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Abstract
The purpose of the recently proposed prep statistic is to estimate the prob-
ability of concurrence, that is, the probability that a replicate experiment
yields an effect of the same sign (Killeen, 2005a). The influential journal
Psychological Science endorses prep and recommends its use over that of tra-
ditional methods. Here we show that prep overestimates the probability of
concurrence. This is because prep was derived under the assumption that
all effect sizes in the population are equally likely a priori. In many sit-
uations, however, it is advisable to also entertain a null hypothesis of no
or approximately no effect. We show how the posterior probability of the
null hypothesis is sensitive to a priori considerations and to the evidence
provided by the data; and the higher the posterior probability of the null
hypothesis, the smaller the probability of concurrence. When the null hy-
pothesis and the alternative hypothesis are equally likely a priori, prep may
overestimate the probability of concurrence by 30% and more. We con-
clude that prep provides an upper bound on the probability of concurrence,
a bound that brings with it the danger of having researchers believe that
their experimental effects are much more reliable than they actually are.

Keywords: Statistical Hypothesis Testing, Prediction, Model Averaging,
Bayesian Analysis
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Suppose you conduct an experiment to test whether words such as pizza prime words
such as coin (Pecher, Zeelenberg, & Raaijmakers, 1998). The motivating hypothesis states
that prior presentation of a word facilitates later processing for another word when both
words refer to objects with similar physical attributes (e.g., pizzas and coins are both round
and flat). This relatively little studied “perceptual priming” effect may be contrasted with
the well–established “associative priming” effect in which the presentation of a word such
as butter facilitates later processing for the associatively related word bread (Meyer &
Schvaneveldt, 1971).

In your priming experiment, you measure the effects of perceptual priming and asso-
ciative priming, and a p–value hypothesis test shows that both effects are significant—by
coincidence, both tests yield p = .03. Blissfully unaware of the work by Pecher et al. (1998),
you set out to submit a report to one of psychology’s premier journals, Psychological Sci-
ence. You browse the journal’s Author Guidelines and find that authors are encouraged
to replace the traditional p value with Peter Killeen’s prep value (Ashby & O’Brien, 2008;
Killeen, 2005, 2005a, 2005b, 2006, 2007; Sanabria & Killeen, 2007; for discussion see Cum-
ming, 2005; Doros & Geier, 2005; Macdonald, 2005; Wagenmakers & Grünwald, 2006).

Because you do not want to decrease needlessly your chances of getting accepted by
Psychological Science, you transform your two–sided p–values of p = .03 into prep values
of approximately .94 (e.g., Killeen, 2005, p. 17; Killeen, 2005a, p. 353). You do not have
the time to analyze the statistics in the Killeen articles carefully, but you understand that
you can conclude that, should you repeat the experiment, there is a prep ≈ .94 probability
of again finding each priming effect, even though the replication may not be statistically
significant (i.e., replication refers to concurrence, that is, finding a replicate effect of the
same sign; Killeen, 2005a, p. 346). Is this conclusion justified? We believe it is not.

Our disbelief stems from the fact that prep is based on a single model, namely the
model that assumes all effect sizes to be equally likely a priori (Doros & Geier, 2005; Killeen,
2005b). We call this model H1. The prep statistic does not take into account the plausibility
of the simpler model, H0, that postulates that an effect is either completely absent or so
small that it would take a much larger sample for it to be detected. When H0 is deemed
plausible—either through a priori considerations or through the information provided by the
data—this should considerably reduce one’s confidence of finding concurrence, as prep ≈ 1/2
under H0 (see also Macdonald, 2005).1

To illustrate the impact of a priori considerations on the probability of concurrence,
let us revisit the priming experiment and its prep ≈ .94 for the established phenomenon
of associative priming and the new phenomenon of perceptual priming. Imagine that you
are given $100 to bet that a replicate effect will concur with your data; that is, you get to
keep the $100 when the effect of your choice (i.e., either perceptual priming or associative
priming) replicates, but you lose the $100 that you were given when the effect of your choice
does not replicate. In our priming example, the prep statistic suggests that you have no

1We write prep ≈ 1/2 and not prep = 1/2 because our argument also holds when H0 is only approximately
true, as we later discuss in detail.

Correspondence concerning this article may be addressed to Eric–Jan Wagenmakers, University of Am-
sterdam, Department of Psychology, Roetersstraat 15, 1018 WB Amsterdam, the Netherlands.
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grounds to prefer one effect over the other, as prep ≈ .94 for both. Nevertheless, the smart
money in the betting scenario will be on the established effect, not on the new effect.

The reason for this is the very real possibility that your new finding of perceptual
priming is a fluke, that is, a Type I error—and if this is the case, then prep is 1/2, not .94. On
the other hand, associative priming has been reported in countless studies since Meyer and
Schvaneveldt (1971), and this knowledge increases the probability that your measurement
of this effect is real, which in turn increases the probability of finding concurrence in a
replication of your priming experiment.

