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Abstract

One particularly useful but under-explored area for applying model selection in psychology is in basic data analysis. Many problems of

deciding whether data have ‘‘significant differences’’ can profitably be viewed as model selection problems. We consider significance

testing, Bayesian and minimum description length (MDL) model selection on a common data analysis problem known as the rate

problem. In the rate problem, the question is whether or not the underlying rate of some phenomenon is the same in two populations,

based on finite samples from each population that count the number of ‘‘successes’’ from the total number of observations. We develop

optimal Bayesian and MDL statistical criteria for making this decision, and compare their performance to the standard significance

testing approach. A series of Monte-Carlo evaluations, using different realistic assumptions about the availability of data in rate

problems, show that the Bayesian and MDL criteria perform extremely similarly, and perform at least as well as the significance testing

approach.

r 2005 Elsevier Inc. All rights reserved.
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1. Model selection for the rate problem

Recent psychological interest in modern model selection
has largely focused on the comparison and evaluation of
cognitive models (e.g., Lee, 2004; Myung & Pitt, 1997;
Navarro & Lee, 2004; Pitt, Myung, & Zhang, 2002). This is
a worthwhile pursuit, because improving cognitive models
is central to progress in psychology: models provide the
formal expressions of theoretical ideas that can be
evaluated against empirical observation. It is also true,
however, that many routine data analysis problems in
experimental psychology can profitably be viewed as model
selection problems. Deciding whether data have ‘‘signifi-
cant differences’’ can be conceived as deciding whether a
simple model that assumes no differences is adequate, or
whether a more complicated model allowing for differences
is required. The basic goal—making inferences under
uncertainty from limited and noisy data—is the same as
e front matter r 2005 Elsevier Inc. All rights reserved.
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for choosing between cognitive models. The differences are
mostly just ones of degree. The models involved in data
analysis usually have a smaller number of parameters than
cognitive models, and generally have a simpler relationship
to the observed data, often taking the form of well known
statistical distributions.
In this paper, we compare the significance testing

approach widely used in psychology with Bayesian and
minimum description length (MDL) approaches for a data
analysis problem known as the rate problem. In the rate
problem, the question is whether or not the underlying rate
of some observable phenomenon is the same in two
populations, given a sample from each. Formally, if a
phenomenon occurs k1 times out of n1 observations in one
sample, and k2 times out of n2 observations in another, the
rate problem is to determine whether the underlying rate of
the phenomenon occurring is the same in both populations.
The rate problem can be viewed as a model (or hypothesis)
selection problem between a ‘‘same rate’’ and a ‘‘different
rate’’ model. The ‘‘same rate’’ model Ms assumes that both
populations have the same underlying rate y. The
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‘‘different rates’’ model Md assumes that the first popula-
tion has rate y1 while the second population has a
potentially different rate y2.

There are many important real-world problems where
the ability to make good statistical decisions for rate
problems is (or historically has been) fundamental. For
example, early investigations into the relationship between
smoking and lung cancer (e.g., Wynder, 1954) relied on
counts of non-smokers in samples of people with and
without lung cancer. The Salk polio field vaccine trials
relied on a comparison of the rates of evidence for the
disease in large treatment and control groups (e.g., Francis
et al., 1955). Part of the debate over the effectiveness of
capital punishment examines whether there are differences
in homicide rates for jurisdictions that do and do not have
the death penalty (e.g., Sellin, 1980). Decisions in legal
cases alleging discrimination can hinge on whether or not
there are different rates of promotion for different
demographic groups (e.g., DeGroot, Fienberg, & Kaldane,
1986, p. 9). More mundanely, rate problems occur in
comparing the failure rates of different student groups, the
levels of response to different advertising campaigns, the
relative preferences for two products, and a range of other
medical, biological, behavioral, social, and other issues in
the empirical sciences.

In this paper, we develop significance testing, Bayesian
and MDL criteria for choosing between the ‘‘same rate’’
and ‘‘different rates’’ models. After examining differences
in the way the three criteria make decisions, we compare
their performance in a range of realistic situations,
including fixed sample sizes, sequential data gathering
scenarios, and in cases where the data are generated by
unknown processes. Based on these evaluations, we
conclude by making some recommendations about the
relative merits of the three criteria for rate problems, and
discuss the implications of our results for data analysis in
psychology more broadly.

