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Determining the Dimensionality of
Multidimensional Scaling Representations

for Cognitive Modeling

Michael D. Lee
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Multidimensional scaling models of stimulus domains are widely used as a
representational basis for cognitive modeling. These representations associate
stimuli with points in a coordinate space that has some predetermined
number of dimensions. Although the choice of dimensionality can
significantly influence cognitive modeling, it is often made on the basis of
unsatisfactory heuristics. To address this problem, a Bayesian approach to
dimensionality determination, based on the Bayesian Information Criterion
(BIC), is developed using a probabilistic formulation of multidimensional
scaling. The BIC approach formalizes the trade-off between data-fit and
model complexity implicit in the problem of dimensionality determination
and allows for the explicit introduction of information regarding data preci-
sion. Monte Carlo simulations are presented that indicate, by using this
approach, the determined dimensionality is likely to be accurate if either a
significant number of stimuli are considered or a reasonable estimate of preci-
sion is available. The approach is demonstrated using an established data set
involving the judged pairwise similarities between a set of geometric
stimuli. � 2001 Academic Press

COGNITIVE MODELING AND MULTIDIMENSIONAL SCALING

Multidimensional scaling techniques (Shepard, 1962; Kruskal, 1964; see Cox 6

Cox, 1994, for a recent overview) generate spatial representations of stimulus sets
based on information regarding the similarity relationships existing between the
stimuli. Typically, each stimulus is identified with a point in a coordinate space
such that the distance between representative points decreases as the similarity of
the corresponding stimuli increases. The spatial nature of these representations
means that they are well suited to practical application in the context of data
visualization (e.g., Lowe 6 Tipping, 1996; Mao 6 Jain, 1995).
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More fundamentally, however, multidimensional scaling representations have
their origins in (Shepard, 1957), and some considerable status as, plausible models
of human conceptual structure, particularly in relation to low-level, continuous sen-
sory stimulus domains. Shepard (1987; see also Myung 6 Shepard, 1996; Shepard,
1994) has provided compelling empirical and theoretical evidence that the spatial
representation of a stimulus domain generated by multidimensional scaling affords
a simple and elegant characterization of the way in which the fundamental cognitive
process of generalization operates within that domain. In particular, he argues that
the generalization gradient that relates psychological similarity to distance in the
representational space is invariant and closely approximated by the exponential
decay functional form. Accordingly, multidimensional scaling representations have
been employed as the underpinnings of a number of successful models, generically
described as cognitive process models (Nosofsky, 1992), such as the Generalized
Context Model (Nosofsky 1984, 1986), ALCOVE (Kruschke, 1992), and others
(e.g., Getty, Swets, Swets, 6 Green 1979). In each of these models, the fixed spatial
stimulus representations generated by multidimensional scaling��which are some-
times called psychological spaces in this context��are manipulated by processes that
model cognitive phenomena such as identification and categorization.

The existence of an exponentially decaying relationship between psychological
similarity and distance in a psychological space has the further computational
advantage of allowing cognitive modeling to proceed on the basis of metric multi-
dimensional scaling. Metric, as opposed to nonmetric, multidimensional scaling
techniques require an additional assumption to be made regarding the form of the
monotonically decreasing function that relates similarity measures to proximities
and hence allows the problem of deriving a similarity-preserving spatial representa-
tion to be conceived in terms of deriving a proximity-preserving spatial representa-
tion. On the basis of Shepard's (1987) results, it may be appropriate to convert an
empirically observed similarity measure between the ith and the j th stimuli, sij , into
a target proximity measure dij , using the relationship d ijB&log(sij). This transfor-
mation does, theoretically, assume a ratio level of data scaling which may not
always be appropriate, given the common practice of collecting similarity data on
interval and ordinal scales. It is less clear, however, to what extent this theoretical
deficiency manifests itself as a practical deficiency in terms of the appropriateness
of the distance-like proximity1 values it generates. In any case, from this perspec-
tive, the generation of multidimensional scaling representations for cognitive model-
ing involves the application of some form of optimization method to minimize an
error measure of the form