Thus, it is evident that established but not novel effects inspire high confidence of
concurrence. This observation is, however, at odds with the standard interpretation of the
prep statistic (see also Macdonald, 2005); in the following, we elaborate and formalize this
intuitive argument and show how the calculation of the probability of concurrence requires
one to take both H0 and H1 into account simultaneously.

The prep Statistic

Consider an experiment that features two conditions. Let d denote the observed effect
size, and drep the effect size in a replication study. Concurrence is observed when d and drep

have the same sign, so that drepd ≥ 0. As explained in Doros and Geier (2005) and Killeen
(2005a, 2005b), prep is computed under the assumption of a flat improper prior distribution2

on the true population effect δ. This assumption is H1 in our terminology. To be explicit,

prep = Pr (drepd ≥ 0|d,H1) . (1)

Note that this equation does not feature δ; that unobserved parameter has been
integrated out using the flat improper prior distribution. Of course, one could argue whether
such a flat distribution on δ is appropriate (Iverson, Lee, Zhang, & Wagenmakers, in press
a; Iverson, Lee, & Wagenmakers, in press b): indeed, in Bayesian statistics, it is standard
practice to use prior distributions that put more mass on small effect sizes than on large
effect sizes.3 For instance, the prior on effect size in the Zellner and Siow (1980) Bayesian
hypothesis test is the Cauchy distribution (i.e., a t–distribution with one degree of freedom).
Here we sidestep this discussion and wish to point out only that prep has Bayesian roots,
and can therefore be given a Bayesian interpretation: prep estimates the probability that
a replicate effect will concur with an original, under the assumption of a flat prior on the
true population effect δ. More details are given in Appendix A.

The statistic prep can also be given a frequentist interpretation. Specifically, prep

relates to the traditional two–sided p–value as (Killeen, 2005, p. 17):

prep = Φ
[
Φ−1

[
1− p

2

]
/
√

2
]
, (2)

where Φ denotes the standard Normal cumulative distribution function. Figure 1 plots
the relation between prep and the two–sided p–value. As can be seen from the figure, the
relation between the two statistics is close to linear, both for p ∈ (0, 0.5) (left panel) and
for p ∈ (0, 0.1) (right panel). Divergence from linearity is only apparent when we consider
p–values that are very small.

2An improper prior is a density function that does not integrate to a finite number.
3Despite the overlap in its conclusion and authors, the Iverson et al. (in press a) and Iverson et al. (in

press b) articles differ from the current one in content and focus.
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Figure 1. The function that relates prep to the two–sided p–value (Killeen, 2005, p. 17).

Given the almost linear mapping between the two–sided p–value and prep, one might
well wonder to what extent prep provides information that the traditional p–value does not.
Doros and Geier (2005, p. 1006) argued that “(...) any measure that is no more than a
simple transformation of the classical p value (...) will inherit the shortcomings of that p
value.” In response, Killeen (2005b, p. 1011) argued that prep and the p–value, “although
informationally equivalent, are distinguished by the inferences they warrant; prep is a valid
posterior predictive probability, p is not.”

Bayesian Model Averaging and its Effect on prep

As we have seen above, the statistic prep calculates the probability of concurrence
under H1, that is, under the assumption of a flat prior distribution for the population effect
size δ. We propose to also consider an alternative model, H0, that states that δ ≈ 0. Under
H0, the value of prep is Pr (drepd ≥ 0|d,H0) ≈ 1/2. We will later discuss the extent to which
H0 is plausible, but for now we proceed by noting that in standard statistical practice, be
it Bayesian, frequentist, or likelihood–based, H0 is generally considered plausible and may
even be assigned special status.

Thus, we now have two estimates for the probability of concurrence, one under H1

and one under H0. How might we proceed? One way would be to settle on the estimate
provided by the most likely model. However, this would mean that a small change in the
data—say a minimal change that switches our preference from H1 to H0—could lead to a
dramatic change in prep. More generally, a procedure that focuses on the estimates from a
single model ignores the uncertainty in model selection, and therefore results in “(...) over–
confident inferences and decisions that are more risky than one thinks they are” (Hoeting,
Madigan, Raftery, & Volinsky, 1999, p. 382).

A second, better way to proceed is to construct a single estimate for the probability of
concurrence, one that does not depend on the model that is being entertained. To this end,
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one can calculate a weighted average of the two prep’s, in which the weights are given by the
posterior probabilities of H1 and H0. This procedure is commonly known as Bayesian model
averaging (e.g., Draper, 1995; Hoeting et al., 1999; Madigan & Raftery, 1994). Note that a
small change in the data causes only a small change in the posterior model probabilities, so
that, even though the preference order for the models may switch, the change in the model
averaged estimate of prep will be small.