2. Three decision criteria

2.1. Significance testing approach

2.1.1. Model selection theory

The significance testing approach is based on a null
hypothesis that explains differences in observations by
chance variation. Statistical decisions are made by measur-
ing, via a test statistic, the probability that differences as
extreme or more extreme than those observed would arise
under the sampling distributions prescribed by the null
hypothesis. If this probability is smaller than some fixed
critical value a, the null hypothesis is rejected in favor of a
(possibly unstated) alternative hypothesis that assumes
some substantive account of the observed differences.

2.1.2. Application to the rate problem

The significance testing approach to the rate problem is
to treat the ‘‘same rate’’ model as the null hypothesis, since
it assumes there is no difference between the populations
being sampled. The most commonly used test statistic
(Fleiss, 1981, pp. 29–30) uses frequentist maximum like-
lihood estimators k1=n1 and k2=n2 for the population rates,
and a Gaussian sampling distribution with a pooled
variance estimate, as follows:

Z ¼
k1=n1 � k2=n2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1=n1 þ 1=n2Þðk1 þ k2Þ=ðn1 þ n2Þð1� ðk1 þ k2Þ=ðn1 þ n2ÞÞ
p .

2.2. Bayesian approach

2.2.1. Model selection theory

Bayesian statistics differs from the significance testing
approach by using probability distributions, rather than
estimators, to represent uncertainty. This means that the
Bayesian approach to model selection is based on the
posterior odds, given by

pðM1jDÞ

pðM2jDÞ
¼

pðDjM1Þ

pðDjM2Þ

pðM1Þ

pðM2Þ
,

where D are the data and M1 and M2 are competing
models. The ratio pðM1Þ=pðM2Þ gives the prior odds of the
two models, and the ratio pðDjM1Þ=pðDjM2Þ, which is
usually called the Bayes Factor, gives the relative evidence
that the data provide for the models. Together these give
the posterior odds for models based on the available data,
and M1 or M2 is chosen depending on whether these odds
are greater than or less than one.
For parameterized models, the Bayes Factor involves the

marginal probability

pðDjMÞ ¼

Z
pðDjy;MÞpðyjMÞdy,

and so requires the prior distribution of the parameters
under the model. Under an ‘‘objective’’ Bayesian approach,
the natural initial representation for Bayesian inference is
one corresponding to complete ignorance. That is, the
starting point of an analysis is one where nothing is known,
and analysis proceeds by incorporating information as it
becomes available (see Lee & Wagenmakers, 2005, for an
overview).
The appropriateness of various methods for determining

‘‘non-informative’’ priors has been a matter of considerable
debate (e.g., Kass & Wasserman, 1996). We follow Jaynes
(2003, Chapter 12) in adopting transformational invariance
methods for defining prior distributions corresponding to
complete ignorance. This method relies on using the
information inherent in the statement of a problem to
constrain the choice of prior distribution. Intuitively, the
idea is to consider ways in which a problem could be
restated, so that it remains fundamentally the same
problem, but is expressed in a different formal way. Prior
distributions must necessarily be invariant under these
transformations, since otherwise different ways of stating
the same problem would lead to different inferences being
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drawn. In general, the requirement of invariance from
information inherent in a problem provides strong
constraints on the choice of prior distributions, and often
determines them uniquely.

2.2.2. Application to the rate problem

For the rate problem, complete ignorance about the rate
of success is expressed by the prior distribution known as
Haldane’s prior. A rigorous derivation of this prior using
transformational invariance is given by Jaynes (2003, pp.
382–385). The form of the prior arises because, consistent
with the assumption of complete ignorance, it is not known
whether successes and failures can both actually be
observed. This leads to the extreme possibilities, with
success rates of zero or one, being more probable, while
still allowing for the possibility that the true rate is
somewhere between zero and one. If, however, we do know
that both success and failure are possible, Jaynes (2003, p.
385) shows that this additional piece of information leads,
using maximum entropy principles, to the uniform
distribution being the only possible objective prior. We
think the second case is more realistic for most rate
problems (i.e., most studies of rates already know both
outcomes are possible), and so we use uniform priors on
rate parameters throughout this paper.1

The ‘‘same rate’’ model has likelihood function

pðk1; n1; k2; n2jy;MsÞ

¼
n1

k1

� �
yk1 ð1� yÞn1�k1

n2

k2

� �
yk2 ð1� yÞn2�k2 ,

and, with the uniform prior, the marginal probability is

pðk1; n1; k2; n2jMsÞ

¼

Z 1

0

n1

k1

� �
yk1ð1� yÞn1�k1

n2

k2

� �
yk2ð1� yÞn2�k2 dy

¼

n1

k1

 !
n2

k2

 !

n1 þ n2

k1 þ k2

 ! 1

n1 þ n2 þ 1
.