E B :
i< j

(dij&d� ij)
2, (1)

where d� ij is the current distance between representative points pi=( pi1 , ..., pim) and
pj=( pj1 , ..., pjm) in an m-dimensional representative space, as measured according
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1 The intended difference between the terms ``proximity'' and ``distance'' is that the former does not
imply adherence to the triangle inequality.



to some distance metric. The distance metrics of interest are commonly restricted to
the family of Minkowskian r-metrics2, given by

d� ij=_ :
m

k=1

| pik& pjk | r&
1�r

, (2)

with a particular emphasis having been placed on the r=1 (city-block) and r=2
(Euclidean) cases because of their relationship, respectively, to so-called separable
and integral stimulus domains (Garner, 1974). Recently, Shepard (1987, 1991)
provided a compelling theoretical basis for this association, based on the correla-
tion of the extension of different dimensions of abstract geometric structures termed
consequential regions. Specifically, it is shown that perfect correlation of these struc-
tures, to be expected in the case of stimulus integrality, gives rise to circular equi-
similarity contours indicating the operation of the Euclidean metric, while a com-
plete lack of correlation, corresponding to separable component stimulus dimen-
sions, produces diamond-shaped contours indicative of the city-block metric3. More
generally, it has been argued (see Shepard, 1991, p. 61 for a list of references) that
the distinction between separable and integral stimuli may represent endpoints of a
continuum rather than a dichotomy and that, therefore, some stimulus domains
may be modeled appropriately using an r value between 1 and 2. Although
Minkowski r-metrics with r>2 are sometimes considered (e.g., Kruskal, 1964;
Shepard, 1991), it is difficult to provide a psychological interpretation, in terms of
the component structure, for stimuli modeled in this way. Pure integrality at r=2
would seem to constitute a psychological upper limit on the degree to which under-
lying stimulus dimensions may be combined. In contrast, the adoption of metrics
with r<1 has been given a psychological justification (Gati 6 Tversky, 1982; see
also Shepard 1987, 1991) in terms of modeling stimuli with component dimensions
that compete for attention. These assertions are also consistent with Shepard's
(1987, 1991) theory, since, as noted above, the limit of complete correlation
corresponds to the Euclidean metric, but the use of consequential regions with
negatively correlated degrees of extension correspond to Minkowski r-metrics with
r<1. It seems reasonable, therefore, to conclude that there is some psychological
impetus for restricting the family of Minkowki r-metrics considered in cognitive
modeling to the range 0<r�2.

DIMENSIONALITY DETERMINATION

While it has been argued that the minimization of the error measure given in
Eq. (1) is a nontrivial optimization problem, particularly when the representational
space is one-dimensional (see Shepard, 1974), a number of gradient descent based
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2 Although multidimensional scaling techniques have been developed (e.g., Cox 6 Cox, 1991;
Lindman 6 Caelli, 1978) that operate in spaces not accommodated by the Minkowskian family of
metrics.

3 Despite the theoretical elegance of this association between stimulus structure and metric structure,
it should be acknowledged that there are empirical findings (e.g., Maddox 6 Ashby, 1998; Potts, Melara,
6 Marks 1998) that question the adequacy of the simple form of the relationship often assumed.



(e.g., Demartines 6 He� rault, 1997; Kruskal, 1964) and other (e.g., Cohen, 1997;
Klock 6 Buhmann, 1997) techniques have been proposed that appear to generate
useful solutions. However, a second fundamental problem, that of determining the
appropriate dimensionality of the coordinate space in which the representative
points are to be embedded, has been less satisfactorily addressed.

