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Much of cognitive psychology, like other empirical
sciences, involves the development and evaluation of
models. Models provide formal accounts of the explana-
tions proposed by theories and have been developed to
address diverse cognitive phenomena, ranging from
stimulus representation (see, e.g., Shepard, 1980; Tver-
sky, 1977) to memory retention (e.g., Anderson &
Schooler, 1991; Estes, 1997; Laming, 1992) to category
learning (e.g., Ashby & Perrin, 1988; Berretty, Todd, &
Martignon, 1999; Kruschke, 1992; Tenenbaum, 1999).
One recurrent shortcoming of these models, however, is
that (whether intentionally or as an unintended conse-
quence of methodology) humans are usually modeled as
invariants, not as individuals. This occurs because most
often, models are evaluated against data that have been
averaged or aggregated across subjects, so the modeling
assumes that there are no individual differences between
subjects.

The potential benefit of averaging data is that if the
performance of subjects really is the same except for
“noise” (i.e., variation that the model is not attempting to

explain), the averaging process will tend to remove the
effects of the noise, and the resultant data will more ac-
curately reflect the underlying psychological phenome-
non. When the performance of subjects has genuine dif-
ferences, however, it is well known (see, e.g., Estes, 1956;
Myung, Kim, & Pitt, 2000) that averaging produces data
that do not accurately represent the behavior of individu-
als and provides a misleading basis for modeling.

Even more fundamentally, the practice of averaging
data restricts the focus of cognitive modeling to issues of
how people are the same. Although modeling invariants
is fundamental, it is also important to ask how people are
different. Experimental data reveal individual differ-
ences in cognitive processes, and in the psychological
variables that control those processes, that also need to
be modeled.

Cognitive modeling that attempts to accommodate in-
dividual differences usually assumes that each subject
behaves in accordance with a different parameterization
of the same basic model, so the model is evaluated against
the data from each subject separately (see, e.g., Ashby,
Maddox, & Lee, 1994; Nosofsky, 1986; Wixted & Ebbe-
sen, 1997). Although this avoids the problem of corrupt-
ing the underlying pattern of the data, it also forgoes the
potential benefits of averaging and guarantees that mod-
els are fit to all of the noise in the data.

Another problem with individual subject analysis,
from a model-theoretic perspective, is that fitting each
additional subject requires an extra set of free param-
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eters, and so leads to progressively more complicated ac-
counts of the data as a whole. As has been pointed out re-
peatedly in the psychological literature recently (e.g., by
Myung & Pitt, 1997, and Pitt, Myung, & Zhang, 2002),
it is important both to maximize goodness of fit and to
minimize model complexity in order to achieve the basic
goals of modeling. Unnecessarily complicated models
that “over-fit” data often provide less insight and expla-
nation of the cognitive processes they address and are
less capable of making accurate predictions when gener-
alized to new or different situations.

A better approach, therefore, is to partition subjects
according to their individual differences and model the
aggregated data from each group. Under this approach,
data are addressed within a set of models, called a model
family, in which a different parameterization is applied
to each group of subjects. Where aggregation is appro-
priate, within groups of subjects, it is applied. Where ag-
gregation is not appropriate, between groups of subjects,
it is not applied.

Formally, a model family M partitions the subjects S
into G groups, S → {S1, . . . , SG}, and so partitions the
complete data D into G data sets, D → {D1, . . . , DG}.
For the ith data set, a model family also specifies a model
parameterization θi. Any possible partitioning of sub-
jects can be considered, including the possibilities that
all subjects are in the same partition (corresponding to
averaging across subjects) or that each has a separate
partition (corresponding to a complete individual analy-
sis). Differences in psychological processes between
groups are modeled by differences in the parameter values
of the groups.

Because of the enormous flexibility allowed by model
families, they can be made almost arbitrarily complicated
and could potentially fit any data set perfectly by adding
new groups, with extra parameters, to account for any re-
maining unexplained variation in the data. It is neces-
sary, therefore, for the fitting methods to use model se-
lection criteria that balance goodness of fit and model
complexity. This balance can be achieved in a principled
way, through the application of Bayesian model selec-
tion criteria (see, e.g., Pitt et al., 2002).

In this article, we evaluate the individual differences ap-
proach in a simulation study and show that it is superior in
terms of the key modeling goals of understanding and pre-
diction. We then provide two practical demonstrations of
the approach, one using the ALCOVE model of category
learning with data from four previously analyzed category
learning experiments, the other using multidimensional
scaling representational models with previously analyzed
similarity data for colors.

EVALUATION USING A SIMULATION
STUDY

Consider a psychological experiment involving m par-
ticipants, each of whom makes n independent binary de-
cisions, designed to model the rate at which subjects

make one decision rather than the other.1 This framework
is a fairly general one, incorporating the basic aspects of
many memory and decision-making experiments. For ex-
ample, in a memory retention task, one of the two alter-
natives may be the correct one, meaning that the cognitive
modeling interest is in the rate of memory retention. Al-
ternatively, in a more general decision-making task, neither
choice may be “correct,” but the interest is in the bias peo-
ple have for one option over the other. These examples sug-
gest that the binary observation experiment is a simple but
realistic framework. In this section, we study how the aver-
age, individual, and group modeling approaches perform in
achieving the basic goals of scientific modeling—to ex-
plain observed data in terms of existing theory and to
predict future data—on plausible versions of the binary
experiment.

Model Selection and Parameter Estimation
The raw data from the binary experiment take the form

of a set of counts of one of the decisions (called “suc-
cesses,” in a possibly arbitrary way) made by each sub-
ject. We denote by ki the number of successes for the ith
subject, where i � 1, . . . , m. Given these data, it is pos-
sible to compare the average, group, and individual mod-
els using Bayesian model selection in the following way.

Average approach. The average approach uses the
model Mave, which assumes that every subject has the
same underlying rate of success, given by the parameter
θ. This means that the probability of a subject’s having j
successes out of n trials is given by

The likelihood of all of the data D � (k1, . . . , km) under
the average model with a particular rate θ is therefore
given by the multinomial

where

is the multinomial coefficient m!/(c0! . . . cn!). The value
cj denotes the number of subjects with j successes, with
j � 0, . . . , n and

We take the “best” value for the rate θ to be the one that
maximizes this likelihood, so that

For Bayesian model selection, the key quantity is the
probability of the data under the model as a whole, which
is found by integrating across all possible rate parameter
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values, weighted by their prior probabilities. This mar-
ginal density can be found analytically as

where Beta(u � 1, v � 1) � u!v!/(u � v � 1)!, and we have
used the uniform prior p(θ | Mave) � 1. Since we know that
both “zero” and “one” outcomes are possible in the exper-
iment, this is the correct (and unique) choice of prior
within the “objective Bayesian” framework for statistical
inference (for details, see Jaynes, 2003, pp. 382–386).

