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Abstract

Ashby, Maddox and Lee (Psychological Science, 5 (3) 144) argue that it can be inappropriate to fit multidimensional scaling

(MDS) models to similarity or dissimilarity data that have been averaged across subjects. They demonstrate that the averaging

process tends to make dissimilarity data more amenable to metric representations, and conduct a simulation study showing that

noisy data generated using one distance metric, when averaged, may be better fit using a different distance metric. This paper argues

that a Bayesian measure of MDS models has the potential to address these difficulties, because it takes into account data-fit, the

number of dimensions used by an MDS representation, and the precision of the data. A method of analysis based on the Bayesian

measure is demonstrated through two simulation studies with accompanying theoretical analysis. In the first study, it is shown that

the Bayesian analysis rejects those MDS models showing better fit to averaged data using the incorrect distance metric, while

accepting those that use the correct metric. In the second study, different groups of simulated ‘subjects’ are assumed to use different

underlying configurations. In this case, the Bayesian analysis rejects MDS representations where a significant proportion of subjects

use different configurations, or when their dissimilarity judgments contain significant amounts of noise. It is concluded that the

Bayesian analysis provides a simple and principled means for systematically accepting and rejecting MDS models derived from

averaged data.

r 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Multidimensional scaling (MDS) techniques (She-
pard, 1962; Kruskal, 1964; see Cox & Cox, 1994 for a
recent overview) generate representations of stimulus
sets based on the similarities or dissimilarities between
each pair of stimuli. Within MDS models, each stimulus
is associated with a point in a coordinate space of some
dimensionality, so that the distance between two points
corresponds to the dissimilarity of the associated
stimuli. MDS representations have their origins in, and
some considerable status as, plausible models of human
conceptual structure, particularly in relation to low-
level, continuous sensory stimulus domains (Shepard,
1957, 1987, 1994). For this reason, MDS representations
have been used as a tool for analyzing the psychological
similarity structure of a variety of stimulus domains

(e.g., Glushko, 1975; Jones, Roberts, & Holman, 1978;
Heaps & Handel, 1999). In addition, they are used as
the representational basis of a number of success-
ful cognitive models, including the Generalized Context
Model (Nosofsky, 1984, 1986), and ALCOVE
(Kruschke, 1992).
A long-established and pervasive practice in both of

these types of applications (e.g. Ekman, 1954; Gati &
Tversky, 1982; Gregson, 1976; Johnson & Tversky,
1984; Kruschke, 1993) is to use ‘pooled’ similarity or
dissimilarity matrices, obtained by averaging individual
measures across a number of subjects. The rationale for
averaging is the familiar one of reducing the effects of
errors in whatever measurement process is used to
collect the dissimilarity values. In a recent critique,
however, Ashby, Maddox, and Lee (1994) highlight
some undesirable consequences of this averaging process
when fitting MDS models. They present theoretical
arguments and a simulation study arguing that ‘aver-
aging across subjects changes the underlying psycholo-
gical structure of the data’ (p. 147). In particular, they
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show that artificial data generated using a particular
metric structure, when averaged, may be fit better by an
MDS model that uses a different distance metric. They
conclude that ‘it would be extremely dangerous to fit an
MDS model to data that have been averaged across a
large group of subjects and then to claim that the
resulting MDS solution is a valid representation of the
underlying psychological space’ (p. 147).
The first goal of this paper is to demonstrate that the

application of a Bayesian analysis for selecting MDS
models, described by Lee (2001), addresses the problems
highlighted by Ashby et al. (1994). Unlike the approach
adopted by Ashby et al. (1994), which relies solely on
data-fit in comparing competing MDS models, the
Bayesian analysis is sensitive to data-fit, model complex-
ity, and the inherent precision of the dissimilarity data.
This means that it is possible to compare a candidate
MDS representational model with a ‘null’ or ‘zero-
dimensional’ MDS model, explaining 0% of the
variance of the data using one parameter. When coupled
with the sensitivity to the precision of dissimilarity data,
simulations show that making these comparisons causes
MDS models with the incorrect metric structure to be
rejected on a systematic basis.
The second goal of this paper is to demonstrate

the applicability of the Bayesian analysis to a more
general situation, where different groups of subjects
use fundamentally different underlying representations
to generate dissimilarity data. By varying the proportion
of subjects who favor one representation over another,
as well as manipulating the level of noise in the
measurement process for collecting data, simulations
show that the Bayesian analysis rejects MDS models
that do not capture the structure of the dominant
original representation. Taken together, these two
simulation studies suggest that the application of the
Bayesian analysis has the potential to avoid the dangers
inherent in averaging data across subjects when fitting
MDS representational models.

