performance on secretary problems is an in-
teresting topic for cognitive science, for a number of
reasons. It offers a well defined task, suited to labora-



tory experimentation, that nevertheless is ecologically
representative of a class of real world situations. Be-
cause of their inherent complexity, secretary problems
also provide an opportunity to study the relationship
between rational analysis and heuristic strategies in
human problem solving.

Most laboratory research on human problem solv-
ing has relied on artificial problems that are charac-
terized by well-defined initial and terminating states
that must be linked by a systematic, finite series of
steps. Typically, these problems, like the ‘Towers of
Hanoi’ or ‘Cannibals and Missionaries’, are determin-
istic, and have state spaces with combinatorially lim-
ited possibilities. A major focus of studying people’s
abilities to solve these tasks involves examining under
what circumstances, if any, people make rational de-
cisions. Violations of rationality are easy to measure,
because the tasks permit a complete formal analysis.
This approach to studying human problem solving as-
sesses what Simon (1976) terms ‘substantive’ rational-
ity: the ability of people to produce optimal final de-
cisions. Typically, they do not address what Simon
(1976) terms ‘procedural’ rationality—the efficiency of
the processes required to make the decision—because
of the limited combinatorial complexity of the prob-
lem.

More recently, however, some research has studied
human performance on difficult combinatorial opti-
mization problems, such as visually presented Trav-
eling Salesperson Problems (TSPs), that have very
large state spaces, and resist complete formal solution
(e.g., MacGregor & Ormerod 1996; Vickers, Butavi-
cius, Lee, & Medvedev 2001). In attempting to solve
these problems, subjects are constrained both by the
nature of the task (e.g., limited time), and by their
cognitive capabilities (e.g., limited memory). In other
words, their performance is constrained not only by the
need to achieve a substantively rational outcome, but
also by the need to use procedurally rational heuristic
processes that are sufficiently fast and accurate, and
are implementable with available cognitive resources.
Procedural rationality offers an important additional
constraint for understanding human problems solving
processes, and for the development and evaluation of
cognitive models of decision-making.

Secretary problems provide an opportunity to con-
tinue and extend this line of study. Because they are
not inherently perceptual, secretary problems allow
consideration of whether results obtained with prob-
lems like TSPs generalize to cognitively-based prob-
lem solving. Secretary problems also introduce uncer-
tainty, and place demands on memory. While visual
problems like TSPs are combinatorially large, the basic
information about distances between points is always
perceptually available in a complete and certain form
to subjects. In contrast, the sequences of information
in secretary problems are stochastic and presented only

temporarily, requiring people to deal with uncertainty
and rely on their memory.

Previous Research
Gilbert and Mosteller (1966) provide a thorough and
useful overview of early mathematical analysis of sev-
eral versions of the secretary problem. When only rank
information is provided, the optimal decision rule takes
the form of observing some fixed proportion of values
in the sequence, remembering the maximum presented,
and then choosing the first subsequent value that is
greater, if one exists. Gilbert and Mosteller (1966, Ta-
ble 2) detail the optimal ‘cutoff’ proportion for the
initial sequence of observations, which depends upon
the length of the sequence, but converges to the value
1/e ≈ 0.368. They also give the associated probability
of making a correct decision using the optimal decision
rule.

For the full information version, where values rather
than ranks are presented, the optimal decision rule re-
quires choosing the first value that exceeds a thresh-
old level for its position in the sequence. Gilbert and
Mosteller (1966, Tables 7 and 8) detail these optimal
thresholds and the associated probabilities of mak-
ing a correct decision. Since Gilbert and Mosteller’s
(1966) seminal work, a large literature has developed
on mathematical analyses of a large number of vari-
ants on the secretary problem, often with a focus on
the performance of heuristic decision rules (e.g., Free-
man 1983).

Relatively less attention has been given to study-
ing human performance solving secretary problems.
Seale and Rapoport (1997) consider the rank infor-
mation version of the problem with lengths of 40 and
80, and focus on the evaluation of plausible heuristic
models of human decision-making. In an individual
subject analysis, they found a parameterized version
of the optimal cutoff rule provided the best fit. Ka-
han, Rapoport and Jones (1967) studied human perfor-
mance on full-information versions of the problem with
length 200, where the values were drawn from either
a positively skewed, negatively skewed, or a uniform
distribution. They found no evidence for the different
distributions affecting the decisions made. They also
compared individual and group decision-making, and
found that decisions were made earlier in the sequence
by individuals. Other empirical studies (e.g., Kogut
1990), make a large methodological departure by re-
quiring subjects to sacrifice explicitly held resources
to view additional presentations, usually because they
are interested in applications of the problem to eco-
nomic decision-making.

