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Abstract

This note provides formal details for the hierarchical signal detection theory
used in “Group Decision-Making on an Optimal Stopping Problem”.

A Hierarchical Signal Detection Model

The hierarchical signal detection model involves three levels. At the bottom data-
level are the observed counts of hits, false alarms, misses and correct rejections for every
decision-maker. At the middle signal-detection level is a distribution over discriminability
and bias parameters, derived from distributions over hit and false alarm rates. At the top-
most group level is distribution over the means and variances for both the discriminability
and bias dimensions of an uncorrelated bi-variate Gaussian group distribution.

Group Level

Formally, we denote the mean and precision (i.e., the reciprocal of the variance) of the
group-level Gaussian for d′ as µd′ and λd′ , and similarly for c we have µc and λc. To perform
Bayesian inference, we need to make prior assumptions about the distributions of these
means and precisions. The standard approach is to use what are known as conjugate priors
(see, for example Bernardo & Smith, 1994, pp. 436–442), which simplifies the computations
involves.

In this case , conjugacy requires that the priors for the means of d′ and c are Gaussians,
themselves having means φd′ and φc and precisions γd′ and γc, giving

µd′ | φd′ , γd′ ∼ Gaussian
(
φd′ , γd′

)

µc | φc, γc ∼ Gaussian
(
φc, γc

)
.

Conjugate priors for the precisions of d′ and c are Gamma distributions, with shapes ξd′



and ξc and scales of ωd′ and ωc, so that

λd′ | ξd′ , ωd′ ∼ Gamma
(
ξd′ , ωd′

)

λc | ξc, ωc ∼ Gamma
(
ξc, ωc

)
.

Throughout all the simulations reported, the values φd′ = 0, φd′ = 0, γd′ = .033, γc = .067,
ξd′ = 3/2 and ξc = 3/2, ωd′ = .033 and ωc = .067 were used. These values were chosen
to provide proper approximations to the theoretically justified improper ‘non-informative’
prior distributions µd′ ∝ 1, µc ∝ 1, λd′ ∝

√
λd′ and λc ∝

√
λc, which would correspond to

choosing γd′ = γc = ωd′ = ωc = 0, while still allowing for reasonably efficient sampling.
As a check for the robustness of all modeling conclusions to these prior assumptions the
values of γd′ , γc, ωd′ , and ωc were all halved and doubled, and observed to have negligible
quantitative effects on the results.

Signal Detection Level

A novel feature of our hierarchical model is that we allow prior information to be
introduced directly into the sampling of the discriminability and bias values at the signal
detection level. This is very naturally done in the hit and false alarm parameterization.
Formally, again using conjugacy, the prior for hit θh and false-alarm θf rates are Beta
distributions, with ‘prior samples’ for the ith subject αh

i , αf
i , αm

i , and αr
i , so that

θh
i ∼ Beta

(
αh

i , αm
i

)

θf
i ∼ Beta

(
αf

i , αr
i

)
.

Throughout all the analyses reported, we assume a independent uniform prior distributions
over the hit and false alarm rates, by using αh

i = αm
i = αf

i = αr
i = 1. This corresponds to

assuming simply that participants know they must make both accept and reject decisions
(see Jaynes, 2003, pp. 385).

Posterior Sampling

The basic approach is having observed the data, which are counts for the ith subject,
Di = (hi, fi, mi, ri), to use a standard Bayesian method known as a Gibbs sampler (e.g.,
Gelman, Carlin, Stern, & Rubin, 2004; Gilks, Richardson, & Spiegelhalter, 1996; Mackay,
2003) to make inferences about the discriminability and bias distributions of each decision-
maker, and then use these distributions over collections of decision-makers to make inference
about the mean and variance of their Gaussian distribution.