2. Summary of Ashby, Maddox, and Lee (1994)

In their analysis, Ashby et al. (1994) concentrate on
the so-called ‘metric’ variety of MDS, which involves the
application of some form of optimization method to
minimize an error measure of the form

Ep

X
ioj

ðdij � d̂ijÞ2; ð1Þ

where dij is the given dissimilarity between the ith and
jth stimuli, and d̂ij is the distance between representative
points pi ¼ ðpi1;y; pimÞ and pj ¼ ðpj1;y; pjmÞ in an m-
dimensional space. Following common practice in
metric MDS (see, for example Cox & Cox, 1994), this
distance is measured according to one of the family of

Minkowskian r-metrics, given by

d̂ij ¼
Xm

k¼1
jpik � pjkjr

" #1
r

þc; ð2Þ

where c is an additive constant.
On the theoretical front, Ashby et al. (1994) use the

framework developed by Furnas (1989) to demonstrate
that averaging across subjects will tend to eliminate any
violations of the triangle inequality that might be
evident in single-subject dissimilarity data using ro1:
In particular, they simulate dissimilarity data for 50
subjects using a known spatial configuration, which
consists of a complete 3� 3 grid with unit spacing,
rotated by 301 anticlockwise about a point near the
center of the grid (Ashby, pers. comm., July, 1999).1

Individual differences between subjects are simulated by
adding zero-mean Gaussian noise with a specified
standard deviation to each coordinate independently
for each subject. Fig. 1 shows the underlying grid
configuration, and overlays examples of noisy individual
subject configurations derived using standard deviations
of 0.1, 0.2, 0.3 and 0.4. The distances between these
noise perturbed points, according to the Minkowskian r-
metric with r ¼ 0:5; are used as dissimilarity measures
for each subject, and an averaged dissimilarity matrix is
also calculated across subjects. Ashby et al. (1994) note
that the individual data, because it was generated using
a ‘semi-metric’ distance measure, contains many viola-
tions of the triangle inequality, but that the averaged
data contains no such violations. Accordingly, they
observe that ‘although these data were generated from a
model that is incompatible with all versions of MDS,
there exists some MDS model that fits the averaged data
perfectly’ (Ashby et al., 1994, p. 147).2

In their simulation study Ashby et al. (1994) use the
same configuration, and generate dissimilarity matrices
for 50 subjects, and an averaged matrix, in the same
way, but do this for each of three distance metrics,
corresponding to the choices r ¼ 0:5; 1 and 2 from the
Minkowskian family. In the broad context of cognitive
modeling, these values are of particular interest. The
r ¼ 1 (City-Block) and r ¼ 2 (Euclidean) cases have long
been associated with, respectively, so-called ‘separable’
and ‘integral’ stimulus domains (Garner, 1974; Shepard,
1991). Meanwhile, the adoption of metrics with ro1 has
been given a psychological justification (Gati & Tversky,
1982; see also Shepard, 1987, 1991) in terms of modeling

1The exact location of the center of rotation, although difficult to

determine from Ashby et al. (1994, Fig. 1), does not matter, since it

does not affect the required inter-point distances under any of the

metrics being considered.
2As this statement implies, Ashby et al. (1994) do not refer to the

r ¼ 0:5 ‘semi-metric’ as an MDS model. A difference in terminology

between our study and theirs is that we do refer to the r ¼ 0:5 case as

an MDS model.
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stimuli with component dimensions that ‘compete’ for
attention. Ashby et al. (1994, Table 1) examine the
patterns of data-fit when MDS models with the same
range of metric structures, r ¼ 0:5; 1 and 2, are fitted to
both the single-subject and averaged data for all three
generating metrics. As expected, for the single-subject
data, perfect data-fit is achieved when the same metric is
used to generate the data and recover the MDS
representation. The important finding, however, is that
for the averaged data, the best data-fit is not necessarily
achieved using the recovery metric that corresponds to
the generating metric. In particular, for the averaged
data generated using r ¼ 0:5; the MDS representation
using r ¼ 1 fit the data significantly better that the
representation using r ¼ 0:5:
Taken together, the theoretical arguments and these

simulation results suggest that it can be inappropriate to
average data across subjects when fitting MDS models.
The averaging process may have effects that extend
beyond the reduction of measurement error, and serve
to alter fundamental metric properties of the data.
Indeed, the simulation study seems to realize Ashby
et al.’s (1994) fears that ‘the worst possible effect of

averaging would be to alter the underlying psychological
structure of the data in such a way that an invalid model
appears valid’ (p. 144).
Ashby et al. (1994), through their focus on critiquing

existing practice in MDS modeling, test the validity of
their models using a measure of data-fit. A more
sophisticated approach to model selection, recently
popularized in psychological modeling (e.g., Myung &
Pitt, 1997; Myung, Forster, & Browne, 2000b; Myung,
Balasubramanian, & Pitt, 2000a; Pitt, Myung, & Zhang,
2002), argues that both data-fit and model complexity
should be taken into account when comparing models.
Once this trade-off between accuracy and simplicity is
established in the process of model selection, the notion
of data precision also becomes important. If it is
proposed that a model should be made more compli-
cated to provide some improvement in data-fit, it is
necessary to have some understanding of the inherent
precision of the constraining data itself. Precise data will
tend to warrant the improved data-fit offered by
additional complexity, whereas noisy data will tend
not to warrant any such change. Since the Bayesian
approach to MDS model selection developed by Lee
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Fig. 1. The configuration used by Ashby et al. (1994). The large circles indicate the underlying 3� 3 grid, while the small circles indicate the stimulus

position for 50 simulated subjects using noise standard deviations of 0.1 (top left), 0.2 (top right), 0.3 (bottom left) and 0.4 (bottom right).
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(2001) is founded on this trade-off between data-fit and
model complexity, and explicitly incorporates a measure
of data precision, it is worth applying to the problem
highlighted by Ashby et al. (1994). Our approach to
doing this is to compare MDS representations with a
‘null’ zero-dimensional MDS model, which has poor
data-fit but low complexity, to gauge whether data
warrant any MDS model at all.