This means that when we apply the Bayesian model averaging procedure to prep, we
should find that the weighted average of prep values yields a more realistic estimate of the
probability of concurrence, an estimate that dampens the enthusiasm brought about by an
analysis that only considers H1. Specifically, the model averaged value for prep, denoted
here by pBma

rep is always smaller or equal to that of the original prep which is conditional on
H1:

pBma
rep = Pr (drepd ≥ 0|d) = Pr (H0|d) Pr (drepd ≥ 0|d,H0) + Pr (H1|d) Pr (drepd ≥ 0|d,H1)

= Pr (H0|d)× 1/2 + Pr (H1|d)× prep

≤ prep. (3)

The foregoing shows that, from a Bayesian perspective at least, it is prudent to
calculate the overall probability of concurrence as a weighted average of the separate prob-
abilities of concurrence under H0 and H1. Note that in order to arrive at an estimate for
the weights—the posterior model probabilities—one needs to update the prior model prob-
abilities Pr(H0) and Pr(H1) by means of the data f(D|H0) and f(D|H1) to posterior model
probabilities Pr(H0|D) and Pr(H1|D), respectively. This implies that pBma

rep will be lower
than prep to the extent that Pr(H0|D) is large. This in turn occurs when prior consider-
ations lead to a high value for the prior model probability Pr(H0), or when the data are
relatively likely under H0, that is, when f(D|H0) is relatively large compared to f(D|H1).

The above analysis also clarifies why, in our earlier priming example, one would have
more confidence in replication of the well-established effect than in that of the new effect; for
the new effect, Pr(H0) is relatively large, and this leads pBma

rep to be relatively small. To get
a feeling for the extent to which model averaging drives down estimates for the probability
of concurrence, we now turn to an example from a default Bayesian hypothesis test.

Illustration: Model Averaging for A Default Bayesian Hypothesis
Test

Before presenting the results from the Bayesian hypothesis test, it is important to
introduce some key concepts of Bayesian inference. More information can be found in
Bayesian articles and books that discuss philosophical foundations (Lindley, 2000; O’Hagan
& Forster, 2004), computational innovations (Gamerman & Lopes, 2006), and practical
contributions (Congdon, 2003).

Assume you contemplate two models, H0 and H1, and seek to quantify model un-
certainty in terms of probability. Consider first H0. Bayes’ rule dictates how your prior
probability of H0, Pr(H0), is updated through the observed data D to give the posterior
probability of H0, Pr(H0|D):

Pr(H0|D) =
Pr(H0)f(D|H0)

Pr(H0)f(D|H0) + Pr(H1)f(D|H1)
. (4)
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In the same way, one can calculate the posterior probability of H1, Pr(H1|D). The ratio of
these posterior probabilities is given by

Pr(H0|D)
Pr(H1|D)

=
Pr(H0)
Pr(H1)

f(D|H0)
f(D|H1)

. (5)

This equation shows that the change from prior odds Pr(H0)/ Pr(H1) to posterior odds
Pr(H0|D)/Pr(H1|D) is determined entirely by the ratio of the marginal likelihoods
f(D|H0)/f(D|H1).4 This ratio is generally known as the Bayes factor (Jeffreys, 1961),
and the Bayes factor, or the log of it, is often interpreted as the weight of evidence coming
from the data (Good, 1985). A hypothesis test based on the Bayes factor prefers the model
under which the observed data are most likely (for details see Berger & Pericchi, 1996;
Bernardo & Smith, 1994, Chapter 6; Gill, 2002, Chapter 7; Klugkist, Laudy, & Hoijtink,
2005; Kass & Raftery, 1995; O’Hagan, 1995). Note that the Bayes factor quantifies the
evidence for H0 versus H1 without taking into account the prior plausibility of the models.

Having established the necessary terminology, we can now discuss the effect of model
averaging on prep using a Bayesian Z–test that was proposed by Smith and Spiegelhalter
(1980). This Bayesian Z–test is fully automatic, and, as far as automatic hypothesis tests
go, its performance is regarded as “quite satisfactory” (Berger & Delampady, 1987, p. 319).
The Smith and Spiegelhalter Z–test estimates the Bayes factor by means of the following
equation:

B01 =
f(D|H0)
f(D|H1)

=
√

n exp
[
−Z2

2

]
, (6)

where Z = d
√

n/2 is the familiar frequentist test statistic.
From Equation 3 and the derivations in Appendix A, the model averaged probability

of concurrence is given by

pBma
rep = Pr (H0|d)× 1/2 + Pr (H1|d)× Φ

[ |Z|√
2

]
, (7)

where Φ again denotes the standard Normal cumulative distribution function. The posterior
model probabilities in Equation 7 can be obtained from Equations 5 and 6. For example,
suppose that an experiment with n = 25 yields d = 0.56. We compute Z = 1.98, and
plugging this into Equation 6 yields B01 ≈ 0.704. When H0 and H1 are equally likely a
priori, Pr(H0|d) is given by B01/(B01 + 1); in this case then, Pr(H0|d) = 0.704/1.704 ≈
.413, and Pr(H1|d) is its complement, 1 − .413 = .587. The standard normal cumulative
distribution function of 1.98/

√
2 equals .919. Putting these separate components together

in Equation 7 yields pBma
rep = .413 × 1/2 + .587 × .919 = .746. It is striking that .746, the

model averaged probability of concurrence, is considerably more conservative than the .919
value that is obtained when H0 is ignored (i.e., on a scale from .5 to 1, this amounts to a
decrease of 34.6%).