Individual approach. The full individual differences
approach uses the model Mind, which assumes that every
subject has a potentially different underlying rate of suc-
cess, given by the parameter θi for the ith subject. The
probability of all of the data D is therefore given by

The maximum likelihood values for each of the rates are
now given by

and the marginal density under uniform priors is

Group approach. The group approach assumes that
the subjects should be partitioned into g groups, where
each group has its own rate of success, given by the pa-
rameter θi for the ith group. This means that unlike in the
average and individual approaches, a family of models
Mgrp is considered, with each model in the family cor-
responding to a group of subjects. It is obvious that the
best allocation of subjects to groups will place together
subjects with similar numbers of successes. This means
that the only partitions that need to be considered are
those having g � 1 boundaries that identify the number
of successes used to place subjects into groups. We de-
note by li and hi, respectively, the lowest and highest
numbers of successes for the ith group and by mi the
number of subjects in the ith group. This means that the
probability of the data D as a whole is given by

The marginal density for a group model under uniform
priors is

The best group model, M*
grp, corresponds to the choice of

partition that maximizes this marginal density, and so is
defined by

The maximum likelihood values for each of the group
rates are found using this best group model, so that

which can be expressed more succinctly as

The best group model found in this way is the one with
between 2 and n � 1 groups (i.e., those possibilities for
which the best partitioning of subjects must be found).
As was noted earlier, however, the group approach en-
compasses the average and individual approaches as spe-
cial cases. Those possibilities are not included in the
model family Mgrp, however, because there is no deci-
sion to be made about partitioning. Accordingly, the
group approach should reduce to the average or the indi-
vidual model in those cases in which one of these mod-
els makes the data more likely. Formally, this means that
the final model used by the group approach is the one
corresponding to the maximum of p(D | Mave), p(D | M*

grp),
and p(D | Mind).

Summary of the three approaches. A useful sum-
mary of the three modeling approaches is provided by
Figure 1. It summarizes all of the data from a single trial
of a binary experiment with n � 20 observations from
m � 50 subjects by showing the relative numbers of sub-
jects with 0, 1, . . . , 20 successes. Beneath the histogram,
the maximum likelihood parameterizations assuming 1,
2, 3, 4, and 50 groups of subjects are shown by circles.
For the 2-, 3-, and 4-group models, the partitions that
correspond to the most likely model within the family
are also indicated.

The average approach to modeling these data would
use the single parameter provided by the 1-group model.
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The individual approach would use the 50 different pa-
rameter values provided by the 50-group model. The
group approach, as was explained earlier, would use the
model for which the data provide maximal evidence [i.e.,
the maximum of p(D | Mave), p(D | M*

grp), and p(D | Mind)]
and its associated parameter values. Intuitively, the ad-
ditional possibilities considered by the group approach
seem to be worthwhile for this example. The single pa-
rameter for the 1-group model does not seem to capture
the distribution of the data, but 50 parameters seem to pro-
vide an overly complicated account. Something like the 3-
group model, which effectively divides the subjects into
low-, medium-, and high-success groups, seems to pro-
vide an appropriately simple but accurate account of the
observed performance of the subjects.

Simulation Study
Basic assumptions. Any simulation study must cre-

ate an artificial environment in which to study the phe-
nomena of interest. It is important to be explicit about
the assumptions made in doing this, because they deter-
mine the usefulness of the simulation. We have made
three basic assumptions in creating binary experiments
to generate data for testing the average, individual, and
group modeling approaches. Our first assumption is the
simplest and concerns realistic numbers of subjects and
data in psychological experiments. We considered every
possible combination of m � 20, 50, and 100 subjects
with n � 5, 10, 20, and 40 observations.

Our second assumption concerns the nature of indi-
vidual differences in psychological phenomena. Al-

though there is clearly room for debate on this issue, we
think a reasonable assumption is that there are some phe-
nomena that have no meaningful individual differences,
many phenomena that have a small number of qualita-
tively different possibilities, and some phenomena that
are unique for all individuals. To comply with this as-
sumption, for each binary experiment in the simulation
study we chose at random a “true” number of individu-
ally different groups from the possibilities 1, 2, 3, 4, 5,
and n. Once this choice was made, “true” rates were in-
dependently selected from the uniform distribution on
[0, 1] for each group. We denote by γi the true rate for the
ith group. The n subjects were randomly allocated to the
groups, under only the constraint that each group must
have at least 1 subject.

Our final assumption concerns the stability of indi-
vidual differences over time. Suppose, for example, a
memory retention task involves three meaningfully dif-
ferent groups of subjects, corresponding to people with
low, moderate, and high probabilities of success in re-
membering. Whereas it is reasonable to expect the high
achievers to perform well over repeated experiments, it
seems unlikely that they will all remember with exactly
the same rate of success or that any individual will re-
member with exactly the same rate of success in each
replication of the experiment. A more plausible assump-
tion is that the success rate of an individual on any par-
ticular experiment is drawn from a “high distribution”
that is distinct from the moderate and low distributions.
In other words, the important regularity is that there are
three groups of people with broadly different retention

Figure 1. Data and model fitting for a single trial with n � 20 obser-
vations from m � 50 subjects. The data are summarized in the his-
togram, which shows the relative numbers of subjects with 0, 1, . . . , 20
successes. The maximum likelihood parameterizations using 1, 2, 3, 4,
and 50 groups are shown below, together with the partition boundaries
for the 2-, 3-, and 4-group models.
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rates, but the rate for each individual within a group, or
for the same individual across experiments, is subject to
variation. To comply with this assumption, we selected
the rate for a particular subject in the ith group from a
Gaussian distribution with mean γi and variance σ2 and
did this independently for each experiment. We consid-
ered the values σ � 0, .05, and .10. Setting σ � 0, of
course, corresponds to not making the third assumption,
because it fixes rates across repeated experiments for each
subject. Although we think that this situation is implausi-
ble, it nonetheless seemed worth evaluating to avoid the
criticism that our assumptions were prejudiced against the
individual approach, which clearly will benefit from the
lack of variation.