3. A Bayesian approach to MDS model selection

The method for MDS model selection developed by
Lee (2001) is based on the well-known Bayesian
Information Criterion (BIC: Schwarz, 1978; see also
Kass & Raftery, 1995; Myung & Pitt, 1997). The BIC
takes the general form

BIC ¼ �2 log pðMLÞ þ P log N; ð3Þ

where pðMLÞ is the likelihood of the data given the
model when the model parameters are estimated using
maximum likelihood, P is the number of parameters in
the model, and N is the sample size. Qualitatively, it can
be seen that this measure increases whenever either
model complexity, as measured by the number of model
parameters, increases or when the data-fit of the model
worsens. Accordingly, the candidate model with the
minimal BIC value is to be preferred.
The application of the BIC to MDS uses a probabil-

istic formulation of the data-fit, based on the assump-
tion that the probability of a set of target dissimilarities,
given a particular MDS representation of dimension-
ality m; has a Gaussian distribution with common
variance s2d ;

pðD j m; #DÞpexp � 1

2s2d

X
ioj

ðdij � d̂ijÞ2
 !

; ð4Þ

where D ¼ ½dij	 and #D ¼ ½d̂ij 	:
In the context of MDS models, parametric complexity

is related to the number of dimensions used by a
representation. In an m-dimensional space, representing
n points uses mn parameters. However, the representa-
tion is translation invariant, reducing the number of free
parameters by m: The additive constant c constitutes
another free parameter, giving a total of ðmðn � 1Þ þ 1Þ:
Since the representation is generated from an n � n

symmetric dissimilarity matrix, these parameters are
constrained by a total of nðn � 1Þ=2 data values.
Accordingly, the MDS formulation of the BIC measure
takes the form

BIC ¼ 1

s2d

X
ioj

ðdij � d̂ijÞ2 þ ðmðn � 1Þ þ 1Þ log nðn � 1Þ
2

� �
;

ð5Þ

where sd is a sample estimate of the data precision
population parameter sd :
Ashby et al. (1994) consider the experimental

methodology in which there are individual dissimilarity
matrices Dk ¼ ½dk

ij 	 describing the data collected from
each of k ¼ 1; 2;y;K subjects, and it is the averaged
dissimilarity matrix D ¼ 1

K
½
P

k dk
ij 	 ¼ ½dij 	 that is used to

generate an MDS representation. In this case, as argued
by Lee (2001), one approach to determining sd is to
calculate the average of the sample standard deviations
for each of the pooled cells in the final averaged matrix,
as follows:

sd ¼ 1

nðn � 1Þ=2
X
ioj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
kðdk

ij � dijÞ2

K � 1

s
: ð6Þ

This estimate of data precision is entirely determined
by the raw data, and may be calculated before fitting
MDS representations with different dimensionalities or
metric structures to the averaged data. The evaluation of
BIC measures for each of these candidate representa-
tions is then straightforward, requiring the substitution
of sd into Eq. (5), and using the known parametric
complexities and residual errors. The representation
with the minimal BIC value may then be taken as
constituting an appropriate compromise between the
need to accommodate the original data, and the
requirement to minimize the parametric complexity of
the MDS model.
As a special case of this comparison of BIC values, we

consider the ‘null’ MDS model to gauge whether an
MDS model is warranted at all. The ‘null’ model may be
thought of as a degenerate ‘zero-dimensional’ model
that explains 0% of the variance in the data using only
one parameter. To see this, note that the variance
accounted for by an MDS model is given by

v ¼ 1�
P

iojðdij � d̂ijÞ2P
iojðdij � %dÞ2

; ð7Þ

where %d is the arithmetic mean of the dissimilarity
measures. This means that setting the additive constant
in the distance measure to the mean of the dissimilarity
data, but not specifying any coordinate locations for
representative points, effectively creates a one-para-
meter MDS model explaining 0% of the variance. If this
model has a BIC value that is less than those for
substantive MDS representations, we can conclude that
it is not appropriate to model the data using MDS. This
may occur when MDS representations need a large
number of dimensions to achieve relatively poor data-fit,
signaling the presence of fundamentally non-metric
data, or when the inherent precision of the data
itself is too poor to sustain a meaningful representa-
tional model.
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4. Simulation study 1: same underlying configuration

The application of the BIC to MDS model selection
was examined in a simulation study based on that
reported by Ashby et al. (1994).