In this paper, we study human performance on
the full information version of the secretary problem,
where values are chosen from a uniform distribution.
We consider problems of length 10, 20 and 50, under
the binary utility function, but without any explicit
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Figure 1: A sample secretary problem of length 10,
with the sequence of values shown by filled circles,
demonstrating the operation of the biased optimal
(curved line), threshold (horizontal line) and cutoff
(vertical line) heuristics.

search cost. Our primary interest, like that of Seale
and Rapoport (1997), is to develop and evaluate com-
peting cognitive models of human decision-making.

Three Heuristics

We consider three possible heuristics as models of hu-
man decision-making. The first is a biased version of
the optimal decision rule. This heuristic chooses the
first value that exceeds a threshold level for its posi-
tion in the sequence. The threshold levels correspond
to the optimal values, for the given problem length,
all shifted by the same constant. The second heuris-
tic is inspired by Simon’s (1956) notion of satisficing.
It simply chooses the first value that exceeds a single
fixed threshold. The third heuristic is inspired by the
optimal decision rule for the rank information version
of the secretary problem. It observes a fixed propor-
tion of the values in the sequence, and remembers the
maximum value up until this cutoff point. The first
value that exceeds the maximum in the remainder of
the sequence is chosen. For all three heuristics, if no
value meets the decision criterion, the last value be-
comes the forced choice.

Figure 1 summarizes the functioning of the three
heuristics on a problem of length 10. The sequence
of values presented is shown by the filled circles. The
threshold levels for the optimal heuristic (with no bias)
follow the solid curve. The horizontal line shows the
constant level used by the threshold heuristic. The
vertical line shows the proportion used by the cutoff
heuristic. Under these parameterizations, the biased
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Figure 2: The accuracy of the heuristics, across their
parameter spaces, for 10, 20 and 50 sequence length
problems.

optimal, threshold, and cutoff heuristics choose, re-
spectively, the eighth, ninth, and fifth values presented.

The left panel of Figure 2 shows the accuracy of
the biased optimal heuristic for bias values between
-100 and 100 for problems of length 10, 20, and 50,
calculated using the analytic method of Gilbert and
Mosteller (1966, p. 55). At zero bias, the heuristic
corresponds to the optimal decision rule, and so the
maximum possible accuracy is obtained. The middle
panel of Figure 2 shows the accuracy of the threshold
heuristic for threshold values between 0 and 100 for
problems of length 10, 20 and 50, calculated using the
same analytic method. The maximum possible accu-
racy, corresponding to the use of the optimal decision
rule, is shown for each problem length by the horizon-
tal lines. Finally, the right panel of Figure 2 shows
the accuracy of the cutoff heuristic for proportions be-
tween 0 and 1 for problems of length 10, 20 and 50,
generated by simulation on a large sample of indepen-
dently generated problems. Once again, the maximum
possible accuracies are shown by the horizontal lines.

There are two observations worth making about the
accuracy of the heuristics shown by Figure 2. It is clear
that the threshold heuristic is capable of making bet-
ter decisions than the cutoff heuristic. This is interest-
ing, given that the cutoff heuristic is optimal for rank
information secretary problems. It is also clear that
the accuracy of both the biased optimal and threshold
heuristics are very sensitive to their parameterizations,
particularly for larger problem lengths.



Experiment

Participants Ten participants completed the exper-
iment. There were 4 males and 6 females, with a mean
age of 26.1 years.

Method Each participant completed the same three
sets of problems. The first set contained 20 problems
of length 10. The second contained 20 problems of
length 20. The third set contained 20 problems of
length 50. Participants always did the three sets in
the same order—length 10, then 20, then 50—but the
order of the 20 problems within each set was random-
ized across participants.

For each problem, the participants were told the
length of sequence, and were instructed to choose the
maximum value It was emphasized that (a) the values
were uniformly and randomly distributed between 0.00
and 100.00, (b) a value could only be chosen at the time
it was presented, (c) the goal was to select the max-
imum value, with any selection below the maximum
being completely incorrect, and (d) if no choice had
been made when the last value was presented, they
would be forced to choose this value. As each value
was presented, its position in the sequence was shown,
together with ‘yes’ and ‘no’ response buttons. When
a value was chosen, subjects rated their confidence in
the decision on a nine point scale ranging from “com-
pletely incorrect” to “completely correct”.

Results Table 1 summarizes the accuracy of the de-
cisions made by all of the subjects for all of the prob-
lems. The average accuracy for the 20 problems in each
set is given, together with averages across all problems
for each subject, and across all subjects for each prob-
lem length. There are three observations worth making
about these results. First, some subjects achieve lev-
els of accuracy competitive with the optimal decision
rule. Secondly, there appear to be individual differ-
ences between the subjects, with a range in average
accuracy from 33% to more than 60%. Thirdly, there
is some suggestion that human performance worsens as
the problem length increases, even after accounting for
the slightly decreased accuracy of the optimal decision
rule.