The commonly advocated practice for dimensionality determination (e.g.,
Davison, 1983, pp. 91�92; Schiffman, Reynolds, 6 Young, 1981, pp. 10�13) is a
heuristic one of seeking a relatively sharp drop or elbow in the pattern of change
of the error measure across representational spaces of different dimensionalities4.
Usually, this is accomplished through some form of visual inspection or by compar-
ing obtained error values to baselines generated by Monte Carlo studies. Unfor-
tunately, it has often been noted (e.g., Borg 6 Lingoes, 1987, p. 68; Grau 6 Nelson,
1988) that the pattern of change of data-fit across dimensionality, rather than con-
taining an elbow, is often better characterized as one of smooth and gradual
decline. Accordingly, additional prior information regarding the stimulus domain or
similarity data, including notions of subjective substantive interpretation or beliefs
regarding the precision of the data, are also often introduced into the dimen-
sionality decision-making process in an informal and ad hoc manner.

Clearly, these practices can act to exaggerate the well-documented problems
(Shepard, 1974) of deciding upon representations of spuriously low dimensionality
to facilitate visualization or representations of inappropriately high dimensionality
to accommodate almost all of the variance in empirical data. Similarly, in terms of
cognitive modeling, it is imperative that a representation of the stimulus domain is
chosen that captures only those relationships between stimuli that are important for
the cognitive process being modeled. A failure to include all relevant dimensions of
the underlying psychological representation will often mean that necessary informa-
tion is simply not available, whereas the inclusion of spurious dimensions may
interfere with the representational structure required to model a cognitive process.

From a more general modeling perspective, the issue of determining the
appropriate dimensionality of a multidimensional scaling representation is a
familiar and pervasive one, addressed by what is variously referred to as Ockham's
Razor or the Principle of Parsimony. In essence, it concerns the trade-off between
providing the ability for a model to accommodate the data that it must seek to
explain while simultaneously ensuring the complexity of the model is minimized so
that it is capable of generalization and prediction. One way of tackling this general
dilemma, previously adopted in both psychological (e.g., Myung 6 Pitt, 1997) and
other modeling, is through the adoption of Bayesian approaches to model selection
(see Kass 6 Raftery, 1995, for an overview). The basic notion is one of considering
the evidence provided for various models by a particular set of data, taking into
account both the descriptive adequacy and the inherent complexity of those models.
A measure of model goodness, known as the Bayesian Information Criterion (BIC)
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4 While there are at least two multidimensional scaling techniques (Lee, 1997; Shepard, 1962) that
attempt to determine automatically the dimensionality of the representations they derive, it is fair to
observe that neither could claim a rigorous and principled basis for this determination. Certainly, neither
technique is widely employed to generate multidimensional scaling solutions.



(Schwarz, 1978), is perhaps the simplest of these approaches and seems well suited
to addressing the problem of dimensionality determination in multidimensional
scaling.

A BAYESIAN INFORMATION CRITERION FORMULATION

The BIC takes the general form

BIC=&2 log( p(ML))+P log N, (3)

where p(ML) is the maximum likelihood estimate of the model, P is the number of
parameters in the model, and N is the sample size. Qualitatively, it can be seen that
this measure increases whenever either model complexity, as measured by the
number of model parameters, increases or when the model's accommodation of the
data worsens. Accordingly, the candidate model with the minimal BIC value is to
be preferred.

Clearly, however, to apply the BIC to multidimensional scaling, it is necessary to
provide a probabilistic formulation of the data-fit exhibited by different spatial con-
figurations. Following Tenenbaum's (1996) treatment of additive cluster modeling
(Shepard 6 Arabie, 1979), this seems naturally achieved by assuming that the prob-
ability of a set of target proximities, given a particular spatial configuration of
dimensionality m, has a Gaussian distribution with common variance _2,

p (D | m, D� ) B exp \&
1

2_2 :
i< j

(dij&d� i j)
2+ , (4)

where D=[dij] and D� =[d� ij].
It is important to note that this formulation, while not unrelated, differs