1We are aware some readers may be concerned that the uniform prior

we use is not reparameterization invariant. It is true that, for some

modeling problems, reparameterization invariance is a fundamental

requirement. These are problems where the statistical model is essentially

a ‘‘black box’’, and various parameterizations are possible to provide

different (but equivalent) formalisms for indexing the distributions over

data that constitute the model. The rate problem we are considering is not

of this type. Our problem contains additional information about the

parameters, by identifying them as rates that have specific quantitative

meaning. It is the invariances associated with this meaning that Jaynes

(2003) uses to derive Haldane and uniform priors for rate parameters. Of

course, it would be possible to redo our analyses using Jeffreys’ priors,

which would take the form of Betaðyj0:5; 0:5Þ / 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1� yÞ

p
distribu-

tions, and achieve reparameterization invariance. For even a small number

of data, the similarity of the Jeffreys’ priors and the uniform priors we use

means the results would be almost identical. But, an analysis based solely

on reparameterization invariance would be sub-optimal, because it would

ignore some of the available information.
The ‘‘different rates’’ model has likelihood function

pðk1; n1; k2; n2jy1; y2;MdÞ

¼
n1

k1

� �
yk1
1 ð1� y1Þ

n1�k1
n2

k2

� �
yk2
2 ð1� y2Þ

n2�k2 ,

with the marginal probability

pðk1; n1; k2; n2jMdÞ

¼

Z 1

0

Z 1

0

n1

k1

� �
yk1
1 ð1� y1Þ

n1�k1

�
n2

k2

� �
yk2
2 ð1� y2Þ

n2�k2 dy1 dy2

¼
n1

k1

� �
n2

k2

� �Z 1

0

Z 1

0

yk1
1 ð1� y1Þ

n1�k1

� yk2
2 ð1� y2Þ

n2�k2 dy1 dy2

¼
1

ðn1 þ 1Þðn2 þ 1Þ
.

The Bayes Factor comparing the models is

B ¼

n1

k1

 !
n2

k2

 !

n1 þ n2

k1 þ k2

 ! ðn1 þ 1Þðn2 þ 1Þ

n1 þ n2 þ 1
,

and is equal to the posterior odds under the assumption of
equal prior probabilities for the models. This ratio provides
a Bayes criterion for making decisions with rate problems,
choosing the ‘‘same rate’’ model when it is greater than
one, and the ‘‘different rates’’ model when it is less than
one.

2.3. MDL approach

2.3.1. Model selection theory

The MDL approach views models as fixed codes, and
chooses the one that best compresses the data. A series of
successively more exact and general stochastic complexity
criteria that implement this principle have been developed
by Rissanen (1978, 1987, 1996, 2001). The most recent of
these criteria, the normalized maximum likelihood (NML),
solves the minimax problem

inf
q

sup
g2G

Eg ln
pðDjy�ðDÞ;MÞ

qðDÞ

of finding the code that has the minimum worst-case
increase in coding the data over the optimal code length.
Here pðDjy�ðDÞ;MÞ is the probability of the data under the
maximum likelihood estimate of the model parameters, qð�Þ

is an ideal code, and G ranges over all distributions2 over D

of the given sample size n.
2This means that G includes, for example, the Markov generating

processes consider later, not just the set of all distributions corresponding

to the ‘‘same rate’’ model. We are grateful to a reviewer for making this

point clear.
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The NML solution to the minimax problem, given by

NML ¼
pðDjy�ðDÞ;MÞR

y�ðD0Þ2O pðD0jy�ðD0Þ;MÞdD0
,

normalizes the maximum likelihood of the observed data D

by the maximum likelihood of the model over all possible
data D0 that are indexed by the parameter space O under
y�ð�Þ. For model selection, the model with the maximal
NML value is chosen.

2.3.2. Application to the rate problem

The partial derivative of the likelihood function for the
‘‘same rate’’ model, with respect to the rate parameter y, is

q ln pði1; n1; i2; n2jyÞ
qy

¼
i1 þ i2

y
�

n1 þ n2 � i1 � i2

1� y
,

and so the maximum likelihood function is given by

y�ði1; i2Þ ¼
i1 þ i2

n1 þ n2
.