Evaluation measures. Making these assumptions al-
lowed experimental data to be generated that could be
modeled by the average, individual, and group ap-
proaches. We evaluated the three approaches in terms of
the basic modeling goals of understanding or explana-
tion, on the one hand, and prediction or generalization,
on the other.

The explanation provided by each approach was mea-
sured by the difference between the parameter values es-
timated by the models and the known true rates used to
generate the data. For the average model, which uses a
single parameter θ* to explain all of the data, the mean
difference between estimated and true parameters is

where ||·||1 denotes the L1 norm. For the individual
model, which uses a separate parameter θi

* for each sub-
ject, the mean difference is

For the group model, subjects are allocated to g groups
according to a mapping Γ, so if the ith subject belongs to
the k th group, Γ(i) � k, and the k th group has parameter
θk

*, the mean difference is

To evaluate the ability of the three modeling approaches
to make accurate predictions, we generated simulated data
for two experiments. The model parameters were esti-
mated using only the data from the first experiment, D �
(k1, . . . , km), but were assessed against the data from the
second experiment, D′ � (k′1, . . . , k′m). To make this as-
sessment, we used the standard Bayesian approach of
measuring the (quasi) posterior predictive densities
(Gelfand & Dey, 1994). These measures basically assess
how likely the second set of data are, given the model that
has been learned from the first set, and are given by the
conditional probabilities p(D′ |θ*, Mave), p(D′ |θ1

*, . . . , θg
*,

M*
grp), and p(D′ |θ1

*, . . . , θm
* , Mind) for the average, group,

and individual approaches, respectively.

We compared the predictive densities on the log-odds
scale, taking the density for the group approach as a ref-
erence. This means that the two final measures of com-
parative predictive ability are

and

which measure the superiority (or inferiority, if negative)
of the group model over the average and individual mod-
els, respectively.

Summary of the simulation study. A useful sum-
mary of the simulation study framework is provided by
Figure 2. It shows the data-generating process for two
experiments involving 5 subjects partitioned into two
different groups. Subjects A and B are in the low-success
group, and subjects C, D, and E are in the high-success
group. The low-success subjects have probabilities of
success pA and pB, drawn from the Gaussian distribution
with mean γ1 and variance σ2 in Experiment 1, resulting
in data kA and kB, which count their number of successes
from n trials. Similarly, the high-success subjects have
probabilities of success pC, pD, and pE, drawn from the
Gaussian distribution with mean γ2 and variance σ2 in
Experiment 1, resulting in data kC, kD, and kE. In Exper-
iment 2, the subjects remain in the same groups but now
have different success probabilities p′A, . . . , p′E drawn
from the same distributions, resulting in data k′A, . . . , k′E.

Model f itting was based on the data from Experi-
ment 1, with the results for one, two, and five parameters
being estimated for the average, group, and individual
models, respectively. The evaluation of these models was
then made in relation to the data from Experiment 2. In
terms of explanation, the mean absolute difference
across all subjects was found between the known mean
of their Gaussian distribution and their corresponding
parameter estimate. In terms of prediction, the posterior
likelihood of the data k′A, . . . , k′E was found for each
model using its estimated parameter values.

Note that we did not evaluate the ability of the models
to recover the “true” underlying numbers of groups. The
obvious reason for not considering this is that the average
and individual approaches would almost always be
wrong, because they make assumptions that are contrary
to those we made to generate the data. More fundamen-
tally, we do not believe it is helpful to assess the ability of
the group approach to recover the true number of groups.

A basic argument from advocates of the minimum de-
scription length approach to model evaluation (e.g.,
Grünwald, 1998; Rissanen, 2001) is that real data are
generated by statistical processes that are not known and,
indeed, are perhaps not knowable. Philosophically, this
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means that models should aim to be “useful” rather than
“true.” Practically, this means that good models are those
that capture regularities in data in ways that provide in-
sight and facilitate prediction, regardless of whether they
correspond to the putative truth among some limited set

of models that are certain to be inadequate for express-
ing the statistical properties of the data.

Figure 3 makes this general point in a concrete way by
showing a sample trial from the binary experiment we
are considering. It involves 10 subjects partitioned into

Figure 2. A summary of the simulation study framework for an example with 5 subjects divided
into two groups, showing the method of data generation for the two experiments and how the mod-
els are fitted and evaluated.

Figure 3. A sample trial with 10 subjects partitioned into three groups, each
of which has a similar mean probability of success.
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three groups, but the randomly chosen means γ1, γ2, and
γ3 are very similar. These subjects are usefully under-
stood, and their data will be well predicted, if the group
model reduces to the average model and uses a single
success parameter to model all subjects, even though this
is not the “true” data-generating situation. Of course, it
would be possible to place constraints on the way the dif-
ferent groups are defined, so that this sort of situation
would not arise, but this would require making strong ad-
ditional assumptions about the nature of individual dif-
ferences in cognitive phenomena. In any case, additional
constraints still would not overcome the inability of our
statistical models to express the full range of regularities
in real data. This is our justification for focusing on ex-
planation and prediction in assessing the three modeling
approaches, rather than on their abilities to recover arti-
ficially known data-generating processes.

Results
The results of the simulation study are shown in Fig-

ures 4 and 5. Figure 4 relates to prediction, with each
graph showing the relative predictive log odds for the
group versus individual and group versus average com-
parisons as the number of observations increases from
n � 5 to n � 40. The graphs are arranged in rows corre-
sponding to the group variance values, σ � 0, .05, and
.10, and in columns corresponding to increasing numbers
of subjects, m � 20, 50, and 100. Each data point shown
is the average of 1,000 independent trials of the simula-
tion study, and so represents performance for the range of
possible “true” numbers of groups discussed earlier.

Figure 4 makes it clear that the predictive log odds al-
ways favor the group model, since they are always posi-
tive in both comparisons. More specifically, the rela-
tionship between the group and average models is easy
to characterize. For all choices of m and σ, when few
data are available the average model has predictive ca-
pabilities similar to those of the group model, but as more
data become available the average model fares much
worse. This makes sense, since few data are unlikely to re-
veal the individual differences that will be evident in larger
data sets, meaning that the average model will become pro-
gressively less adequate as the sample size increases.