significantly from previous probabilistic characterizations of multidimensional
scaling developed by Ramsay (1977) and Takane (1978a), in that measures of simi-
larity, rather than dissimiliarity, are assumed to be log-normally distributed. The
current proposal follows from the acceptance of Shepard's (1987) empirical and
theoretical evidence in favor of an exponentially decaying relationship between
similarity and distance, which allows similarity measures to be converted into
proximities in a psychological space. In contrast, the previously proposed dis-
similarity-based formulations seem to have been less rigorously motivated, as
evidenced by statements such as ``the author tends to favor lognormal distribution
as a first guess at the behavior of dissimilarity data'' (Ramsay, 1977, p. 246).

While, on this basis, it seems clear that the current probalistic formulation has
a more principled grounding in the context of cognitive modeling it is, nevertheless,
fair to observe that both Ramsay's (1977, 1978, 1980, 1982) and Takane's (1978a,
1978b) maximum likelihood multidimensional scaling techniques fare relatively well
with regard to the issue of dimensionality determination. Within their probabilistic
frameworks, a number of useful but underutilized approaches to comparing
representations of different dimensionality are developed, including chi-squared
tests and comparisons based on the Akaike Information Criterion (AIC) (Akaike,
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1974). Indeed, it should be acknowledged that the AIC measure is closely related
to the BIC measure currently being proposed (see, for example, Myung 6 Pitt,
1997). There are, however, considerable grounds for asserting the superiority of the
current choice. First, it has been shown (Kashyap, 1980), in the context of
autoregressive models, that the AIC has a finite probability of incorrect model
selection that is never less than approximately 160, even when infinite data are
available. Second, the results of a very thorough series of comparative tests under-
taken by Luetkepohl (1985) indicate that the BIC estimates the correct dimen-
sionality of a model most often and generally outperforms the AIC on other perfor-
mance measures. Importantly, in the context of the cognitive modeling application
of multidimensional scaling, these differences are most pronounced when dealing
with small sample sizes. Most fundamentally, as argued by Kass and Raftery (1995,
p. 790) the AIC is appropriate ``only if the precision of the prior is comparable to
that of the likelihood.'' In terms of the construction of psychological spaces by mul-
tidimensional scaling, this is certainly not the case, since the prior assumption made
explicit by Shepard (1987) is that each point in a multidimensional space is equally
likely to be a representative point, effectively ensuring that derived solutions are
almost entirely constrained by the available similarity data.

In any case, under the probabilistic interpretation given in Eq. (4), the logarithm
of the maximum likelihood estimate is, ignoring an additive constant, proportional
to the minimum error measure attained. In an m dimensional space, a multidimen-
sional scaling model effectively employs mn parameters, since it contains m coor-
dinate values for each of the n objects that have been derived. Furthermore, in an
n_n symmetric dissimilarity matrix, these parameters are constrained by a total of
n(n&1)�2 data values. Accordingly, a multidimensional scaling formulation of the
BIC measure takes the form

BIC=
1
s2 :

i< j

(dij&d� i j)
2+mn log \n(n&1)

2 + , (5)

where s is a sample estimate5 of the data precision population parameter _.
The intended role of s is one of quantifying the inherent precision of the data,

independent of its subsequent application to multidimensional scaling or any other
type of cognitive representational analysis. As Zinnes and Mackay (1992, p. 36)
summarize, in a slightly different context, ``for individual analyses, the variances...
reflect the degree of unfamiliarity or uncertainty that the individual has concerning
the nature of the stimulus [proximities]... for group analyses, the variances instead
indicate how heterogenous the people in the group are with respect to their percep-
tion of stimulus [proximities].''