This means the NML for the ‘‘same rate’’ model is
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pðk1; n1; k2; n2jy
�
ði1; i2Þ;MsÞ

¼

n1
k1

� �
n2
k2

� �
ððk1 þ k2Þ=ðn1 þ n2ÞÞ

k1þk2ð1� ðk1 þ k2=n1 þ n2ÞÞ
n1þn2�k1�k2

Pn1
i1¼0

Pn2
i2¼0

n1
i1

� �
n2
i2

� �
ðði1 þ i2Þ=ðn1 þ n2ÞÞ

i1þi2ð1� ði1 þ i2=n1 þ n2ÞÞ
n1þn2�i1�i2

.

For the ‘‘different rates’’ model, the maximum likelihood
parameter estimates are

y�1ði1; i2Þ ¼
i1

n1
; y�2ði1; i2Þ ¼

i2

n2
,

and so the NML for the ‘‘different rates’’ model is

pðk1; n1; k2; n2jy�1ðk1; k2Þ; y�2ðk1; k2Þ;MdÞPn1
i1¼0

Pn2
i2¼0

pðk1; n1; k2; n2jy�1ði1; i2Þy
�
2ði1; i2Þ;MdÞ

¼

n1
k1

� �
ðk1=n1Þ

k1ð1� ðk1=n1ÞÞ
n1�k1 n2

k2

� �
ðk2=n2Þ

k2 ð1� ðk2=n2ÞÞ
n2�k2

Pn1
i1¼0

Pn2
i2¼0

n1
i1

� �
ði1=n1Þ

i1ð1� ði1=n1ÞÞ
n1�i1 n2

i2

� �
ði2=n2Þ

i2ð1� ði2=n2ÞÞ
n2�i2

.

To make a decision for the rate problem, the ‘‘same rate’’
or ‘‘different rates’’ model is chosen according to which has
the greater NML value.
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Fig. 1. The decision boundaries for the Bayes, NML and significance

testing criteria, for all possible counts k1 and k2 in samples of size n1 ¼ 20

and n2 ¼ 10, respectively.
3. Comparison

To compare the significance testing, Bayesian, and MDL
approaches to the rate problem, we restrict ourselves to
choosing one of the models under the assumption that both
are a priori equally likely. We also assume that the utility of
decision making equally weights both correct and incorrect
decisions for both models. For the standard Z statistic, we
consider critical values corresponding to the widely used a
levels of 0.01, 0.05, and 0.10.
Fig. 1 shows the decision boundaries of the criteria for
all possible counts k1 and k2 in samples of size n1 ¼ 20 and
n2 ¼ 10, respectively. Every point correspond to a possible
pair of sample counts, and the decision bounds for the
criteria show their model selection behavior. Counts falling
inside the decision bound of a criterion result in the ‘‘same
rate’’ model being chosen; counts falling outside result in
the ‘‘different rates’’ model being chosen. Each of the four
panels compares the Bayes criterion decision bound with
one other criterion. In this way, the Bayes criterion
provides a visual standard reference to compare all of the
decision bounds.
Fig. 1 shows that the Bayes and NML criteria agree for

all but 14 of the possible decisions, with the NML being
more conservative in choosing the ‘‘same model rate’’ in 12
of these cases. The significance testing approach, on the
other hand, is much more conservative than the Bayes and
NML criteria when a ¼ 0:01, but makes progressively more
similar decisions as a increases to 0.05 and 0.10.
Fig. 2 shows the decision boundaries for the ‘‘same rate’’

criteria for all possible counts k1 and k2 in larger samples
of size n1 ¼ 100 and n2 ¼ 50, respectively. The Bayes and
NML criteria now make extremely similar decisions that
cannot be distinguished visually. The significance testing
approach is now more conservative when a ¼ 0:01, very
similar when a ¼ 0:05 and less conservative when a ¼ 0:10.
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Fig. 2. The decision boundaries for the Bayes, NML and significance

testing criteria, for all possible counts k1 and k2 in samples of size n1 ¼ 100

and n2 ¼ 50, respectively.
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Fig. 3. Accuracy of Bayesian, NML, and significance testing decision

criteria for 16 rate problems. The four panels (top to bottom) correspond

to the cases where the first sample has n1 ¼ 20, 40, 100, and 1000

observations. Within each panel, four different possibilities for the number

of observations in the second sample n2 are shown.