The relationship between the group and individual ap-
proaches is more complicated. When few data are avail-
able, the group approach is always clearly superior. This
is because the individual approach over-fits the data,
treating the stochastic variation in the observed counts as
enduring regularities by employing separate parameters
for each. When there is no variation in individual proba-
bilities of success within groups (i.e., σ � 0), the predic-
tive accuracy of the individual approach converges on
that of the group approach as more data are observed.
This is because large data samples reduce the stochastic
variation that was being over-fit, and the individual ap-
proach mimics the group approach, with separate param-
eters for individuals converging on the same group value.

If there is individual variation in the probability of suc-
cess, however, the individual approach again performs
worse than the group approach, even when large numbers
of data are available. This is because the noise introduced
by σ� 0 is over-fit by the individual parameters, and they

Figure 4. Posterior predictive log odds comparing the group approach with the in-
dividual and average approaches for different combinations of the numbers of obser-
vations (n � 5, 10, 20, and 40) and subjects (m � 20, 50, and 100), with variation in
the probability of success for individuals within groups (σ � 0, .05, and .10).
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no longer converge on the group values that offer the
best predictive capability.

Figure 5 relates to understanding and shows the mean
absolute difference across all subjects between the
known and estimated parameter values. The average ap-
proach is always the least accurate and does not improve
even as more data are available. The group and individ-
ual approaches are generally similar in accuracy, al-
though with only a few very small exceptions, the group
approach performs slightly better. In particular, the group
approach seems better for small numbers of data, with
both approaches improving with more data and becoming
increasingly similar in accuracy.

Discussion
The results of the binary experiment simulation study

demonstrate the clear superiority of the group approach.
It always makes better predictions than the average and
individual approaches. It is always much more accurate
than the average approach in finding parameter values,
and it is at least as accurate as the individual approach. Of
course, these results depend on the three assumptions
underlying the simulation study that were made explicit
earlier. First, the superiority of the group approach over
the average approach arises because of the assumed pres-
ence of individual differences in many of the trials. Sec-
ond, the superiority of the group approach over the indi-
vidual approach arises from assuming stochastic variation
in the way data are generated, through both sampling and
the underlying change in rate parameters. Third, the mag-

nitude of these advantages depends on the numbers of
subjects and data assumed to be typical of psychological
experiments, although the qualitative trends would be the
same under other assumptions.

Noting these correspondences shows that in a sense,
the simulation studies just provide concrete confirmation
of what should have been clear from the theoretical devel-
opment of the group approach. The group approach was
developed to deal with stochastic data-generating environ-
ments in which subsets of subjects have individual differ-
ences in basic parameters. If these features of the environ-
ment are assumed to be true, it should come as no surprise
that the group approach performs best. The real advan-
tage of the binary experiment evaluation is that it affords
neat analytic solutions for maximum likelihood parameter
estimation and Bayesian model selection for all three of
the approaches, and so allows the differences in the ap-
proaches to be understood before more complicated mod-
els and real data are considered. Having established these
differences, we now turn to demonstrating the application
of the group approach to two practical problems.

AN APPLICATION TO CATEGORY
LEARNING

Background
ALCOVE (Kruschke, 1992) is a model of category

learning that uses an exemplar-based stimulus represen-
tation, similarity-based generalization that is mediated
by selective attention, and error-based learning from ex-

Figure 5. Mean absolute differences across subjects between known and estimated
parameter values for different combinations of the numbers of observations (n � 5,
10, 20, and 40) and subjects (m � 20, 50, and 100), with variation in the probability of
success for individuals within groups (σ � 0, .05, and .10).
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ternal feedback. The standard ALCOVE model uses four
free parameters. These control the rate of learning for at-
tention weights (λa), the rate of learning for the associa-
tions between stimulus representations and category re-
sponses (λw), the gradient of the generalization function
that measures stimulus similarity (c), and the way in
which different levels of evidence for category alterna-
tives are mapped onto response probabilities (ϕ).

Kruschke (1993) considered the ability of ALCOVE to
model human category learning for filtration and con-
densation categorization tasks (Garner, 1974). The re-
sults of four separate experiments were reported, cover-
ing two filtration tasks (called position relevant and
height relevant because of the nature of the stimuli) and
two condensation tasks (called condensation A and con-
densation B). The data involved a total of 160 subjects,
with 40 completing each task. Kruschke (1993) fit AL-
COVE to all four sets of experimental results simultane-
ously, using trial-by-trial data formed by averaging across
all 40 subjects. An examination of the individual learning
curves in the raw data, however, reveals a large degree of
variation between subjects within each experiment and
raises the possibility that there were psychologically
meaningful individual differences in category learning.

There are two features of this application that make
analysis more difficult than for the simulation study. First,
the derivation of Bayes factors for families of ALCOVE
models is not analytically tractable. This means that an
approximate form of Bayesian model selection must be
used. Second, optimizing the parameters of ALCOVE is
not analytically tractable and is computationally costly
using numerical methods. This means that identifying sub-
sets of subjects for the group approach must be done ap-
proximately, using combinatorial optimization methods,
since only a limited number of parameter optimizations
are feasible for evaluating different partitions.

Model Selection
To develop a likelihood function for category learn-

ing, suppose that under a proposed partitioning of sub-
jects, the ith partition has ki subjects, and that the n cat-
egory learning trials are divided into blocks, with the jth
block having bj trials. Choosing one block with b1 � n
corresponds to an analysis of the average response prob-
abilities over all trials. Choosing n blocks with all bj � 1
corresponds to a trial-by-trial analysis.

In a two-category learning experiment, the data take
the form of counts, dij, of the number of correct responses
made by all of the subjects in the ith partition on the jth
block of learning trials. Suppose also that a category
learning model M, with its parameterization θi, predicts a
correct response probability of γij at the ith group of sub-
jects on the jth block. Then the likelihood of the data aris-
ing under the model is given by the binomial distribution

The likelihood of a model family simply extends this re-
sult to consider every block of trials and every partition,
so that

The extension of this likelihood function to more gen-
eral category learning experiments with more than two
possible category responses, using a multinomial distri-
bution, is straightforward.