In terms of the empirical collection of similarity and dissimilarity data, the
second of these conceptions is the most important, since the established and
prevailing practice (e.g., Ekman, 1954; Gati 6 Tversky, 1982; Gregson, 1976;
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Johnson 6 Tversky, 1984; Kruschke, 1993) is to form similarity or dissimilarity
matrices by averaging the individual ratings or confusion probabilities of a large
number of subjects. That is, given a set of individual proximity matrices Dk=[d k

ij]
derived from the data collected from each of k=1, 2, ..., K subjects, it is the
averaged proximity matrix D= 1

K [�k d k
ij]=[dij] that is used to generate a multi-

dimensional scaling representation. In this case, the natural approach to determin-
ing s is to calculate the average of the standard deviations for each of the pooled
cells in the final proximity matrix, as follows:

s=
1

n(n&1)�2
:

i< j
��k (d k

ij&dij)
2

K&1
. (6)

This estimate of data precision is entirely determined by the raw data and may
be calculated before fitting multidimensional scaling representations with different
dimensionalities to the averaged proximity matrix. The evaluation of BIC measures
for each of these candidate representations is then straightforward, requiring the
substitution of s into Eq. (5) and using the known parametric complexities and
residual errors. The representation with the minimal BIC value may then be taken
as constituting an appropriate compromise between the need to accommodate the
original data and the requirement to minimize the dimensionality of the representa-
tional model.

It is worth emphasizing the role of s in forcing an explicit and quantitative
estimate of data precision to be made as part of the complexity analysis. Through
the averaging process, it is possible for two proximity matrices to be identical in
terms of their individual entries, but to have different associated levels of precision.
Under the approach being advocated here, these two matrices may demand multi-
dimensional scaling representations with different levels of complexity. This allows
precise data collected, say, from domain experts exhibiting close agreement in their
judgments to be represented using many dimensions, while ensuring that less
precise data are not over-fit by a similarly complicated representation.

The data precision estimate s also offers some promise in addressing concerns
raised by Ashby, Maddox, and Lee (1994) regarding the interpretation of multi-
dimensional scaling analyses that use pooled data. These authors note that multi-
dimensional scaling models are often observed to provide less convincing accounts
of single-subject data than corresponding averaged data and present an insightful
theoretical account of this phenomenon in terms of the geometrical effects of the
averaging process. In general, there would seem to be two important potential
sources of disagreement between subjects in observed similarity or dissimilarity
judgments of stimuli. Besides fundamental differences in the perceived psychological
similarity or dissimilarity of presented stimuli, there is also the possibility of deci-
sional noise being introduced by crude measurement instruments, such as low-
resolution ratings scales. To the extent that averaging helps smooth the noise aris-
ing from this decision-making process, it may well be justified, although a better
solution would be to use measurement instruments that are not arbitrarily quan-
tized. If it is the more fundamental perceptual source of disagreement that is being
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alleviated, however, it is clear that ``averaging across subjects changes the underly-
ing psychological structure of the data'' (Ashby et al., 1994, p. 147), and the entire
procedure is invalidated. The estimated value of data precision given by s should
be of some utility in this regard, since it measures the extent to which the similarity
or dissimilarity judgments of individual subjects differ and provides a basis on
which to decide whether a pooled proximity matrix is sufficiently precise to justify
a multidimensional scaling representation.

MONTE CARLO EVALUATION

As a preliminary examination of the validity, robustness, and general behavior of
the BIC measure for determining the dimensionality of multidimensional scaling
representations, a Monte Carlo study was undertaken. For 10, 20, 40, and 80 point
domains, a total of 25 artificial configurations was constructed in spaces of each
dimensionality between 1 and 7 by independently and uniformly selecting random
points within the unit hypercube of the required dimensionality6. The matrix of
interpoint distances D was then generated according to a given Minkowski
r-metric.