4Ensuring the rates differed by at least 0.1 was intended to make them

‘‘meaningfully’’ different, in the context of scientific modeling. Intuitively,

for example, if two phenomena occur with underlying rates of 0.3 and 0.4,

it is important to identify this difference to understand the phenomena and

make useful predictions. If, on the other hand, the two rates are 0.31 and

0.32, the same model could be regarded as more useful than the different

model. The choice of 0.1 was a subjective one, which seemed to us to

capture a minimum difference that would be meaningful for rate

problems.
5Advocates of the significance testing approach might argue that more

exact tests ought to be applied for the case n1 ¼ 20, n2 ¼ 5. This is
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Together, the results in Figs. 1 and 2 suggest two
important conclusions. The first is that the Bayes and
NML criteria make very similar decisions, especially as the
sample sizes increase. The second is that the relationship
between the significance testing approach and the Bayes
and NML criteria depends on an interaction between the
critical value and the sample sizes. In particular, the Bayes
and NML criteria make decisions consistent with large
critical values for small sample sizes, but with progressively
smaller critical values for larger sample sizes.

4. Evaluation

Given the existence of differences in the decisions made
by the Bayes and NML criteria on the one hand, and the
significance testing criterion at different critical levels on
the other hand, we undertook a series of evaluations as to
which makes more accurate decisions.

4.1. Evaluation with fixed sample sizes

The first evaluation examines the accuracy of the criteria
in a range of fixed sample size pairings. This evaluation
corresponds to situations where limited data can be
collected, and so assumes the largest possible samples are
available for analysis.

Fig. 3 summarizes the accuracy of the criteria on 16 rate
problems with different sample sizes. The first sample has a
size of 20, 40, 100 or 1000 observations, while the second
sample has a size beginning at one quarter this number of
observations and increasing to the same size as the first
sample. For each of these possible combinations, 105

trials,3 giving data for both samples, were generated as
3This number of trials is large enough that standard error bars would be

indistinguishable visually from the mean accuracies shown in Fig. 3.
follows. On ‘‘same rate’’ trials, a rate parameter was
randomly chosen from the uniform distribution on the
interval (0,1). Two independent counts were then drawn
from a binomial distribution with this rate parameter,
using the appropriate sample size as the number parameter.
On ‘‘different rates’’ trials, two different rate parameters
were independently chosen, under the restriction that they
differed by at least 0.1, and counts were generated from the
appropriate binomial distributions.4 For both ‘‘same rate’’
and ‘‘different rates’’ trials, each of the model selection
criteria was applied to the data, and was evaluated as being
either correct or incorrect. Whether a individual trial was a
‘‘same rate’’ or ‘‘different rates’’ trial was independently
and randomly determined, with equal probability given to
both possibilities.
Fig. 3 shows the mean accuracy of all criteria, for all of

the rate problems considered. It can be seen that the Bayes
and NML criteria are approximately equally accurate for
all problems, and that they often more accurate, and never
less accurate, than the significance testing approach at its
various a values. The superiority of the Bayes and NML
criteria is particularly evident for small sample sizes.5 The
other result worth noting in Fig. 3 is that the critical level
probably wise, but raises the problem of deciding when to change method,

and highlights that the Bayes and NML criteria have the advantage of

being applicable for all sample sizes.
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corresponding to the greatest accuracy for the significance
testing approach varies across the problems. For small
sample sizes, the choice a ¼ 0:10 gives the greatest
accuracy, but for larger sample sizes, the choice a ¼ 0:01
leads to better performance. In the context of the earlier
comparisons in Figs. 1 and 2, this suggests the greatest
significance testing accuracy is achieved by setting critical
levels that align its decision boundaries with those of the
Bayes and NML criteria.
4.2. Evaluation with increasing number of data

Our second evaluation examines the pattern of increase
in accuracy of the criteria as the number of data available
increases. This evaluation corresponds to situations where
additional data are available, but may require additional
resources, and so the interest is in the trade-off between
accuracy and the number of data.

Fig. 4 summarizes the results of evaluating the accuracy
of all criteria with increasing sample sizes across 105

independent trials. As before, each trial was independently
and randomly chosen to be either a ‘‘same rate’’ or
‘‘different rates’’ trial with equal probability. On ‘‘same
rate’’ trials, a rate parameter for both samples was
randomly chosen from the uniform distribution on the
interval (0,1). On ‘‘different rates’’ trials, two different rate
parameters were chosen independently, again under the
restriction that differed by at least 0.1. A datum was then
generated using the Bernoulli distribution with the first rate
parameter. The currently available data, corresponding to
counts of successes k1 and k2 from total observations n1

and n2 for both populations, were then used to make a
decision by all of the criteria, and the accuracy of this
decision was evaluated. An additional datum was then
generated from the second population, all of the available
data used to make decisions, and those decisions evaluated.
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Fig. 4. The accuracy of Bayesian, NML, and significance testing decision