Having defined the likelihood function, we use the
Bayesian information criterion (BIC; Schwarz, 1978) as
an approximate, easy-to-calculate means of Bayesian
model selection. The BIC is given by

where P is the number of parameters in the model fam-
ily (i.e., the sum of all of the parameters used by the
models for each group), N is the total number of data,
and θ* is the maximum likelihood parameterization over
all of the models. Different possible model families, cor-
responding to different groupings of subjects, can be
compared in terms of their BIC values, with the mini-
mum BIC corresponding to the most likely account of
the data. As Kass and Raftery (1995) have noted, the
“significance” of differences between BIC values can be
assessed because they lie on a log-odds scale. Formally,
for two models A and B with BIC values BICA and BICB,
the approximation 2 log [ p(D | MA) / p(D | MB)] �
BICB � BICA holds.

Inferring Partitions
Our original attempts to infer the partition with the

lowest BIC from Kruschke’s (1993) category learning
data are detailed in Webb and Lee (2004). Originally, we
relied on a two-stage heuristic that used singular value
decomposition on the correlations between learning curves
to find a low-dimensional representation of each subject’s
performance, and then we applied a version of k-means
clustering to these representations to find clusters of
subjects. A valid criticism of this approach is that it con-
siders only one partition, which is found in a sensible but
largely unprincipled way, and that it is entirely insensitive
to the model being applied, since it operates solely on the
raw data. These practices are inconsistent with the basic
goals of developing cognitive models to act as simplified
accounts of data that support prediction and generaliza-
tion and provide meaning. The general approach to mod-
eling individual differences developed in this article is
most useful when groups of subjects are identified with
respect to the low-dimensional parameterization of cogni-
tive models that capture the constraints in empirical data.

Accordingly, we developed an improved method for
inferring partitions that relies on an optimization process
that closely relates the model to the data. In this method,
for each possible number of groups, an initial partition-
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ing of subjects is provided by the original heuristic
method. A Nelder–Mead simplex algorithm (Nelder &
Mead, 1965) is used to search for optimal parameteriza-
tion of this initial partition, allowing its BIC to be eval-
uated. A combinatorial optimization process is then ap-
plied, based on subjects that are nearest (in the singular
value decomposition representation) to the centroid of
their neighboring group. All possible moves of these
“nearest neighbors” into their adjacent group are con-
sidered, generating a list of candidate alternative parti-

tions. For each of these alternatives, optimal parameter-
izations are also sought, allowing their BIC values to be
calculated. Alternative partitions that improve the BIC
are retained, and the process is repeated. Once no more
nearest-neighbor moves lead to improvement, a partition
that (locally) optimizes the BIC has been found and is
retained as the best grouping of subjects.

Results
Figure 6 shows the results of the new method for in-

ferring groups when applied to the four Kruschke (1993)
tasks.2 It is clear that the minimum BIC for three of the
four tasks (position-relevant filtration, condensation A,
and condensation B) is achieved when two separate
groups of subjects are considered, whereas the height-
relevant filtration data are best modeled by considering
all of the subjects as learning in the same way. These re-
sults are quantitatively extremely similar to those re-
ported in Webb and Lee (2004), although the new method
did improve the BIC slightly in a few cases. Qualitatively,
the results are identical.

Figures 7 and 8 give more detailed results for, respec-
tively, the position-relevant filtration and condensation
A tasks. In both of these figures, the top panel, labeled
All, shows the average accuracy of all subjects across the
eight learning blocks and the maximum likelihood fit of
ALCOVE to these data. The middle and bottom panels
show the first (G1) and second (G2) groups of subjects
proposed for the two-group model family that is pre-
ferred by the complexity analysis. These panels show the
average accuracy for both groups of subjects separately,
together with the maximum likelihood ALCOVE learn-
ing curve.

Figure 6. Pattern of change in BIC values for each clustering
of the position-relevant filtration (FP), height-relevant filtration
(FH), condensation A (CA), and condensation B (CB) category
learning data.

Figure 7. Change in accuracy across learning blocks for subjects (bro-
ken lines) and ALCOVE (solid lines) for the one-group (All) and two-
group (G1 and G2) model families on the position-relevant filtration
task. Error bars on the subject data represent one standard error in
each direction.
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Figure 7 shows that the moderate learning evident
when the subjects are treated as having no individual dif-
ferences is better modeled as coming from two distinct
groups of subjects. Subjects in the first group maintain
near-perfect accuracy throughout the category learning
task, and subjects in the second group learn more grad-
ually, achieving near-perfect accuracy only in the last
few learning blocks. Figure 7 shows that with the excep-
tion of the rapid achievement of accuracy in the first
block for the first group of subjects, ALCOVE is able to
model both of these patterns of learning.3

In a similar way, Figure 8 shows that the gradual in-
crease in accuracy, evident when the subjects are treated
as having no individual differences, is also better mod-
eled as coming from two distinct groups of subjects. The
first group exhibits almost no learning, and the second
learns at a moderate rate. Once again, ALCOVE is able to
model both of these patterns of learning. In fact, ALCOVE
has more difficulty accommodating the learning data re-
sulting from averaging across all of the subjects. What
the individual differences analysis developed here sug-
gests is that this inability may not indicate a fundamental
weakness in ALCOVE, but rather that the averaging pro-
cess involved in summarizing human performance has
masked important individual differences and corrupted
the underlying learning patterns in the original data.

Table 1 shows the maximum likelihood parameter val-
ues for each group of subjects in the model family with
the lowest BIC value for all four learning tasks. These pa-
rameter values are generally interpretable in terms of the

different learning behavior revealed by the individual dif-
ferences analysis. For example, for the position-relevant
filtration task, the first group of subjects has a greater
λw value than the second group, which is consistent with
their more rapid learning. For this task, both groups have
high ϕ values, which are consistent with their decisive-
ness (or “confidence”) in mapping evidence into re-
sponse probabilities. Both groups of subjects in the con-
densation A task, however, have much lower ϕ values, in
keeping with their inferior learning performance; in par-
ticular, the first group in this task, who basically failed
to learn, have a very low ϕ value. Other comparisons of
this type, both within and across tasks, generally have
meaningful and useful interpretations and highlight the

Figure 8. Change in accuracy across learning blocks for subjects (broken lines) and
ALCOVE (solid lines) for the one-group (All) and two-group (G1 and G2) model fam-
ilies on the condensation A task. Error bars on the subject data represent one stan-
dard error in each direction.