4.1. Method

The same nine-point two-dimensional spatial config-
uration was used to generate dissimilarity matrices for
50 subjects and an averaged matrix, for the three
generating metric choices r ¼ 0:5; 1 and 2. The Ashby
et al. (1994) study considered only two levels of data
precision, corresponding to two levels of standard
deviation for the Gaussian noise added to coordinate
locations, given by sp ¼ 0:50 and 0:67: In the present
study, separate simulations were undertaken for sp

values ranging from 0 to 1; increasing in steps of 0:02:
Once dissimilarity matrices were calculated for each
subject, the sample estimate sd of the population
parameter sd was calculated from the ‘raw data’
according to Eq. (6).
As with the Ashby et al. (1994) study, the averaged

matrix for each level of data precision was recovered
using the same three distance metrics r ¼ 0:5; 1 and 2.
Rather than simply assuming a two-dimensional MDS
representation, however, each metric structure was
applied to MDS representations with 1, 2 and 3
dimensions. The metric MDS algorithm employed for
model fitting was based on the standard Levenberg–
Marquardt approach to non-linear least-squares opti-
mization (More, 1977), and used 200 attempts at fitting
each model, starting at a different random configuration
in an attempt to avoid local minima. When the correct
metric structure was used and sp was near zero, the
recovered MDS models explained almost all of the
variance in the data, suggesting that the algorithm was
adequate. On this basis, BIC values for each of the best-
fitting representations of each dimensionality, together
with that for the ‘null’ zero-dimensional alternative,
were calculated using Eq. (5), and the preferred model
with lowest value was determined.

4.2. Results

Figs. 2–4 summarize the results of these simulations
when the generating metrics were set to r ¼ 0:5; r ¼ 1;
and r ¼ 2; respectively. The x-axis shows the data
precision, as quantified by sp; while the y-axis shows the
data-fit for the recovery metric choices r ¼ 0:5; 1 and 2,
as quantified by the percentage of variance accounted
for (PVAF) by the best-fitting MDS representation.
Each marker, showing the data-fit of a particular
recovery metric at a particular precision level, is colored
according to the BIC comparisons. Black markers
indicate that a two-dimensional MDS model was

preferred, while white markers indicate that another
dimensionality, or the ‘null’ zero-dimensional alterna-
tive was preferred. In this way, the summary figures
allow the data-fit approach to model selection used by
Ashby et al. (1994) to be compared directly with those
arising from the Bayesian analysis.
In each of Figs. 2, 3 and 4, it can be seen that, for

small values of sp; the best-fitting configuration is
consistently found when the recovery metric matches the
generating metric. These configurations also display
near perfect data-fit, and are regarded by the BIC
measure as the ‘appropriate’ spatial representation of
the data. It is interesting to examine the point at which
Euclidean representations recovered from Euclidean
data are rejected, with reference to the different noise
standard deviations shown in Fig. 1. As Fig. 4 shows,
once sp exceeds about 0.28, derived representations
explaining almost all of the variance in the data are
rejected by the BIC. This means, in terms of the natural
visual interpretation of ‘straight-line’ distance in Fig. 1,
that when sp ¼ 0:1 and 0.2 the averaged data would be
regarded as sufficiently precise to sustain an MDS
representation, but not when sp ¼ 0:3 and 0.4, with the
‘cut-off’ point being somewhere near the case sp ¼ 0:3:
The important result, however, in terms of the

difficulties noted by Ashby et al. (1994), concerns the
patterns of r ¼ 0:5 and 1 recovery from the generating
metric r ¼ 0:5: Fig. 2 shows that, when sp exceeds 0.24,
the configurations recovered using r ¼ 1 fit the data
better than those using the correct metric r ¼ 0:5:
Effectively, this result replicates those on which the
conclusions of Ashby et al. (1994) are based. What
Fig. 2 also shows, however, is that the BIC begins
rejecting derived configurations,3 whatever the distance
metric employed, at about the level of precision where
the change in ordering of data-fit occurs. Only when
sp ¼ 0:26 does the BIC incorrectly accept an r ¼ 1
representation with better data-fit than the r ¼ 0:5
representation. In other words, the evaluation of the
MDS models using the BIC tends to provide a basis for
rejecting those representations that, because of the
effects of the averaging process, show better fit when
assuming the incorrect metric structure.

4.3. Theoretical discussion

There are two significant features shared by Figs. 2–4.
First, the data-fit of representations using the correct
metric deteriorates as sp increases. Secondly, the data-fit
of representations using the recovery metric r ¼ 2
improves as sp increases. This means that, as the level
of noise added to the underlying representations is
increased, the metric that best fits the averaged distance

3Although it is not depicted in Fig. 2, this rejection is in favor of the

‘null’ model.
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Fig. 2. PVAF as a function of sp for the best-fitting two-dimensional MDS representations, using each of the recovery metrics r ¼ 0:5; 1 and 2. The

generating metric for the dissimilarity data uses r ¼ 0:5: Representations accepted by the BIC are indicated by black markers, while rejected

representations are indicated by white markers.
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Fig. 3. PVAF as a function of sp for the best-fitting two-dimensional MDS representations, using each of the recovery metrics r ¼ 0:5; 1 and 2. The

generating metric for the dissimilarity data uses r ¼ 1: Representations accepted by the BIC are indicated by black markers, while rejected

representations are indicated by white markers.
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matrix tends towards a larger value of r: In particular,
Fig. 2 shows the best-fitting metric to be r ¼ 0:5 at
no and low noise, before moving through the r ¼ 1
and then 2 metrics as sp increases. Similarly, Fig. 3
shows the best-fitting metric change from r ¼ 1 to 2 as
sp increases.
The reason for this change in the best recovery metrics

can be explained in terms of the different effects adding
noise has on distances under different metrics. It is
simplest to think of the problem of recovering the unit
square. Across different metrics, this four-point config-
uration is characterized by the relationship between the
horizontal (or vertical) distance between neighboring
points, and the diagonal distance across the square. For
the r ¼ 2 metric, these distances are 1 for the horizontal
and