To demonstrate more fully the effect of model averaging on the estimated probability
of concurrence, Figure 2 shows three different prep methods as a function of Z–score. In
each panel of Figure 2, the solid line gives Killeen’s original prep estimate. The dashed and

4The likelihoods f(D|H·) are called marginal because the model parameters have been integrated out.
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dotted lines provide the model averaged estimates, that is, pBma
rep . The model weights (i.e.,

the posterior probabilities of H1 and H0) are based on the Smith and Spiegelhalter Bayesian
Z–test. Other Bayesian tests, such as the one proposed by Zellner and Siow (1980), yield
similar results. The dashed line corresponds to an H1 that is a priori just as likely as H0

(i.e., Pr(H1) = Pr(H0) = 0.5); the dotted line corresponds to an H1 that is a priori less
likely than H0 (i.e., Pr(H1) = 0.1,Pr(H0) = 0.9).

Each panel from Figure 2 shows that Killeen’s prep considerably overestimates the
model–averaged pBma

rep . The extent of overestimation increases with n. Figure 2 highlights
two causes that lead Killeen’s prep to overestimate the probability of concurrence. First,
the difference between the solid and the dashed lines indicates the extent to which the data
support H0. When f(D|H0) is non–negligible compared to f(D|H1), the non–negligible
posterior probability for H0 drives down pBma

rep compared to prep. Second, the difference
between the dashed and the dotted lines indicates the additional effect of prior plausibility—
when H1 is unlikely a priori, the probability of concurrence is low, especially for data that
are inconclusive.

At this point, it is important to address two objections that might be raised against
our analysis. The first objection holds that Pr(H0) = 0, because the null hypothesis is
supposedly never true exactly. At first sight, this objection—should it be correct—appears
to seriously undercut our analysis. The second objection holds that prior probabilities for
models and parameters can never be known, and can therefore be safely ignored.

Objection 1: Is the Null Hypothesis Ever Exactly True?

The first objection to our analysis goes as follows (e.g., Cohen, 1994). We know that,
when we compare two populations, the difference between them will never be exactly zero.
This means that we should be able to demonstrate the existence of any effect whatsoever,
given only that the sample size is large enough. For a frequentist hypothesis test, the
argument states that for large n, we are guaranteed to reject the null hypothesis. But if we
know beforehand that the null hypothesis should be rejected for large n, then why would
we be interested in showing that it can or cannot be rejected for small n? For a Bayesian
hypothesis test, the same argument could be used to claim that we know a priori that
Pr(H0) = 0, as δ 6= 0 always; and if this claim is true, Equation 3 simplifies to pBma

rep = prep,
and the overestimation of prep is illusory.

The first counter–argument to this claim is that our results hold regardless of whether
the null hypothesis is true exactly or only approximately. Specifically, the same qualitative
pattern of results is obtained when we define the null hypothesis as a distribution of small
effect sizes that is centered around zero. For mathematical details we refer the reader to
Appendix B and to the work by Berger and Delampady (1987, pp. 321–322).

Intuitively, the idea is that if the null hypothesis is only true approximately, so that a
very small effect is present—albeit one that would take a much larger sample size to detect
reliably—then the probability of concurrence may not be exactly equal to 1/2, but it will be
only slightly higher. For a null hypothesis that is only approximately true, the probability
of concurrence might be, say, .51, and this value is much smaller than the values provided
by Killeen’s prep.

The second counter–argument is that the Bayes factor implements an automatic
Ockam’s razor that obeys the principle of parsimony (Myung & Pitt, 1997). This means that
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Figure 2. Results for three different prep methods as a function of Z–score. Prep(K) denotes
the prep method proposed by Killeen (2005); Prep(B1) denotes a Bayesian model–averaged pBma

rep

method with an H1 that is a priori likely (i.e., Pr(H1) = 0.5); Prep(B2) denotes the same Bayesian
model–averaged pBma

rep method but now with an H1 that is a priori unlikely (i.e., Pr(H1) = 0.1).
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the Bayes factor will prefer the model, of the two, that has the smallest one–step–ahead
prediction error to unseen data from the same source (e.g., Dawid, 1984; Wagenmakers,
Grünwald, & Steyvers, 2006). In other words, the Bayes factor prefers the model, of the
two, that generalizes best. This predictive interpretation of the Bayes factor “does not
depend on viewing one of the models as “true”. (...) Thus the Bayes factor can be viewed
as measuring the relative success of H1 and H0 at predicting the data.” (Kass & Raftery,
1995, p. 777).