Table 1
Maximum Likelihood Parameter Values for Each Group in the

Model Family With the Lowest BIC Value for All of the
Position-Relevant (FP) and Height-Relevant (FH) Filtration,
Condensation A (CA), and Condensation B (CB) Category

Learning Data

Task Subject Group λa λw c ϕ
FP G1 0.16 1.39 18.0 2.28

G2 27.6 0.06 6.77 2.76
FH All 0.58 0.23 1.56 1.00
CA G1 1.14 0.47 2.53 0.27

G2 0.38 0.24 7.52 0.93
CB G1 0.34 0.24 0.80 0.40
G2 G2 0.07 0.16 3.59 1.14

Note—G1 and G2, Groups 1 and 2 in two-group model family; All,
one-group model family.
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ability of ALCOVE to represent psychologically impor-
tant variations in category learning through its free pa-
rameters, once individual differences are considered.

Discussion
There are at least two conclusions that can be drawn

from modeling individual differences in Kruschke’s
(1993) category learning data using ALCOVE. The first
is that strong evidence exists for large and meaningful
differences in the learning behavior of groups of subjects
for three out of the four tasks. Previous analyses, adopt-
ing the standard cognitive modeling practice of consid-
ering all of the subjects as a single group, have been in-
sensitive to these potentially important patterns of
variation. The second conclusion is that, for these data,
the basic ALCOVE model is generally able to capture
the individual differences in learning when asked to
model appropriate groups of subjects. It does so by ap-
plying different psychologically meaningful parameter-
izations to accommodate variations in learning behavior.
Although these points have been demonstrated previ-
ously for category learning models, including ALCOVE
(see, e.g., Erickson, 1999; Lewandowsky, Kalish, &
Griffiths, 2000; Nosofsky & Johansen, 2000; Nosofsky,
Palmeri, & McKinley, 1994; Treat, McFall, Viken, &
Kruschke, 2001; Yang & Lewandowsky, 2003), these
other studies have not inferred the groupings by apply-
ing rigorous model selection criteria. What the results
presented here demonstrate is that accounting for indi-
vidual differences using model families learned from
data has the potential to extend and increase the useful-
ness of existing cognitive models.

AN APPLICATION TO STIMULUS
REPRESENTATION

Background
Helm (1959) collected dissimilarity data for n � 10

color stimuli from 14 subjects, 2 of whom repeated the
experiment 4 weeks later. This gave a total of m � 16
symmetric dissimilarity matrices, D1, . . . , Dm, where
Dk � [dk

ij], with dk
ij denoting the similarity between the

ith and jth stimuli for the kth subject (or repeated subject).
Previous analyses (e.g., Borg & Groenen, 1997,

pp. 359–370) of these data have considered multidimen-
sional scaling representations, with a particular focus on
the differences between the 5 matrices for known color-
deficient subjects and the remaining 11 for color-normal
subjects. The presence of these fundamental individual
differences makes Helm’s (1959) data interesting.

Group Multidimensional Scaling Representation
In multidimensional scaling (see, e.g., Cox & Cox,

1994; Shepard, 1987), stimuli are represented as points
in a coordinate space, and their empirical dissimilarities
are modeled by the distances between the points, usually

according to one of the family of Minkowskian distance
metrics. Applying our group approach simply means that
collections of subjects use the same set of points to rep-
resent the stimuli. Formally, if the kth subject belongs to
the gth group and this group represents the stimuli by
points in an Sg-dimensional space, this subject’s repre-
sentation of the ith stimulus is the point pg

i � ( pg
i1, . . . ,

pg
iSg). This means that the empirical dissimilarity be-

tween the ith and jth stimuli for the kth subject, dk
ij, is

modeled by

where cg is a nonnegative constant. The value of r � 0
determines the metric, with r � 1 (city block) and r � 2
(Euclidean) being common choices, corresponding to
separable and integral stimuli, respectively (Garner,
1974; Shepard, 1991).

We follow Tenenbaum (1996; see also Lee, 2001; Lee
& Pope, 2003) in assuming that the empirical dissimi-
larities follow Gaussian distributions with common vari-
ance σ2. As has been argued by Lee (2001), the variance
quantifies the precision of the data and plays an impor-
tant role in determining the appropriate balance between
fit and complexity. The repeated measures from 2 sub-
jects in Helm’s (1959) study provide exactly the sort of
information that is needed to estimate this variance. Fol-
lowing Lee (2001, Equation 6), we calculated the within-
subjects standard error for each dissimilarity compari-
son and averaged these to give an overall estimate of
precision. These estimates were .0280 and .0206 for, re-
spectively, the color-normal and the color-deficient sub-
jects who provided repeated measures. Given the con-
sistency of these estimates, we averaged them to produce
a final estimate σ̂ � .0243 for the standard error of all
dissimilarity judgments for all subjects.

Model Evaluation
The dissimilarity matrices D1, . . . , Dm, together with

the ̂σ estimate of their precision, constitute the data. A par-
tition of the subjects into G groups selects a particular
group model Mgrp from the model family Mgrp. This
model is parameterized by the points representing each
group for each group, p1

1, . . . , pn
1, . . . , p1

G,
. . . , pn

G, together with the constants c1, . . . , c G and the
metric parameter r. The likelihood function relating the
data to the model is given by

Accordingly, up to a constant that does not depend on the
model being considered, the (negative) log likelihood
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function is simply the sum-squared error between each
dissimilarity datum and its modeled value, scaled by the
precision of the data, as follows:

Since the data have m lots of n(n � 1)/2 dissimilarities,
the BIC is given by

where d̂ g*
ij now represents the best modeled value of the

similarity between the ith and jth stimuli for subjects in
group g, and P is the total number of coordinate location
parameters. The representation of the gth group contributes
about n(Sg � 1) � 1 parameters,4 and P simply sums these
parameter counts across all group representations.