criteria for rate problems as a function of the number of data available.
This process was iterated 250 times, giving a total of 500
data at the end of each trial.
Fig. 4 shows the pattern in change in mean accuracy for

each of the criteria, as a function of the number of
available data. As before, the performance of the Bayes
criterion is shown in all four panels to provide a
standardized reference for the other four curves. It can be
seen that, once again, the Bayes and NML criteria perform
extremely similarly. In addition, these criteria are always
more accurate than the significance testing approach for
some range of the number of data. They are more accurate
than the significance testing approach with a ¼ 0:01 and
0:05 when few data are available, and more accurate than
significance testing criteria with a ¼ 0:05 and 0:10 when
many data are available.

4.3. Evaluation against significance testing performance

measures

A valid criticism of the preceding evaluations is that they
rely on a ‘proportion correct’ accuracy measure that
significance testing methods do not seek to optimize.
Rather, significance testing methods are designed to
minimize so-called ‘‘Type II’’ errors (i.e., the probability
of retaining the null when it is false) at an a criterion that
explicitly fixes Type I errors (i.e., the probability of
rejecting the null when it is true) at a constant value.
To address this criticism, we compared the Types I and

II errors for the Bayes and significance testing criteria on
four different rate problems with fixed sample sizes. We
considered every possible sample that could be observed
for each problem, and calculated the probability of each of
these data sets under the ‘‘same rate’’ and ‘‘different rates’’
modeling assumptions made previously. We then applied
both the significance testing and Bayesian criteria in the
way they could be applied in practice.
For significance testing, we considered fixed a values of

0.001, 0.01, 0.05, and 0.10, which correspond to those most
commonly used in the psychological literature. For the
Bayesian criterion, we considered progressively more
stringent levels of evidence for deciding that the ‘‘different
rates’’ model should be inferred, which provides the
Bayesian analogue of setting progressively more conserva-
tive a values. Following the well-known suggested stan-
dards for Bayes Factors proposed by Kass and Raftery
(1995, p. 777), we considered decision thresholds on the
(natural) log-odds scale at 0, 2, 6 and 10, corresponding to
increasingly strong evidence being required before deciding
the rates are different.
The quality of the decisions made by both of these

approaches, for the problems we considered, is shown in
Fig. 5. In each case, the downward pointing triangles
correspond, from left to right, to 0.001, 0.01, 0.05 and 0.10
significance testing levels, while the upward pointing
triangles correspond, from left to right, to the application
of the 10, 6, 2 and 0 Bayesian levels. Also shown in Fig. 5
by the two lines is the performance that would be achieved
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by applying other a levels for significance testing, or other
evidence levels for Bayesian inference. It can be seen that,
for all of the problems, the performance of the two criteria
is virtually identical.

4.4. Evaluation against data generated from different

distributions

Although our use of uniform priors in the Bayesian
inference is justified by the available information, it is true
that, in practice, it is unlikely that observed data will meet
these distributional assumptions. In this sense, the preced-
ing evaluations, by drawing simulated data from uniform
distributions over rates, could be argued to favor the
Bayesian criterion.

To address this criticism, we repeated the first two
evaluations drawing simulated data from different dis-
tributions. In particular, we drew rates from the general
Beta distribution Betaðyja; bÞ / ya�1

ð1� yÞb�1, using the
values a ¼ b ¼ 0:5 and a ¼ 5, b ¼ 2. These distributions
are contrasted with the uniform prior assumed by the
Bayesian analysis in Fig. 6. It is worth noting that both
alternative distributions deviate from the uniform distribu-
tion in different and important ways. For example, the
Betaðyj0:5; 0:5Þ distribution might loosely be regarded as
‘‘multimodal’’, in the sense that it increases in two different
regions, while the Betaðyj5; 2Þ distribution is negatively
skewed and gives almost no density to possible rates that
are supported by the uniform prior.

For the Betaðyj5; 2Þ case, the performance of the criteria
for fixed sample sizes is shown in Fig. 7, and performance
as the number of data available increase is shown in Fig. 8.
In both cases, the results are extremely similar to those
observed for the uniform generating distribution in Figs. 3
and 4 and the same comparative conclusions seem to be
warranted.
For the Betaðyj5; 2Þ case, the performance of the criteria
for fixed sample sizes is shown in Fig. 9, and performance
as the number of data available increase is shown in
Fig. 10. In this case, the overall performance of all of the
criteria is worse, but their relative levels of performance
show the same patterns. Once again, the Bayes and NML
criteria perform extremely similarly, and these criteria are
almost always as accurate or more accurate than the
significance testing approach.