ffiffiffi
2

p
for the diagonal, for r ¼ 1 they are 1 and 2, and

for r ¼ 0:5 they are 1 and 4. In general, the relationship
between horizontal and diagonal distances uniquely
identifies the underlying Minkowskian metric.
When Gaussian noise is added independently to the

points on a number of unit squares, and the individual
distances averaged, the final horizontal and diagonal
distances change depending on the metric being used,
and the level of noise added. Fig. 5 provides a graphical
means of understanding these changes, showing the unit
square for each of the r ¼ 0:5; 1 and 2 metrics with both
small and large amounts of added noise. The unit square

is shown by the points, each of which is surrounded by a
broken line giving the circular contour of equal
likelihood once noise is added. The contours of equal
distance for the original horizontal and diagonal
distances are also shown by the solid lines.
Consider first the left-hand column of Fig. 5, where a

small amount of noise has been added. In the r ¼ 0:5
case, the horizontal distance will increase on average,
because most of the distances between random points on
the noise contours are longer than the original distance
indicated by the metric contour. For the diagonal
point, however, the majority of the noise contour falls
inside the metric contour, and so the average diagonal
distance will decrease. Using the same geometric
argument, it can be seen that horizontal distances will
increase and diagonal ones will remain the same for r ¼
1; and both horizontal and diagonal distances will
increase for r ¼ 2:
For the larger level of noise shown in the right-hand

column of Fig. 5, a different pattern of change emerges.
This is because the noise contours now begin to overlap,
increasing the distances between points on the over-
lapping segments that had previously been decreasing,
and so increasing the average distance between all points
on the noise contours. This means that, even in cases
such as the diagonal distance under r ¼ 0:5 where the
metric acts to decrease average distance, the addition of
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Fig. 4. PVAF as a function of sp for the best-fitting two-dimensional MDS representations, using each of the recovery metrics r ¼ 0:5; 1 and 2. The

generating metric for the dissimilarity data uses r ¼ 2: Representations accepted by the BIC are indicated by black markers, while rejected

representations are indicated by white markers.
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large enough noise will eventually lead to an increase.
The other important effect is that the overlap between
noise contours will always occur first for the horizontal
distances, because they are closer for all metrics with
roN: This means that the addition of noise will
eventually lead to horizontal distances increasing
more rapidly than diagonal distances, regardless of the
metric.
Fig. 6 confirms these geometric insights by showing

the results of a simulation measuring the increase for
both horizontal and diagonal distances under each of
the r ¼ 0:5; 1 and 2 metrics. This simulation is based on

averaging across 1,000,000 noise perturbed unit squares
under each metric at each level of noise.4 It shows
that all of the horizontal distances are 1 when there
is no noise, but that there is a rapid increase as
noise is added for the r ¼ 0:5 metric, a less rapid
increase for r ¼ 1; and an even gentler increase for r ¼ 2:
For the diagonal distances, there is an increase after
an initial decline for r ¼ 0:5; an increase after initial
stability for r ¼ 1; and a more immediate increase

(e) (f )

(c) (d )

(a) (b )

Fig. 5. Geometrical interpretation of the effect adding noise to the unit square has on horizontal, vertical and diagonal distances, shown for six cases:

(a) r ¼ 0:5 with small noise, (b) r ¼ 0:5 with large noise, (c) r ¼ 1 with small noise, (d) r ¼ 1 with large noise, (e) r ¼ 2 with small noise, (f) r ¼ 2 with

large noise. Contours of equal noise are shown by the broken circles, while contours of equal distance are shown by the solid lines. See text for

discussion.

4 In the appendix, we provide an analytic derivation of the increase

for the r ¼ 1 case.
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for r ¼ 2: Most importantly Fig. 6 also shows that,
for all three metrics, the horizontal distances increase
more rapidly than the diagonal distances as more noise
is added.
It is the difference in the way the horizontal and

diagonal distances increase under noise that explains
the change in the best recovery metric. This is because
the relationship between the two distances, which
defines the metric of the unit square, has been
changed. Suppose we tried to recover the unit square
configuration using the r ¼ 0:5 metric when noise with
sp ¼ 0:2 has been added. As Fig. 6 indicates, the new
horizontal length between neighboring points would
have increased from 1 to about 2, while the diagonal
distance has not yet increased much beyond its original
value of 4. These distances make it impossible to recover
the original unit square configuration using the r ¼ 0:5
metric. Indeed, the pattern of distances between all of
the points does not correspond exactly to any two-
dimensional representation under this metric, and so
MDS will return a representation that has a significant
level of error. Using the r ¼ 1 metric, however, the
unit square would be recovered without error, because
the diagonal distance is twice the horizontal. In this
way, adding noise to a representation using the r ¼ 0:5
metric has led to accurate recovery being achieved in the
r ¼ 1 metric.
In general, it is possible to find the best recovery

metric for any given averaged horizontal and diagonal
distance values. If the horizontal distance is dh and the
diagonal distance is dd ; the best metric rn is the one that
satisfies the relationship

dd ¼ ðdrn

h þ drn

h Þ
1
rn ;