Model Fitting
For a particular group model, where the partitioning

of subjects into groups is known and a choice of metric
r is made, finding multidimensional scaling representa-
tions is reasonably straightforward. For G groups, it in-
volves G independent standard multidimensional scaling
optimizations. For this, we used the obvious extension of
the approach described in Lee (2001), using the BIC to
determine the appropriate number of dimensions, but we
fit the model to each subject in the group separately
rather than to their averaged data. This is an important
distinction, because it means that we did not average the
data within groups, which would corrupt the data for the
reasons described by Estes (1956). Rather, the same pa-
rameterization was applied to the raw data of every sub-
ject in the same group.5

Formally, for the gth group we found the best points to
represent each stimulus and the additive constant

using a Levenberg–Marquardt approach to continuous
optimization (see, e.g., More, 1977). This was done sep-
arately for dimensionalities Sg � 1, 2, . . . , up to a max-
imum chosen to be sufficiently large to ensure that the
best dimensionality according to

has been found, where y is the number of subjects in the
gth group.

For the combinatorial optimization problem of find-
ing the best partitioning of subjects into groups, we used
a simple greedy-search algorithm that is similar in spirit
to the method we used in the category learning applica-

tion. In essence, it starts with a “seed” partition, finds
multidimensional scaling representation for each group
using the approach described above, and sums their BIC
values. It then moves a subject, chosen at random, from
one partition to another that is also chosen at random.
Representations are found for this new partition, and the
overall BIC is evaluated. If the change leads to an im-
provement (i.e., a decrease) in the BIC, it is accepted; oth-
erwise, it is rejected. This process continues until a large
fixed number of changes have been tried unsuccessfully.
We applied this algorithm multiple times, using different
seeding partitions, and chose the final group model to be
the one with the best BIC of any of the results.

Results
In fitting the group model to Helm’s (1959) data, we

made the metric assumption r � 2, because color is usu-
ally regarded as an integral stimulus domain. The results
under this assumption are summarized in Figure 9. The
top left panel shows the change in the best BIC value
under the assumptions that there are one, two, or three
different groups of subjects. It is clear that a two-group
model is preferred, since it provides a much better ac-
count of the data than do one-group models, which as-
sume no individual differences. To explore this finding,
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Figure 9. The results of applying the group approach to Helm’s
(1959) color data. The top left panel shows the BIC for different
numbers of subject groups. The top right panel shows the best
one-group multidimensional scaling representation. The bottom
left and bottom right panels show the best two-group multidi-
mensional scaling representations. The color stimuli have the ab-
breviated labels “rp” � reddish purple, “ro” � reddish orange,
“y” � yellow, “gy1” � greenish yellow 1, “gy2” � greenish yel-
low 2, “g” � green, “b” � blue, “pb” � purple-blue, “p1” � pur-
ple 1, and “p2” � purple 2.
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the top right panel shows the best multidimensional scal-
ing representation found under the one-group assump-
tion. This representation resembles the color “circle” or
“horseshoe” that has repeatedly been found in multidi-
mensional scaling analyses of color stimuli (see, e.g.,
Shepard, 1980) but appears to be degraded.

The bottom left and bottom right panels of Figure 9
show the representations for the subject groups in the
best two-group model. This best partitioning corre-
sponds exactly to the known distinction between color-
normal and color-deficient subjects. The color-normal
representation shows a color circle without the degrada-
tion evident in the one-group representation. The color-
deficient representation also shows a color circle, but
with significant distortion corresponding to a reduction
in the red–green axis, consistent with deuteranopy.

Discussion
In light of the two-group representations, the source of

the degradation in the best multidimensional scaling rep-
resentation of the aggregated data is clear: There are two
groups of subjects, with large and meaningful individual
differences warranting separate stimulus representations.
The group approach is able to identify these differences
in an automated way, using complexity-sensitive model
selection to determine the appropriate number of groups,
optimize the assignment of individuals to these groups,
and find the best multidimensional scaling representa-
tions for each group.

It is worth emphasizing that these capabilities extend
well beyond those of alternative “individual differences”
extensions of multidimensional scaling, such as IND-
SCAL (see, e.g., Carroll & Chang, 1970) and INDCLUS
(e.g., Carroll & Arabie, 1983). These models accommo-
date individual variation by allowing each subject to
weight the axes of an underlying representational space
in different ways. They do not model groups of subjects,
although it is possible to use the individual weights in a
heuristic way to address this possibility. More funda-
mentally, they do not allow for the possibility that dif-
ferent groups of subjects might use fundamentally dif-
ferent representations. The present approach allows for
different groups to use representations that are not related
to one another by simple weighting transformations, and
it is able to accommodate the case of different groups
using spaces with different dimensionalities. If, for exam-
ple, the color-deficient subjects in Helm’s (1959) study had
been severely enough impaired to eliminate the red–green
distinction, our approach would have been able to find a
one-dimensional representation for that group of subjects,
while retaining the two-dimensional representation for the
color-normal subjects.

On the other hand, the comparison with INDSCAL-
type methods highlights a general limitation of the group
approach as it currently stands. In the individual differ-
ences modeling presented here, every parameter of a
cognitive model is learned for each group of subjects.

When the differences in behavior between groups of sub-
jects require each parameter to be changed, this flexibil-
ity is necessary. It seems quite possible, however, that
there will be situations in which the differences between
groups of subjects relate only to a subset of the param-
eters. For example, if groups of subjects have spatial rep-
resentations that differ only through simple weighted
transformations, an INDSCAL model will be more parsi-
monious, because it will not need to respecify coordinate
locations for every group. Of course, there is nothing in
our conceptual framework preventing the consideration of
individual differences models in which different groups
vary only in subsets of their parameters. Reliance on so-
phisticated model selection methods could ensure that the
relative simplicity of these more constrained accounts
would be detected and would be preferred when appro-
priate. The only extension of the present approach that
would be required would be the ability to consider a richer
class of model families that would allow for variation in
subsets of parameters across groups. This promises to be
a fruitful area for future research.

GENERAL DISCUSSION

The group-based modeling approach we have pre-
sented here is designed to account for individual differ-
ences in cognition. There are alternative approaches that
accommodate individual differences by specifying dis-
tributions of basic model parameters and then learning
the “hyperparameters” of these distributions from data
(see, e.g., Peruggia, Van Zandt, & Chen, 2002; Rouder &
Lu, 2005; Rouder, Sun, Speckman, Lu, & Zhou, 2003).
These models are often developed within a hierarchical
Bayesian modeling framework. This has proved to be an
informative and useful approach and is likely to be
strengthened and extended by current research activity.
We view our approach as complementary. Rather than
modeling individual differences as smooth (typically uni-
modal) variations in basic parameters, we are interested in
cases in which different groups of subjects use funda-
mentally different basic parameter values, so it makes
sense to partition the parameter space. It could be argued
that these sorts of individual differences are more basic or
important than those that involve minor parametric varia-
tion. In any case, we believe that the category learning and
color perception analyses presented here show the useful-
ness of our approach.