4.5. Evaluation against data generated with sequential

dependencies

Another potential criticism of our evaluations is that
some advocates (e.g., Rissanen, 2001) argue MDL is
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superior to the Bayesian approach when data are generated
with statistical properties that are different from those
expressible by the models being compared. The preceding
evaluations use as generating models the ‘‘same rate’’ and
‘‘different rates’’ models used to derive the Bayes criterion.
For this reason, it is possible that, for real-world data,
which are almost certainly not generated by such simple
processes, the NML criterion could be more accurate.

To test this possibility, following the ideas discussed by
Grünwald (1998, pp. 24–28), we repeated the two evalua-
tions using a first-order Markov process to generate the
data. This process specifies a probability g1 that the next
observation will be a success given that the previous
observation was a success, and a different probability g2
that the next observation will be a success given that the
previous observation was not. In this way, Markov
processes introduce dependencies between successive ob-
servations, and so violate the independency assumptions of
the ‘‘same rate’’ and ‘‘different rates’’ models used to derive
the Bayes criterion.
Any choice of g1 and g2, however, is naturally associated

with a single rate y according to the relationship y ¼
g1yþ g2ð1� yÞ. This relationship allows different first-
order Markov chains, specified by g1 and g2 to be assessed
as either the same or different according to their associated
y rates. In this way, the Bayes and NML criteria can be
assessed on rate problems where the data are generated by
distributions that are different from the basic ‘‘same rate’’
and ‘‘different rates’’ models.
Figs. 11 and 12 show the results of repeating our first two

evaluations using first-order Markov processes to generate
the data. Fig. 11 shows the performance of the criteria for
fixed sample sizes, Fig. 12 shows performance as the
number of data available increase. The Bayes criterion is
always either as accurate, or slightly more accurate, than
the NML criterion in both analyses. Once again, these
criteria outperform the significance testing approach,
except perhaps for a moderate number of data and a
stringent a level.

5. Discussion

5.1. Conclusions for the rate problem

Our comparisons and evaluations of significance testing,
Bayesian and MDL approaches in solving the rate problem
warrant two important conclusions.

5.1.1. Bayes and NML

First, the Bayes and NML criteria make extremely
similar decisions for all counts and all sample sizes, and
become indistinguishable for large sample sizes. The
known asymptotic equivalence for exponential families of
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6We are extremely grateful to a reviewer for providing this insight.
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NML codelengths and log-Bayesian marginal likelihoods
with Jeffreys’ priors (Barron, Rissanen, & Yu, 1998;
Grünwald, 2005; Rissanen, 1996) means the result for
large samples is not surprising, given the similarities
between the Jeffreys’ prior and uniform prior for this
problem. It is interesting, however, to observe how quickly
the two measures converge for the sample sizes typical in
psychology, and using data generated ways that differ in
one aspect or another from those assumed by the Bayes
criterion.

In practice, one potential advantage of the Bayes
criterion is that it is relatively less demanding to compute.
The denominator of the NML criterion involves a large
number of terms for problems dealing with large sample
sizes. This has necessitated the development of elegant and
sophisticated recursive methods for the efficient calculation
of the NML criterion (Kontkanen, Buntine, Myllymäaki,
Rissanen, & Tirri, 2003) that are not trivial to implement.
The Bayes criterion, on the other hand, is conceptually and
computationally easy to calculate for any plausible sample
size. Given the result that the Bayes and NML criteria
behave very similarly theoretically, this practical advantage
encourages the use of the Bayesian approach.

5.1.2. Bayes and significance testing

The second conclusion is that the Bayesian criterion
perform at least as well as the significance testing criteria.
An elegant way of summarizing all of the results we have
presented,6 is by noting the natural symmetry between
those tests favoring the Bayesian perspective and those
favoring the significance testing perspective. In those
comparisons focusing on decision accuracy, with data
generated from known (if mis-specified) prior distributions,
the Bayes criterion outperforms significance testing, unless
significance testing is allowed to vary its a level as a
function of sample size. In those comparisons focused on
fixing Type I errors, however, the Bayes criterion needs an
analogous flexibility in determining its evidence threshold
to match the decision-making performance of significance
testing.
Based on this analysis, our conclusion is that the