Model Evaluation One compelling aspect of the
model evaluation undertaken by Seale and Rapoport
(1997) is that it was done at the level of individual sub-
jects, rather than by averaging decisions across sub-
jects. As noted by Estes (1956), averaging non-linear
decision processes in the presence of noise, and with
significant individual differences, acts to corrupt the
form of the empirical data being modeled. Because
these criteria are likely met in the current problem,
we also undertook individual subject evaluation of the
biased optimal, threshold and cutoff heuristics.

A potential criticism of Seale and Rapoport (1997)
is that the quantitative component of their model eval-

Table 1: Accuracy of human decisions, showing the
percentage of correct answers for each participant on
each set of problems. Average accuracy for each par-
ticipant, and for each problem length are also shown.

Participant n = 10 n = 20 n = 50 Mean
1 65 65 55 61.37
2 45 45 20 36.67
3 55 45 50 50.00
4 40 35 25 33.33
5 55 35 55 48.33
6 65 45 20 43.33
7 45 60 50 51.67
8 55 50 45 50.00
9 70 55 55 60.00
10 50 35 55 46.67

Mean 54.50 47.00 43.00

uation relied solely on the ability of a heuristic, at
one or more parameterizations, to match the decisions
made by a subject. As argued by Roberts and Pashler
(2000), measures of goodness-of-fit fail to account for
important quantifiable components in model selection.
In particular, it is important also to assess the com-
plexity of parameterized models, to ensure that good
fit to empirical data does not merely arise because a
model is so complicated that it can fit any data, in-
cluding data that are never observed.

In model theoretic terms, there are clear differences
in the complexity of the three heuristics being con-
sidered. For the set of 20 length 10 problems given
to subjects, there are 1020 possible combinations of
decisions. The biased optimal, threshold, and cutoff
heuristics can predict, respectively, 78, 60, and 9 of
these possibilities by varying their parameters. Similar
differences in complexity hold for the longer problem
lengths, with 88, 70 and 17 data distributions being
indexed by the parameters for the length 20 problems,
and 121, 90 and 30 for the length 50 problems. Ac-
cordingly, any superiority in the ability of the biased
optimal heuristic over its competitors, or in the thresh-
old over the cutoff heuristic, could possibly be due to
greater complexity, rather than fundamentally captur-
ing regularities in the empirical data.

These concerns are best addressed using advanced
model selection methods (e.g., Pitt, Myung, & Zhang
2002), which provide criteria for choosing between
models in ways that consider both goodness-of-fit and
complexity. One interesting challenge in doing this
is for the current models is that they are determin-
istic, and do not specify an error theory. This means
that various probabilistic model selection criteria, such
as Bayes Factors (e.g., Kass & Raftery 1995), Mini-
mum Description Length (MDL: e.g., Grünwald 2000)



Table 2: Minimum Description Length (MDL) criteria
values for the Biased Optimal (BO), Threshold (Th)
and Cutoff (Cu) models, measured against the decision
made by the ten participants on each problem length.
Bold entries highlight strong evidence in favor of the
preferred model.

n = 10 n = 20 n = 50
BO Th Cu BO Th Cu BO Th Cu

1 32.7 26.3 40.1 34.4 25.6 52.6 34.6 23.2 60.6
2 19.4 32.4 33.2 38.0 40.4 45.0 34.6 32.8 60.6
3 35.4 26.3 35.7 38.0 29.7 35.2 29.7 32.8 47.5
4 15.3 35.1 42.0 26.3 25.6 47.8 18.7 32.8 44.1
5 32.7 32.4 40.1 30.4 29.7 50.3 52.0 48.9 60.6
6 19.4 29.5 38.0 21.8 29.7 42.1 29.7 28.1 43.8
7 26.6 22.9 40.1 26.3 21.2 41.5 18.7 17.8 35.8
8 32.7 26.3 40.1 41.5 33.5 50.3 12.5 23.2 47.8
9 26.6 32.4 38.0 26.3 25.6 52.6 24.4 23.2 36.0
10 29.8 37.6 40.1 21.8 37.0 52.6 34.6 28.1 43.8

or Normalized Maximum Likelihood (Rissanen 2001),
are not immediately applicable. Grünwald (1999),
however, develops a model selection methodology that
overcomes these difficulties. He provides a principled
technique for associating deterministic models with
probability distributions, through a process called ‘en-
tropification’, that allows MDL criteria for competing
models to be calculated.