which gives

rn ¼ 1

log2 dd � log2 dh

: ð8Þ

Fig. 7 shows the results of applying Eq. (8) to the
distances in Fig. 6. This means that Fig. 7 shows the best
recovery metric for the unit square, as a function of the
noise level sp; for each of the generating metrics r ¼ 0:5;
1 and 2. It can be seen that the best recovery metric
increases as more noise is added, which is entirely
consistent with the results of Ashby et al. (1994), and the
replications and extensions shown in Figs. 2–4. It is
interesting to note that the best-fitting metric continues
to increase for all generating metrics, heading towards
the dominance or supremum metric (r ¼ N) at the limit
of arbitrarily large levels of noise. This makes sense:
Horizontal and vertical distances increase more than
diagonal ones, and eventually become so much larger
that the dominance metric is appropriate.
For the problem raised by Ashby et al. (1994), the

important point is that the simulations and theoretical
analysis show the averaging of distances formed from
noisy approximations to the same representation results
in a distance matrix that does not accurately reflect the
metric of the true representation. As the level of noise
increases, Minkowskian r-metrics with larger values of r

than used originally will provide the best fit. This means
that model selection based on PVAF is guaranteed to
select the incorrect model. In contrast, the BIC is
sensitive to the presence of noise, and so at least has the
potential to avoid selecting incorrect models. What the
results in Figs. 2–4 suggest is that the rejection occurs at
or near the level of noise where incorrect metrics start to
achieve the best fit, although a full theoretical account of
the generality of this finding awaits future research.
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Fig. 6. The increase for both horizontal and diagonal distances under each of the r ¼ 0:5; 1 and 2 metrics.
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5. Simulation study 2: different underlying configurations

Given the success of the BIC in accepting and
rejecting representations when averaging noisy data
derived from the same underlying configuration, the
obvious extension is to examine its capabilities when
there are different underlying configurations. In many
respects, this is the scenario of the greatest relevance to
the methodological issue of averaging similarity or
dissimilarity data across subjects. If, for example,
different groups of subjects use significantly different
underlying spatial mental representations when making
judgments, the use of averaging is not justified. This is
because there are now effectively two sources of data
variation: that caused by noise in the measurement
process, as in the previous simulation study, and that
caused by fundamental differences in the underlying
representations. While averaging may legitimately be
employed to reduce the effects of the decision noise (i.e.,
if the above BIC model selection procedure is used), it
should not be allowed to distort the underlying
representations that MDS seeks to recover.

5.1. Method

To provide a concrete test of averaging multiple
representations, two spatial configurations resembling
the letters ‘A’ and ‘I’ were constructed, each containing
14 stimuli. The configurations are shown in Fig. 8.
Single-subject dissimilarity data was generated from
these configurations by measuring the distances between
points using both the r ¼ 1 and r ¼ 2 metrics. A total of
100 subjects were considered, with the proportion of
subjects, b; using the ‘A’ configuration varying from 0%
up to 100% in 10% intervals. Along similar lines to the

previous simulation study, zero-mean Gaussian noise
with a standard deviation ranging from sp ¼ 0 to 0:50 in
steps of 0:02 was added independently to the coordinate
locations.
For each level of decision noise sp and proportion of

subjects b using the ‘A’ configuration, the same MDS
algorithm developed for the first simulation study was
used to find best-fitting representations in spaces of 1, 2
and 3 dimensions.5 For each averaged dissimilarity
matrix, precision estimates sd were calculated as before,
and these were used to find BIC measures for each
derived representation. The acceptance or rejection of
the best-fitting two-dimensional configuration was then
determined on the basis of which BIC measure,
including that for the zero-dimensional ‘null’ alterna-
tive, was minimal.

5.2. Results

Figs. 9 and 10 summarize the results of this process
for the r ¼ 1 and r ¼ 2 cases, respectively. Each of these
figures displays a grid of the best-fitting two-dimen-
sional configurations as sp increases from left to right,
and as the proportion of subjects b using the ‘A’
configuration increases from top to bottom. Those
representations that are accepted by the BIC analysis
are indicated by the presence of a bold border around
the derived representation. Visual interpretation of
the effectiveness of the BIC in accepting or reject-
ing the MDS configurations should be made in the
context of an understanding of the distance-preserving
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Fig. 7. The best fitting metric rn for each of the generating metrics r ¼ 0:5; 1 and 2 as sp increases from 0 to 1.

5Since the subject proportion b has effectively replaced the recovery

metric as a dependent variable, the MDS representations assumed the

same distance metric used to generate the data.