comparisons presented here demonstrate that the Bayes
criterion is at least as well performed as significance testing.
Perhaps this is not surprising, since Jaynes (2003, p. 550;
see also Lee & Wagenmakers, 2005) argued that signifi-
cance testing criteria are usable and useful when dealing
with the problems where all the relevant information comes
(or can accurately be conceived as coming) from indepen-
dent runs of simple random experiments. This means that
significance testing works well when (1) the variables of
interest vary according to simple distributions, in which a
small number of parameters adequately describe their
distributional form; (2) there is no important prior
information available about the variables of interest; and
(3) there are many data. Each of these conditions is
satisfied by the rate problems we have considered.
Nevertheless, it is easy to imagine variations on the rate

problem that would violate the last two conditions, by
presenting strongly constraining prior information about
the rates of one or both of the data sources, or by having
access to only a small number of data. Interestingly, both
of these possibilities loom larger in applied rather than
laboratory settings. In the real-world much is usually
already known about a problem before data are collected
or observed, and it is often the case that additional data are
expensive, dangerous, or otherwise difficult to obtain.

5.2. Model selection and data analysis in psychology

More generally, we think our results highlight the
potential of using Bayesian and MDL methods for
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analyzing psychological data. For a combination of
historical and perhaps sociological reasons, most statistical
inferences in psychology are made using significance testing
methods, despite compelling evidence that they can be
inefficient, inapplicable or even pathological (e.g., Berger &
Wolpert, 1984; Edwards, Lindman, & Savage, 1963;
Jaynes, 2003; Lindley, 1972). It is especially surprising that
Bayesian methods are not more widely used, given many of
the questions experimental psychology typically asks of its
data are naturally interpreted as model selection questions.
For example, rather than use t-tests, Lee, Loughlin, and
Lundberg (2002) drew inferences about whether sets of
scores had the same means using Bayes Factors; Lee and
Cummins (2004) and Lee and Corlett (2003) used Bayes
Factors to decide whether accuracy, confidence and
response time distributions were significantly different;
Karabatsos (2005) used Bayes Factors to compare
deterministic axiomatic accounts of choice and judgment;
and Vickers, Lee, Dry, and Hughes (2003) used Bayes
Factors to compare competing meaningful interpretations
of data from a factorial experimental design that would
usually be subjected to ANOVA methods. To the extent
that our findings for the rate problem generalize—and
Bayesian and MDL methods prove to make good
statistical inferences—experimental psychology would ben-
efit from adopting modern model selection methods for
data analysis.

Acknowledgments

We wish to thank Yong Su, Eric-Jan Wagenmakers,
Lourens Waldorp, and two anonymous referees for very
helpful comments.

References

Barron, A., Rissanen, J., & Yu, B. (1998). The minimum description

length principle in coding and modeling. IEEE Transactions on

Information Theory, 44(6), 2743–2760.

Berger, J. O., & Wolpert, R. L. (1984). The likelihood principle. Hayward,

CA: Institute of Mathematical Statistics.

DeGroot, M. H., Fienberg, S. E., & Kaldane, J. B. (1986). Statistics and

the law. New York: Wiley.

Edwards, W., Lindman, H., & Savage, L. J. (1963). Bayesian statistical

inference for psychological research. Psychological Review, 70(3),

193–242.

Fleiss, J. L. (1981). Statistical methods for rates and proportions (Second

ed.). New York: Wiley.

Francis, T., Jr., Korns, R., Voight, R., Boisen, M., Hemphill, F., &

Napier, J. (1955). An evaluation of the 1954 poliomyelitis vaccine

trials: Summary report. American Journal of Public Health, 45(supple-

ment), 1–50.

Grünwald, P. D. (1998). The minimum description length principle and

reasoning under uncertainty. Amsterdam: Institute for Logic, Language

and Computation, University of Amsterdam.
Grünwald, P. D. (2005). Minimum description length tutorial. In P. D.

Grünwald, I. J. Myung, & M. A. Pitt (Eds.), Advances in minimum

description length: Theory and applications (pp. 23–80). Cambridge,

MA: MIT Press.

Jaynes, E. T. (2003). In G. L. Bretthorst (Ed.), Probability theory: The

logic of science. New York: Cambridge University Press.

Karabatsos, G. (2005). The exchangeable multinomial model as an

approach to testing deterministic axioms of choice and measurement.

Journal of Mathematical Psychology, 49, 51–69.

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the

American Statistical Association, 50(430), 773–795.

Kass, R. E., & Wasserman, L. (1996). The selection of prior distributions

by formal rules. Journal of the American Statistical Association,

91(435), 1343–1370.

Kontkanen, P., Buntine, W., Myllymäaki, P., Rissanen, J., & Tirri, H.
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