The Gibbs sampler operates by sweeping repeatedly through the various parameters
of the model, sampling each conditionally dependent on the current values of the other. In
our sampling scheme, we uses an efficient form of collapsed Gibbs sampling (Chen, Shao,
& Ibrahim, 2000) that also facilitates the use of prior information at the signal detection
level, by first sampling hit and false alarm rates for each subject

θh
i | Di ∼ Beta

(
αh

i + hi, α
m
i + mi

)

θf
i | Di ∼ Beta

(
αf

i + fi, α
r
i + ri

)
,
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and converting them to d′i and ci values

d′i = Φ−1
(
θh
i

)
− Φ−1

(
θf
i

)

c = −1
2

[
Φ−1

(
θh
i

)
+ Φ−1

(
θf
i

)]
,

where Φ (x) = 1/
√

2π
∫ x
0 exp

(
−t2/2

)
dt. We then update the means and precision at the

group level, according to

µd′ | λd′ , φd′
k , γd′

k ∼ Gaussian
(φd′

k γd′
k + λd′ ∑m

i=1 d′i
γd′ + mλd′

, γd′
k + mλd′

)

µc | λc, φc
k, γ

c
k ∼ Gaussian

(φc
kγc

k + λc
∑m

i=1 ci

γc
k + mλc

, γc + mλc
)

λd′ | µd′ , ξd′, ωd′ ∼ Gamma
(
ξd′ +

1
2
m, ωd′ +

1
2

m∑

i=1

(d′i − µd′)2
)

λc | µc, ξc, ωc ∼ Gamma
(
ξc +

1
2
m, ωc +

1
2

m∑

i=1

(ci − µc)2
)
.

In each of the analyses reported, we conducted 104 sweeps. After an initial ‘burnin’ period,
set to be 102, these samples of the parameter values come from the full joint posterior
distribution. From this distribution, all of the standard quantities and distributions of
interest—such as expectations for the means and variances at the group level, or marginal
distributions over any of the parameters—can be calculated automatically.

Bayes Factors

Besides inferences involving parameter values, the Bayesian approach allows for model
or hypothesis testing using a form of likelihood ratios known as Bayes Factors (e.g., Kass &
Raftery, 1995). These ratios are essentially likelihoods that integrate out (average over) all
of the free parameters in competing models, and so automatically take into account both
the goodness-of-fit and complexity of the models (Pitt, Myung, & Zhang, 2002).

The Bayes Factors we report compare a ‘same’ model Ms that assumes no dif-
ference between two sets of decision making data D1 and D2, with a ‘different’ model
Md that does assume change, and so requires separate parameterizations for both data
sets. This means that Ms has parameters θs = (µd′ , µc, λd′, λc) while Md has parameters
θd = (µd′

1 , µc
1, λ

d′
1 , λc

1, mud′
2 , µc

2, λ
d′
2 , λc

2).
The Bayes Factor, BF, is the ratio

BF =
p(D | Ms)
p(D | Md)

=
∫

p(D | θs, Ms)p(θs | Ms) dθs∫
p(D | θd, Md)p(θd | Md) dθd

,

and can be computed by measuring the likelihood function for a set of N samples from the
posterior distributions, p(θs | D) and p(θd | D), as provided by the Gibbs sampler. This
likelihood is

Ls =
m∏

i=1

√
λd′λc

2π
exp

{
−1

2

[
λd′

(
d′i − µd′

)2
+ λc (ci − µc)2

]}
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for the same model, where there are m decision makers in the data set D , and

Ld =
2∏

j=1

m∏

i=1

√
λd′

j λc
j

2π
exp

{
−1

2

[
λd′

j

(
d′ij − µd′j

)2
+ λc

j

(
cij − µc

j

)2
]}

for the different model, where there are m decision makers in both the data set D1 and D2,
and d′ij and cij now denote the discriminability and bias for the ith member of the jth set.

The marginal probabilities required to calculate the Bayes Factor are then approx-
imated by the harmonic means of the set of likelihood values sampled from the posterior
(see Raftery, 1996). Using an extension of their notation, the approximation is

BF ≈
〈
1/ ‖{Ls}‖post

〉−1

〈
1/ ‖{Ld}‖post

〉−1 ,

where 〈·〉 denotes the expectation.
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