M.D. Lee, K.J. Pope / Journal of Mathematical Psychology 47 (2003) 32–46 41



transformations afforded by the r ¼ 1 and 2 metrics.
Given the symmetries of the original configurations
shown in Fig. 8, this means that any rotation is
permissible in the r ¼ 2 case, while any rotation by a
multiple of 901 is permissible in the r ¼ 1 case.
With these guidelines in mind, Figs. 9 and 10 suggest

that the BIC correctly accepts representations when
most subjects are using one of the configurations, and
there is little decision noise. In this situation, MDS
clearly recovers representations that capture the struc-
ture of the dominant original configuration. As sub-
groups of subjects start to use both configurations,

however, the BIC only accepts representations generated
from data that have been subjected to relatively less
decision noise. Eventually, when significant numbers of
subjects are using both configurations, the derived
representations become uninterpretable, and are rejected
by the BIC even when there is no decision noise. These
results demonstrate the usefulness of the BIC in
avoiding the dangers inherent in averaging data across
subjects, since they indicate that the BIC analysis
provides a systematic mechanism for rejecting represen-
tations derived from data where the underlying config-
urations differ significantly across subjects.
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Fig. 8. The ‘A’ and ‘I’ representational configurations.
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by a solid border.
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5.3. Theoretical discussion

The results of this second simulation study rely on the
ability of the BIC to accept MDS models based on
averaged data when there is only one underlying spatial
representation, but reject models based on averaged
data across different configurations. An intuitive analy-
sis of the BIC considering the properties of its data-fit
term

1

s2d

X
ioj

ðdij � d̂ijÞ2;

and its parametric complexity term

ðmðn � 1Þ þ 1Þ log nðn � 1Þ
2

� �
;

shows how it is able to distinguish these two cases.
When there is only one underlying representation that

is subject to decision noise, the averaging process should
allow MDS to recover a configuration with a relatively
low error measure. This is because a dissimilarity matrix
that has been generated by averaging across matrices
generated from the same configuration, but each
corrupted by zero-mean additive Gaussian noise, will
approximate the noise-free dissimilarity matrix, provid-
ing that the variance of the noise is not too large relative
to the number of matrices being averaged. Of course, if
the noise is too large, the metric problems raised by

Ashby et al. (1994) will arise. For low levels of noise,
however, it is possible to fit an accurate MDS model to
the averaged data, which leads to a small value for the
data-fit term. When there is no single underlying
representation, however, the data-fit term will be
relatively greater, because the averaged data will not
be consistent with any of the generating configurations,
and is unlikely to be consistent with any other MDS
representation of reasonable dimensionality.
The parametric complexity term, in contrast, is not

affected by whether or not there is a single underlying
configuration. It simply serves to measure whether the
achieved level of data-fit provides sufficient evidence to
warrant the number of dimensions used by the
representation. BIC values, therefore, will be lower
when there is a single underlying representation than
where there are multiple representations, even at the
same level of data precision. This means that, when a
comparison is made with the BIC value of the ‘null’
model, it is more likely that MDS representations based
on subjects using the same underlying configuration will
be accepted.
The important point, therefore, is that the BIC does

not simply accept and reject representations based on
the measured level of data precision. Through its
combination of residual error and data precision, the
BIC is sensitive to different sources of imprecision in
averaged data. In particular, it naturally distinguishes
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Fig. 10. Recovered Euclidean configurations as the proportion of subjects with different underlying representations changes from b ¼ 0; 0:1;y; 1;

and the Gaussian noise takes different standard deviations sp ¼ 0; 0:05;y; 0:50: The acceptance of a recovered configuration by the BIC is indicated

by a solid border.
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between decision noise acting on a single representation,
and variance in data that arises from the existence of
two or more fundamentally different representations.
Perhaps the least impressive aspect of the perfor-

mance of the BIC in the second simulation study is that,
when there is a large degree of decision noise, but the
subjects remain relatively homogeneous in terms of their
underlying representations, representations are rejected
that seem to preserve the structure of the original
configurations. This pattern of rejection highlights what
is sometimes termed the ‘conservative’ nature of the BIC
measure (Raftery, 1999). Basically, the BIC is conserva-
tive in the sense that it tends to provide relatively less
evidence for additional parameters than the representa-
tions themselves suggest. In its practical application to
selecting MDS models, as is evident in Figs. 9 and 10,
this causes the BIC to have a tendency to reject
what could reasonably be regarded as meaningful
representations.
There are strong grounds, however, for arguing that

the conservatism of the BIC biases it towards making
the type of error that constitutes the lesser of two evils.
As Grünwald (2000, p. 148) concludes: ‘If you overfit,
you think you know more than you really know. If you
underfit, you do not know much, but you know that you
do not know much. In this sense, underfitting is
relatively harmless, while overfitting is dangerous’.
Figs. 9 and 10 suggest that the application of the BIC
is likely to accept most useful MDS representations, and
will reject all of those that have been significantly altered
by differences in underlying configurations or noise in
the measurement process. The rejection of some
representations at the margins of interpretability might
be regarded as a reasonable sacrifice for this capability.

6. General discussion

Ashby et al. (1994) raise a fundamental issue for MDS
models, by questioning whether it is appropriate to use
averaged data. Taken together, the two simulation
studies presented suggest that the BIC provides part of
the answer to this question. The first study showed the
effectiveness of the BIC analysis in the case where
subjects use the same underlying representation, but
display individual differences because of noisy dissim-
ilarity judgments. Under these conditions, the BIC
analysis is able to reject MDS models that showed a
better fit to averaged data when using the incorrect
distance metric, while accepting those models that
maintained the correct metric. The second study showed
the effectiveness of the BIC analysis in the case where
different subjects have fundamentally different under-
lying configurations, and their dissimilarity judgments
remain noisy. Here, the BIC analysis is capable of
accepting most of the substantial models, where most

subjects use the same configuration and give reasonably
precise judgments, while rejecting uninterpretable MDS
models based on data that has been transformed by the
averaging process.
It would be wrong to conclude that the BIC analysis