The third counter–argument to the claim that the null hypothesis is never true is that
theories and models often predict the complete absence of an effect (Rouder, Speckman,
Sun, Morey, & Iverson, in press). A test of these models therefore requires that we take
the null hypothesis seriously. In the field of visual word recognition, for instance, the
entry–opening theory (Forster, Mohan, & Hector, 2003) predicts that masked priming is
absent for items that do not have a lexical representation; another example from that
literature concerns the work by Bowers, Vigliocco, and Haan (1998), who have argued that
priming effects are equally large for words that look the same in lower and upper case (e.g.,
kiss/KISS) or that look different (e.g., edge/EDGE), a finding supportive of the hypothesis
that priming depends on abstract letter identities. A final example comes from the field
of recognition memory, where “context noise” theories (e.g., Dennis & Humphreys, 2001),
unlike rival “item noise” theories (e.g., Gillund & Shiffrin, 1984), predict the absence of
a list–length effect. Empirically, this means context noise models predict no change in
recognition performance for study lists of different lengths, and so their predictions are
exactly those of the null hypothesis (Dennis, Lee, & Kinnell, 2008).

The above models do not predict that the experimental effects will be small; they
predict them to be altogether absent. In fact, for theoretical purposes it often does not
matter how large an effect is, as long as it is reliably detected. For instance, if priming
effects were larger for words that look the same in lower and upper case (e.g., kiss/KISS)
than for those that look different (e.g., edge/EDGE), this would undermine the hypothesis
that letters are represented abstractly, no matter whether the effect size was 100 ms or 10
ms. Of course, it is much more difficult for a 10 ms effect to gain credence in the field,
but this issue is orthogonal to the argument. Should the 10 ms effect be found repeatedly
in different labs across the world, the effect would at some point be deemed reliable and
considered strong evidence against any theoretical account that predicted its absence.

Finally, we believe that the philosophy that motivated the introduction of prep is con-
sistent not with parameter estimation—in which the focus is generally on a single model—
but rather with model selection:

“(...) it is rare for psychologists to need estimates of parameters; we are more
typically interested in whether a causal relation exists between independent
and dependent variables (...). Are women attracted more to men with sym-
metric faces than to men with asymmetric faces? Does variation in irrelevant
dimensions of stimuli affect judgments on relevant dimensions? Does review of
traumatic events facilitate recovery?” (Killeen, 2005a, p. 345)

When we are interested in the question of “whether a causal relation exists between inde-
pendent and dependent variables”, we need to give special consideration to the possibility
that such a relation is absent. Or, in the words of Jeffreys, “Any significance test whatever
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involves the recognition that there is something special about the value 0, implying that the
simple law [the null hypothesis H0] may possibly be true” (Jeffreys, 1961, p. 394). Thus,
one may certainly argue that the null hypothesis is always false, so that pBma

rep reduces to
prep; but by doing so, one can no longer assess “whether a causal relation exists between
independent and dependent variables”, as the analysis would implicitly assume that such a
relation is present.

In sum, we believe that the null hypothesis is not always false, and—perhaps more
convincingly—our analysis does not critically depend on the absolute truth of H0. Quantita-
tively and qualitatively similar results are obtained when we assume that H0 is represented
by a small distribution of effect sizes centered on zero (e.g., Appendix B; see also Berger &
Delampady, 1987, pp. 321–322).

Objection 2: What About Those Priors?

Our analysis is Bayesian, and therefore involves priors, both on the level of models and
on the level of parameters. For instance, we have discussed the effects of prior plausibility
for H0 and H1 on the estimation of the probability of concurrence. Some researchers feel
that priors are unknowable or at least subjective, and therefore have no place in scientific
reasoning. When one dismisses the concept of priors, one dismisses the entire Bayesian
approach, and, so it seems, our entire line of argumentation.

This objection is vulnerable to several counter–arguments. First, the fact that one
is unable or unwilling to calculate a quantity does not mean that quantity is irrelevant
and can be safely ignored. For instance, we may not know Pr(H1), but the knowledge
that it influences the probability of concurrence remains valuable. Second, as was outlined
previously, the derivation of prep is Bayesian, and Killeen argued in fact that the crucial
difference between prep and the p–value is that only the former is “a valid posterior predictive
probability” (Killeen, 2005b, p. 1011). Third, we agree with Jim Berger, who argued that
“(...) when different reasonable priors yield substantially different answers, can it be right
to state that there is a single answer? Would it not be better to admit that there is
scientific uncertainty, with the conclusion depending on prior beliefs?” (Berger, 1985, p.
125). Finally, the effect of priors can be formally assessed through robustness analysis (e.g.,
Berger, 1990).