Ultimately, of course, both approaches could be rec-
onciled by using sufficiently flexible distributional
forms in a hierarchical approach. At a conceptual level,
we demonstrate how this could be done in Figure 10. The
bottom-most panel shows some hypothetical data mea-
suring the decrease in some aspect of cognitive perfor-
mance over time. Each data curve corresponds to a sin-
gle subject, and there are many subjects with similar
performance whose performance deteriorates slowly
over time. Suppose we consider individual differences
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by applying a simple cognitive model with a single decay
rate parameter θ, so that larger values of θ correspond to
more rapid deterioration in performance.

The top left panel of Figure 10 indicates the results of
assuming a unimodal distribution over this parameter.
Most of the density is allocated to the small parameter
values, because most subjects show slow deterioration.
The distribution also extends to larger values of θ, how-
ever, because some subjects show much more rapid de-
terioration. The problem with this representation is that
it fails to capture the obvious between-groups individual
difference in human performance, because it cannot use
multimodal distributions to describe the variation in the
parameter across individuals. The top center panel shows
the results of partitioning subjects into two groups, in the
way considered here. The two partitions correspond to a
sharply peaked multimodal distribution for the param-
eters. This approach does capture the between-groups
difference, which seems to be the most important regu-
larity in the data. It fails, however, to capture the second-
order effects of individual variation within the groups.
The top right panel characterizes the general approach
that combines the best features of the unimodal and par-
titioning approaches. It allows for multimodal distribu-
tions, capturing the “major” between-groups variation as
well as the “minor” within-groups variation. Developing
this general approach within a hierarchical Bayesian
framework is a priority for future research.

One of the weaknesses of the category learning and
color perception analyses presented here is the reliance
on the BIC to compare different competing individual
differences models. Although the BIC is conceptually
and computationally straightforward, it is insensitive to
the complexity effects arising from the functional form

of parametric interaction within the individual models
(Myung & Pitt, 1997). This is a potentially important
shortcoming when fundamentally different models are
used to explain performance for different subject groups.
There are, for example, many competing models of re-
tention that use two parameters (Rubin & Wenzel, 1996),
and these models have different complexities that the
BIC is unable to distinguish. The obvious remedy for
this problem is to use more sophisticated model selec-
tion criteria that are sensitive to all of the components of
model complexity. These include measures such as the
stochastic complexity criterion (Rissanen, 1996; see also
Myung, Balasubramanian, & Pitt, 2000) and normalized
maximum likelihood (Rissanen, 2001). For cognitive
models that resist the formal analysis needed to derive
these measures, an alternative is to use numerical meth-
ods, such as Markov chain Monte Carlo (see, e.g., Gilks,
Richardson, & Spiegelhalter, 1996) to approximate the
Bayesian quantities that compare model families.

A final intriguing possibility for future research, and
a natural extension of the approach presented here, in-
volves using fundamentally different models to capture
between-subjects variation rather than relying solely on
different parameters within the same basic model. In cat-
egory learning, for example, it may make sense to model
some subject groups using ALCOVE or its descendants
but to apply a very different category learning model to
others, such as the fast and frugal account provided by
categorization by elimination (Berretty et al., 1999). For
stimulus representation, some groups of subjects could
be modeled using a featural representation and others
with a dimensional representation. Other cognitive mod-
eling areas, not considered here, offer similar possibili-
ties. In memory retention, for example, one group of

Figure 10. Three classes of distributions over model parameters for
modeling individual differences in a hierarchical Bayesian framework.
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subjects could be modeled using a power function,
whereas another group could be modeled using an expo-
nential decay function.

If tackled successfully, these sorts of extensions to the
modeling approach presented here would lead to a very
powerful approach for modeling individual differences
in cognition. Our group approach to cognitive modeling
is a more general one than approaches that average or ag-
gregate data, and thus assume that there are no individ-
ual differences. Ours is a more succinct approach than
those that use subject-by-subject analysis, and it offers
advantages in terms of the key modeling goals of expla-
nation and prediction. Our evaluation of the group ap-
proach on the simulated binary experiment provides
clear evidence of its ability to explain important cogni-
tive parameters and predict cognitive performance. Our
practical demonstrations, using multiple ALCOVE mod-
els to capture differences in category learning and mul-
tiple MDS representations to capture individual differ-
ences in color perception, both provide concrete examples
of its usefulness. They show how using model families
and relying on principled model selection criteria can be
used to develop detailed and interpretable accounts of
both how people are cognitively the same and how they
are different.
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NOTES

1. We thank Robert Nosofsky for suggesting this framework for
demonstrating our theoretical ideas.

2. One of the attractions of Kruschke’s (1993) study is that the same
parameterization was used to account for all four tasks, demonstrating
that differences in the category structures accounted for much of the
variation in human performance. We chose to consider each task sepa-
rately because this approach provides a clearer demonstration of the in-
dividual differences we are attempting to model.

3. It is possible that the application of one of ALCOVE’s descendants,
such as RASHNL (Kruschke & Johansen, 1999) or the unified mixture
of experts model (Kruschke, 2001), all of which emphasize rule-oriented
learning and incorporate a rapid attention-shifting capability (Kruschke,
1996), could overcome the deficiency.

4. The number of free parameters in a multidimensional scaling rep-
resentation actually depends on the nature of the metric space and its in-
variances. For the metric space possibilities we are considering, how-
ever, exact specifications of the number of parameters would only make
negligible differences in comparison with the inaccuracy inherent in the
BIC approximation itself. The choice n(Sg – 1) � 1 is a “worst case”
value that gives an upper limit on the number of free parameters, con-
sistent with the conservatism of the BIC.

5. This approach is a little different from the one used in the simulation
study and the category learning example, where data from subjects in the
same group were aggregated and modeled using the same parameteriza-
tion. It would be possible, in these earlier cases, to consider an alterna-
tive approach in which the data for each subject in a group were mod-
eled separately using the same parameterization.
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