Table 2 shows the MDL values found by applying
Grünwald’s (1999) method to all three heuristics, tak-
ing each subject individually, and considering each
problem length separately. Lower MDL values indi-
cate better models, and differences between values can
be interpreted on the log-odds scale. This means,
for example, that the threshold heuristic (MDL value
26.3) provides an account that is about 600 times
more likely than that provided by the biased opti-
mal heuristic (MDL value 32.7) for the decisions made
by the first subject for the length 10 problems, since
e32.7−26.3 ≈ 600. Kass and Raftery (1995) suggest,
without being prescriptive, that a difference of six or
more in the log-odds given by MDL values corresponds
to ‘strong’ evidence in favor of the preferred model.
Adopting the same standard, Table 2 highlights in bold
those instances where the MDL for one of the heuris-
tics provides strong evidence in its favor compared to
both of the others.

There are several conclusions that can be drawn
from this analysis. First, despite its simplicity, the
cutoff heuristic does not provide a good model of
the human decisions. For almost every subject and
every problem length, it has the greatest MDL value,
and often is so much larger as to provide strong evi-

dence against its suitability. Secondly, there is clear
evidence of inter-individual differences in the use of
the biased optimal or threshold heuristics. There are
approximately as many instances, for each problem
length, where the biased optimal or threshold heuris-
tic is strongly favored as an account for an individual
subject. Thirdly, there is also some evidence of intra-
individual consistency in using the biased optimal or
threshold heuristic. This is because, in most instances,
strong preferences favor the same heuristic for the same
subject on different problem lengths.

Once the MDL criteria have been used to control
for effects of model complexity, it is sensible to ex-
amine the goodness-of-fit of the heuristics. This was
done by considering the average percentage of correct
predictors made by each heuristic, for just those par-
ticipants with MDL values favoring the heuristic. The
biased optimal heuristic correctly predicted an aver-
age of 81%, 78% and 88% of participant decisions for,
respectively, the 10, 20 and 50 length problems. The
threshold heuristic correctly predicted an average of
74%, 78% and 79% of decisions. These results suggest
that, while the heuristics may not provide a complete
account of human performance, they do capture im-
portant regularities in the decision-making data.

Where there is strong evidence for a participant us-
ing either the biased optimal or threshold heuristic,
it is also worthwhile to examine the parameter values
used. For participants using the biased optimal heuris-
tic, the bias parameter was always negative, indicating
they underestimated the optimal threshold value for
each position in the sequence. As the problem length
increased from 10 to 20 then 50, however, the average
bias changed from -5.1 to -1.8 then -1.9. This suggests
that, for the longer sequences, participants were bet-
ter calibrated to the optimal curve. For participants
using the threshold heuristic, the average best-fitting
threshold increased from 88.1 to 93.2 then 94.6. These
values compare to theoretically optimal thresholds of
86.4, 92.6 and 97.2, as shown in the middle panel of
Figure 2. It is clear that participants are sensitive
to the need to increase the threshold as the length
of the sequence increases, and do not seem either to
under- or over-estimate the optimal value. It should
be acknowledged, however, that these parameter val-
ues analyses are based on limited data, and additional
data are required to confirm the suggested trends in
this experiment, as well as to ascertain whether there
are significant individual differences that also need to
be considered.

Discussion
This study constitutes a first attempt to understand
human decision-making on the full information version
of the secretary problem. A first contribution of the
study is to reject the usefulness of the cutoff heuris-
tic, on both theoretical and empirical grounds, as an



account of human decision-making. This is a worth-
while finding, given that Seale and Rapoport (1997)
found good evidence for people using this strategy on
the rank information version of the secretary problem.

More importantly, it seems clear that both the bi-
ased optimal and threshold heuristics do capture some-
thing fundamental about human decision-making on
the full information version. Both heuristics take the
form of choosing the first value that exceeds a thresh-
old, with the key difference being that the biased opti-
mal heuristic uses thresholds that are sensitive to the
position in the sequence, rather than being fixed.

Indeed, the biased optimal and threshold heuris-
tics represent the two extremes of a continuum of
threshold-based decision-making heuristics. Instead of
using a constantly changing or a fixed threshold, it is
possible for a decision process to use a small number
of thresholds, and apply each to a sub-sequence of the
presented values. For example, for a problem of length
10, a heuristic might apply one threshold for the first
five values, decrease it for the next three values, and
finally decrease it again for the penultimate value1.
These sorts of heuristics seem likely to have complexity
that lies somewhere between that of the biased optimal
and threshold heuristics. It may well be the case that
human performance is best explained by an account
that is more sophisticated than the threshold heuris-
tic, but does not have the full complexity of the biased
optimal approach.

A final interesting problem for future research is
whether the observed individual differences in accuracy
are related to more traditional measures of problem
solving ability and psychometric intelligence. In the
everyday world, the ability to solve practical problems
is generally regarded as an expression of intelligence.
There is some evidence (e.g., Vickers et al. 2001) of
a relationship between solution quality on TSPs and
measures of IQ. Given that secretary problems are rep-
resentative of a class of real world sequential decision-
making tasks, they allow the possibility that there is
a similar relationship for non-perceptual tasks to be
examined.
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