More concretely, consider the priors involved in our analysis. The first prior is on
the level of models, that is, Pr(H0) and its complement, Pr(H1). Equation 3 and Figure 2
highlight how these model priors impact on the probability of concurrence. Of course, the
choice of a model prior may be highly subjective; a researcher who wants to demonstrate
support for H0 could assign it a relatively high prior probability, say Pr(H0) = .9. Similarly,
a researcher who wants to demonstrate support for H1 could bias the analysis in its favor by
assigning H1 a relatively high prior probability. A highly biased researcher would even go as
far as to assign H1 all prior probability: Pr(H1) = 1 and Pr(H0) = 0, which in fact yields the
prep measure that is currently standard. In Bayesian model selection, one often avoids such
a priori biases by equating the prior model probabilities, such that Pr(H1) = Pr(H0) =
1/2. These uninformative model priors seem appropriate in the absence of strong prior
knowledge, because they “provide the level playing field necessary for unbiased evaluation.”
(Killeen, 2005b, p. 1011).
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The second prior is on the level of parameters. Specifically, the standard calculation
of prep assumes a uniform prior on effect size, that is, a normal prior N(0, τ2) with τ →∞.
This prior is “improper” and is guaranteed to reduce the posterior model weight for H1

to zero, regardless of what the data show (i.e., Pr(H1|D) → 0 as τ → ∞, e.g., Kass &
Raftery, 1995)—hence our reliance on the Smith and Spiegelhalter Z–test (i.e., Equation 6).
One alternative is to use prior knowledge to fix τ to a reasonable number. For instance,
based on a review of 474 research literatures in social psychology (Richard, Bond, & Stokes-
Zoota, 2003), Killeen (2007) reported that the distribution of effect sizes was approximately
Normal with variance 0.3. Denoting the hypothesis for which τ ¿ ∞ by H ′

1, one might
specify H ′

1 : δ ∼ N(0, τ2), τ =
√

0.3, and calculate both the probability of concurrence and
the model weights from a N(0, 0.3) prior on effect size.

Another attractive alternative is to carry out a robustness analysis5; this means that
one computes pBma

rep for many different values of τ , every time using the N(0, τ2) prior to
calculate both the probability of concurrence and the model weights. That is, we consider
two models, H0 : δ = 0 and H ′

1(τ) : δ ∼ N(0, τ2), and use Equation 3 to calculate pBma
rep (τ)

for many values of τ . Interest may then center, for example, on the maximum value for
pBma

rep (τ) that can be attained by varying τ . We carried out such an analysis and confirmed
that even the maximum value of pBma

rep (τ) is substantially lower than prep. For instance,
our earlier numerical example referred to a hypothetical experiment that yields d = 0.56
with n = 25, resulting in Z = 1.98. For these data, the traditional prep equals .919. In
sharp contrast, a robustness analysis revealed that the upper bound on pBma

rep (τ) is .764.
This upper bound was obtained by varying the prior on effect size (i.e., τ in δ ∼ N(0, τ2)),
and therefore does not depend on the possibly subjective choice for any specific parameter
prior. The only prior that influences this result is the uninformative model prior that deems
both H0 and H ′

1 equally likely a priori. Consistent with our analysis using the Spiegelhalter
and Smith Z–test, the robustness analysis supports our claim that prep overestimates the
probability of concurrence.

General Discussion

In this article, we have shown that Killeen’s prep statistic overestimates the probability
of finding a concurrent result in a replicate experiment. The reason for the exaggeration
is that prep assumes that the null hypothesis—under which the probability of concurrence
is 1/2—can be ignored. We introduced a Bayesian model averaging procedure to show
how the presence of a plausible null hypothesis tempers the enthusiasm stemming from
Killeen’s prep. When the data do not decisively rule out the null hypothesis, or when the
null hypothesis is a priori much more likely than the alternative hypothesis (Macdonald,
2005), the probability of concurrence can be considerably lower than is advertised by prep.

Some of our Bayesian reasoning can also be brought to bear against the traditional p–
value. A p–value indicates the probability of encountering a test statistic at least as extreme
as the one that was observed in the experiment, given that the null hypothesis is true. This
means that a p–value refers to the probability of data given the null hypothesis, and does
not refer to the probability of the null hypothesis given data. When researchers study
unlikely, counterintuitive phenomena (such as those commonly reported in high–impact

5We thank an anonymous reviewer for bringing this to our attention.
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psychology journals), the statistical result “p = .04” does not warrant the conclusion that
“the null hypothesis can be rejected”. When one studies ESP, for instance, it takes more
than p = .04 to reject the null hypothesis. From a Bayesian perspective, extraordinary
claims require extraordinary evidence. It is important to note, however, that our argument
against prep holds whenever H0 is assigned any prior mass, and becomes more compelling
as Pr(H0) → Pr(H1), leading to the uninformative model prior that provides “the level
playing field necessary for unbiased evaluation.” (Killeen, 2005b, p. 1011). The extent to
which prep overestimates the probability of concurrence when Pr(H0) = Pr(H1) can be seen
by comparing Prep(K) to Prep(B1) in Figure 2.

Although it may be argued that our analysis is restricted to the framework of Bayesian
inference, this does not diminish its relevance for the evaluation of prep. Doros and Geier
(2005) have argued that prep is exclusively a Bayesian concept, and prep should therefore
be susceptible to Bayesian arguments. Also, Equation 3, Appendix B, and our robustness
analysis indicate that our general conclusion (i.e., prep overestimates the probability of
concurrence) holds across all model priors and across a large class of parameter priors. It is
possible to construct a parameter prior under which our general conclusion does not hold;
such a parameter prior would be asymmetrical around zero, and assign a lot of mass to
values greater or smaller than zero. In the absence of strong prior knowledge, we do not
feel such priors are appropriate for Bayesian hypothesis testing, a sentiment that is echoed
by the absence of such priors in the Bayesian literature.