For each of these configurations, the so-called pinning variant of gradient descent
(Demartines 6 He� rault, 1997) was employed to generate 10 multidimensional scal-
ing solutions, using different initial locations, in spaces of each of the seven possible
dimensionalities. The iterative learning rule by which this was accomplished took
the form

pnew
jk = pold

jk +*(dij&d� ij) d� 1&r
ij | pik& pjk | r&1 sgn( pik& pjk) \j{i, (7)

where * is a learning rate parameter fixed at 0.05, and sgn( } ) is the signum function.
The effectiveness of this optimization procedure was verified by examining its

ability to recover noise-free configurations generated using both city-block and
Euclidean metrics. For each of the 7_25=175 configurations, one of the 10 alter-
native solutions of the correct dimensionality was found that accounted for at least
99.9990 of the variance of the data. Visual inspection of several of the low dimen-
sional solutions confirmed that the original relationship between representative
points had been recovered. Although Procrustes analysis (Sibson, 1978) could have
been employed to provide similar confirmation for higher dimensional Euclidean
cases, this seemed unnecessary given the accuracy of the recovery. The evident
ability of the optimization approach to recover non-Euclidean configurations is
particularly important, given doubts raised (Arabie, 1991; Hubert, Arabie, 6

Hesson-Mcinnis, 1992) about the capability of many multidimensional scaling
techniques in this regard.

The ability of BIC measures to determine known spatial dimensionality in the
more realistic case of noise-peturbed target proximities was examined using con-
figurations that incorporated the independent cell-wise addition of zero mean
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FIG. 1. Confusion matrices, using different values of s, for the noise peturbed 10, 20, 40, and 80
object city-block configurations.

Gaussian noise with a standard deviation7 of 0.10. The minimal error value across
the 10 alternatives for each of the seven dimensions was used to find BIC measures
from which, upon specifying a particular estimate s of _, the minimum value was
selected, indicating the determined dimensionality of the original space.

Figures 1 and 2 provide graphical summaries of the confusion matrices for this
process of dimensionality determination in the city-block and Euclidean cases,
respectively, as they vary across domain cardinality and accuracy of the estimate of
data precision. As indicated, the rows in Figs. 1 and 2 correspond to the 10, 20, 40,
and 80 object configurations, while the columns correspond to the specified choices
of s. Each confusion matrix takes the form of a 7_7 grid, oriented in the conven-
tional fashion, with the value of each cell being indicated by the size of the square
located in the appropriate position on the grid. Squares corresponding to cells on
the main diagonal, indicating correct dimensionality determination, are depicted in
black, while the remaining squares are shown in white. To assist in the interpreta-
tion of this form of graphical representation, the upper-left confusion matrix in
Fig. 1, resulting from dimensionality determination for the 10 object configuration
using s=0.02, is detailed in Table 1.

Figures 1 and 2 are very similar and indicate that the natural tendency for the
BIC measure is to overestimate dimensionality when precision is overestimated and
underestimate dimensionality when precision is underestimated. This pattern of
results is to be expected, since the incorporation of additional dimensions in precise
data is warranted, but corresponds to the fitting of noise when the belief in preci-
sion is mistaken. In contrast, too few dimensions are included when the mistaken
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FIG. 2. Confusion matrices, using different values of s, for the noise peturbed 10, 20, 40, and 80
object Euclidean configurations.

assumption is made that the data do not have the level of precision required to
justify the fitting of additional dimensions.

The practical implication of these results is to caution against the use of estimates
of data precision that are not calculated directly from available raw data. There are
clearly many factors that have the potential to influence the precision of empirically
collected similarity or dissimilarity data. The various experimental methodologies
commonly used to gather this data��ratings scales, sorting tasks, identification
tasks, and so on��are likely to have different impacts upon precision. The nature
of the stimulus domain under consideration, and the particular set of stimuli
selected for an experimental task from this domain, will also influence the final
precision of similarity or dissimilarity data. In addition, it seems possible that there
may be significant second-order interactions between stimuli and methodology, so
that similarity or dissimilarity data are more precisely gathered using different