presented here casts doubt on the existence of the
problems raised by Ashby et al. (1994). It is true that
averaging dissimilarity data across subjects can change
the structure of the data in ways that make it
inappropriate to fit MDS models. What the BIC
analysis does provide, however, is a partial means of
addressing and avoiding the pitfalls of dealing with
averaged data in the context of MDS. The BIC analysis
constitutes a simple, principled, and effective means of
deciding when averaged data is sufficiently precise to
warrant the observed levels of data fit achieved by MDS
representations. Averaged data derived from single-
subject data that contains significant individual differ-
ences—through the existence of different underlying
configurations, or through noise in the process of
generating dissimilarity judgments, or through a combi-
nation of both—is identified as inappropriate for MDS
modeling. In this way, the use of the BIC prevents
averaged data that is not amenable to meaningful
representation being misused as the basis for an MDS
model.
One course of action, when the BIC rejects the

representation of averaged data, is to fit a separate MDS
model to each of the single-subject data matrices. In this
way, models of the spatial representations assumed to
have generated the data may be recovered, rather than
all representations being rejected on the basis of the BIC
analysis. Unfortunately, however, this single-subject
approach guarantees that the resultant MDS models
will have considered all of the decision noise in the data,
and does not use the potential benefits of averaging.
Ideally, what is required is a method that is able to
identify those subgroups of subjects using the same
underlying spatial representation, average the data
within these subgroups, and fit separate MDS models
for each. The development of such a method constitutes
a worthwhile topic for future research.
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Appendix A. The effect of noise on average distance

This appendix derives the change in distance from the
origin (using r ¼ 1) of an initial point ðx; yÞ that is
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perturbed in both directions by additive white Gaussian
noise of zero mean and variance s2p: The initial distance
from the origin is d0 ¼ jxj þ jyj; and the final distance is
d ¼ jx þ nxj þ jy þ nyj: Hence we seek to derive the
average change in distance, E½d � d0	 ¼ E½jx þ nxj	 þ
E½jy þ nyj	 � jxj þ jyj: It is useful to consider the
quantity in the x dimension only, and exploit the
symmetry in the expression.

E½jx þ nj	 ¼
Z

N

�N

jx þ njpðnÞ dn

¼ �
Z �x

�N

ðx þ nÞ expð�n2

2s2p
Þffiffiffiffiffiffiffiffiffiffi

2ps2p
q dn

þ
Z

N

�x

ðx þ nÞ expð�n2

2s2p
Þffiffiffiffiffiffiffiffiffiffi

2ps2p
q dn:

The first half of each term is an incomplete integral of a
Gaussian, which is the error function:

erfðzÞ ¼ 2ffiffiffi
p

p
Z z

0

exp ð�t2Þ dt:

The different limits on the integral can be handled by
noting that erfðNÞ ¼ 1 and erfð�NÞ ¼ �1:Making the
substitution t ¼ nffiffiffiffiffi

2s2p
p and dividing by two yields a more

useful form

1

2
erfðzÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi

2ps2p
q Z ffiffi

2
p

spz

0

exp
�n2

2s2p

 !
dn:

The second half of each term can be solved using the
relation:

Z
z exp

�z2

2s2p

 !
dz ¼ �s2p exp

�z2

2s2p

 !
þ c:

Therefore,

E½jx þ nj	 ¼ � x

2
1þ erf

�xffiffiffiffiffiffiffi
2s2p

q
0
B@

1
CA

0
B@

1
CA

þ

ffiffiffiffiffiffi
s2p
2p

s
exp

�n2

2s2p

 !" #�x

�N

þx

2
1� erf

�xffiffiffiffiffiffiffi
2s2p

q
0
B@

1
CA

0
B@

1
CA

�

ffiffiffiffiffiffi
s2p
2p

s
exp

�n2

2s2p

 !" #
N

�x

¼ x erf
xffiffiffi
2

p
sp

 !
þ

ffiffiffiffiffiffi
s2p
2p

s
exp

�x2

2s2p

 !
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Thus

E½d � d0	 ¼ x erf
xffiffiffi
2

p
s

� �
þ

ffiffiffiffiffiffiffi
2s2

p

s
exp

�x2

2s2

� �

þ y erf
yffiffiffi
2

p
s

� �
þ

ffiffiffiffiffiffiffi
2s2

p

s
exp

�y2

2s2

� �
� jxj � jyj:

There are two special cases of note, when the initial
point is at a vertex of the equidistant contour (i.e., one
of x and y will be zero) and when the initial point is in
the middle of the straight section of the equidistant
contour (i.e., jxj ¼ jyj). As an example, consider x ¼ 1
and y ¼ 0: Therefore,

E½d � d0	jx¼1;y¼0 ¼ erf
1ffiffiffi
2

p
s

� �
þ

ffiffiffiffiffiffiffi
2s2

p

s
exp

�1
2s2

� �

þ

ffiffiffiffiffiffiffi
2s2

p

s
� 1:

In contrast, for x ¼ y ¼ 0:5:

E½d � d0	jx¼y¼0:5 ¼ erf
1ffiffiffiffiffiffiffi
8s2

p
� �

þ 2

ffiffiffiffiffiffiffi
2s2

p

s
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�1
8s2

� �
� 1:
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