Practical Implications

Consider again the hypothetical situation in which you conduct an experiment to test
whether words such as pizza prime words such as coin (i.e., perceptual priming, Pecher
et al., 1998). Recall that the experimental effect yields prep ≈ .94. What should we make
of this value? We hazard to guess that researchers, reviewers, and editors are likely to
(mis)interpret prep ≈ .94 as follows: “If this experiment were to be repeated, there is a 94%
chance to again observe a reliable perceptual priming effect. This is strong evidence for the
presence of perceptual priming in the original experiment.”

Unfortunately, this interpretation is as tempting as it is wrong. First, “replication”
does not refer to finding again a result that is reliable or statistically significant; in the
context of prep, “replication” refers to concurrence, that is, finding again a result of the
same sign, however small and insignificant. This means that the lowest possible value for
prep is already as high as 0.5. It is debatable whether researchers are interested in the
probability of concurrence rather than the probability of replication in the traditional sense
(i.e, the probability of a replication experiment again yielding a significant result). Another
problem with “concurrence” is that it is a definition of replication that is difficult to gauge;
how impressive is it that the probability of concurrence is .85, .95, or .99?

Second, our work here shows that prep is a valid estimate of concurrence only when the
null hypothesis can be completely ruled out and when the alternative hypothesis holds that
all effect sizes are equally likely a priori. Together, this means that prep does not estimate
the probability of concurrence, but that it estimates an upper bound for this probability, a
bound that holds only under strict and arguably unrealistic assumptions. Thus, the correct
interpretation of prep ≈ .94 is “the chance of a concurrent result in a replication experiment
is likely to be lower than .94”. Although this statement is correct, it does not appear to
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provide much insight.
In general, we believe that widespread adoption of prep can all too easily mislead

researchers into thinking that their effects are more reliable than they really are. In a
field such as psychology, where there is pressure to publish and replication research is rela-
tively rare (Lindsay & Ehrenberg, 1993), this means that the prep statistic may unwittingly
facilitate the dissemination of Type I errors, that is, findings that do not replicate.

So what options are we left with? Researchers who believe that concurrence is a
meaningful concept may replace prep with a model averaged version such as pBma

rep . Re-
searchers who are skeptical about the very idea of concurrence may resort to alternative
methods for statistical inference, a discussion of which is the topic of the next section.

The Future of Statistical Inference in Psychology

For many decades, researchers have pointed out the many shortcomings of p–value
hypothesis testing (e.g., Cohen, 1994; Edwards, Lindman, & Savage, 1963; Wagenmakers,
2007). The prep statistic was developed to address some of these shortcomings, but, un-
fortunately, it is sensitive to some shortcomings of its own. This raises the question of
whether there is a single method for statistical inference method that has no shortcomings
at all. The answer, alas, appears to be in the negative. Hypothesis testing is very difficult.
Nickerson (2000, p. 290) summarized the situation as follows: “NHST [Null Hypothesis
Statistical Testing—IWL] surely has warts, but so do all the alternatives”. A pragmatic
solution would be to use more than just a single method for inference, and demonstrate
that the conclusions hold regardless of the particular method that is used.

What are the alternatives to p–values and prep? They include Bayesian procedures
(e.g., Hoijtink, Klugkist, & Boelen, 2008; Kass & Raftery, 1995; Klugkist et al., 2005; Lee &
Wagenmakers, 2005; Rouder et al., in press; Raftery, 1995; Wagenmakers, 2007), Bayesian–
frequentist compromises (e.g., Berger, 2003; Berger, Boukai, & Wang, 1997; Berger, Brown,
& Wolpert, 1994; Good, 1983), Akaike’s Information Criterion (AIC; e.g., Akaike, 1974;
Burnham & Anderson, 2002), cross–validation (e.g., Browne, 2000; Geisser, 1975; Stone,
1974), bootstrap methods (e.g., Efron & Tibshirani, 1997), prequential methods (e.g.,
Dawid, 1984; Wagenmakers et al., 2006) and methods based on the principle of Minimum
Description Length (MDL; e.g., Grünwald, 2000; Grünwald, Myung, & Pitt, 2005; Pitt,
Myung, & Zhang, 2002; Rissanen, 2001). All these methods are methods for model selec-
tion, in that the explicit or implicit goal is to compare different models and select the best
one (for applications of model selection in the field of psychology see the two special issues
in the Journal of Mathematical Psychology: Myung, Forster, & Browne, 2000; Wagenmak-
ers & Waldorp, 2006). Methods for model selection do not assess the adequacy of H0 or
H1 in isolation. Rather, the adequacy of H0 is compared to the adequacy of an alternative
model, H1, automatically avoiding the negative consequences that arise when the focus is
on a single model.

In experimental psychology, model selection procedures are mostly used to adjudicate
between nonnested, complicated nonlinear models of human cognition. There is no reason,
however, why these procedures could not be applied to run–of–the–mill statistical inference
problems involving nested linear models such as ANOVA (Lee & Pope, 2006). We hope and
expect that in the near future, concrete alternatives to p–values (e.g., Bayesian hypothesis
tests) will be developed and made available in a way that benefits the majority of exper-
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imental psychologists. This is an exciting possibility that could change the landscape of
statistical inference in psychology in a fundamental way.

In conclusion, we applaud Killeen’s effort to have psychological researchers compute
a Bayesian quantity to decide whether or not there is a causal relation between independent
and dependent variables. Unfortunately, the choice for prep is beset by serious problems
(e.g., Iverson et al., in press a, in press b), one of which is that it can lead to overconfidence
and undue optimism. We recommend that researchers do not report prep but either report
a model–averaged version of prep or report the conclusions from one or more alternative
methods of statistical inference.
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Appendix A
Bayesian Results for prep

Assume that one has a normal prior N(0, τ2) on the effect parameter δ = µE−µC
σ ,

where subscripts E and C refer to an experimental and control group, respectively. The
equation for Killeen’s prep is recovered in the limit as τ →∞.

It is convenient to introduce ω2 = n
2 τ2 and θ = ω2

1+ω2 . Here, n is the common sample
size of the experimental and control groups. Note that 0 < θ < 1 and limω→∞ θ = 1, and
that ω is large for large τ and for large n.

Suppose one has an observed effect d at hand. The posterior for δ is δ|d ∼ N(dθ, θ2/n),
and—assuming a replication experiment employs the same sample size n per group as the
original—the posterior predictive density for drep is drep|d ∼ N(dθ, (1 + θ)2/n). We get

prep|d, τ, n = Pr(drepd ≥ 0|d, τ, n) = Φ

[
θ
|d|

√
n/2√

1 + θ

]
. (8)

It is easy to check that

prep|d, τ, n < lim
τ→∞ prep|d, τ, n = prep = Φ

[
|d|

√
n/2√
2

]
, (9)

where the last expression was given by Killeen and is the one recommended by Psychological
Science.

It is also convenient to write Z = d
√

n/2 (note that Z is the familiar frequentist test
statistic), and derive the more compact equation

prep|d, τ, n = Φ
[ |Z|θ√

1 + θ

]
. (10)

The usual expression for prep is obtained when θ = 1.

Appendix B
Generality of our Result

Equation 3 is subject to the distraction that some people believe that Pr(H0|d) =
0. Note however that the inequality from Equation 3 is far more general than indicated.
Suppose we replace H0 : δ = 0 by a model M0 that involves a prior N(0, ε2) on δ, and we
contemplate another competing model M ′

1 which involves a prior N(0, τ2) on δ (replacing
the flat improper prior). Assume that ε2 < τ2 (typically, ε2 ¿ τ2).

Write ζ = ε2n/2
1+ε2n/2

and θ = τ2n/2
1+τ2n/2

. Then we get

pζ
rep , Pr (drepd ≥ 0|d,M0) = Φ

(
ζ
|d|

√
n/2√

1 + ζ

)
, (11)

and

pθ
rep , Pr

(
drepd ≥ 0|d,M ′

1

)
= Φ

(
θ
|d|

√
n/2√

1 + θ

)
, (12)
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where , means “by definition”.
In these terms we have

pBma
rep = Pr (drepd ≥ 0|d) = Pr (M0|d) Pr (drepd ≥ 0|d,M0) + Pr

(
M ′

1|d
)
Pr

(
drepd ≥ 0|d,M ′

1

)

= Pr (M0|d)× pζ
rep + Pr

(
M ′

1|d
)× pθ

rep

< pθ
rep [since ε2 < τ2, we have ζ < θ and pζ

rep < pθ
rep]

< prep [since pθ
rep is increasing in θ and prep = lim

θ→1
pθ

rep] (13)

So we see that our point does not rely on the assumption that Pr(H0) 6= 0.
To summarize: Under any assumption on ζ, θ subject to ζ < θ and any assumption

on the prior probability Pr(M0) it is the case that pBma
rep < prep. Note that the difference

prep − pBma
rep is calculable given the values of ε2, τ2, n, and d.

It is now easy to argue that prep can and often does overstate the evidence provided
by d that a faithful replication will agree in direction with d. Only people who truly believe
that M0 is impossible, yet are so uncertain as to the range of observed effects that they
adopt a flat improper prior, would expect that pBma

rep = prep. Such people know so much
and yet so little.

Of course what one would really like is a useful lower bound so that one could report
that, on the basis of given data, the probability of achieving agreement in a replication as
to direction is at least that lower bound. Alas the only general lower bound seems to be
1/2 and that is not very interesting.