TABLE 1

Confusion Matrix, Using s=0.02, in the 10 Object
City-Block Domain

Determined dimensionality
1 2 3 4 5 6 7

1 1 18 6 0 0 0 0
2 0 6 11 8 0 0 0

True 3 0 0 1 15 9 0 0
dimensionality 4 0 0 0 5 20 0 0

5 0 0 0 3 8 13 1
6 0 0 0 1 14 10 0
7 0 0 0 0 7 15 3
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experimental tasks for different stimulus sets. All of these possibilities place a caveat
on the generalizability of an estimate s calculated from one data set to another
stimulus domain or to the same domain evaluated in a different way.8

Figures 1 and 2 also reveal that the characteristic pattern of dimensional under-
and overestimation is most pronounced for configurations containing relatively few
objects. Indeed, it is clear that the dimensionality of the 10 object domain is only
determined accurately if it is, at most, two dimensional, while the 20 and 40 object
domains seem to support dimensional upper limit of about 3 and 5 respectively.
This conclusion concurs with established heuristic suggestions (see Schiffman,
Reynolds, 6 Young, 1981, p. 24 for details), and better grounded empirical
guidance (Rodgers, 1991), regarding the number of stimuli required in multidimen-
sional scaling studies to generate spatial representations of various dimensionalities.
In other words, it is accepted practice to limit, a priori, the dimensionality of
derived multidimensional scaling representations on the basis of the cardinality of
the stimulus set, and, within these bounds, the BIC measure is capable of accurate
dimensionality determination when a moderately accurate estimate of data preci-
sion is supplied. In any case, the dependence on the accuracy of this estimate
weakens as more objects are included in the configuration to the extent that the
dimensionality of an 80 object configuration is determined correctly across some-
thing approaching an order of magnitude in the quantitative estimate made
regarding data precision.

DEMONSTRATION OF THE CRITERION

Kruschke (1993) examined the ability of the ALCOVE connectionist model to
emulate human performance on various categorization tasks, using a geometric
stimulus set consisting of rectangles that assumed one of four possible height values,
with an interior segment that varied across four possible lateral positions. Of the 16
possible stimuli that could be generated by the exhaustive combination of these
possibilities, only eight were selected as appropriate for examining the categoriza-
tion phenomena of interest. The nature of the stimuli strongly suggests psychologi-
cal separability, as confirmed by Kruschke's (1993, pp. 35�36) choice of the city-
block metric to underpin the psychological representation used in modeling.

The representation used by Kruschke (1993) was constructed on the basis of
empirical similarity ratings formed by averaging across a total of 400 observations
for each possible stimulus pair. After converting each of the individual similarity
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TABLE 2

Standard Deviations of Each of the Normalized Target Proximities for the Rectangle Domain,
Based on the Raw Similarity Ratings from Kruschke's (1993) Experiment

Second stimulus
1 2 3 4 5 6 7 8

1 �� 0.080 0.084 0.126 0.122 0.160 0.140 0.137
2 0.061 �� 0.114 0.087 0.141 0.129 0.153 0.1389
3 0.099 0.105 �� 0.145 0.091 0.156 0.144 0.158

First 4 0.105 0.106 0.136 �� 0.163 0.097 0.160 0.131
stimulus 5 0141 0.153 0.080 0.169 �� 0.150 0.111 0.131

6 0.145 0.123 0.167 0.082 0.137 �� 0.121 0.124
7 0.124 0.154 0.113 0.166 0.094 0.152 �� 0.052
8 0.146 0.144 0.135 0.126 0.111 0.112 0.078 ��

ratings to a proximity rating using an exponential decay transformation, the
standard deviations for the normalized proximity between each pair of stimuli were
calculated and are shown in Table 2. It can be seen that the standard deviations are
both reasonably similar and do not seem to exhibit any systematic or marked
deviation from symmetry. On this basis, following the practice of Kruschke (1993)
with regards to the similarity measures, the matrix shown in Table 2 was made
symmetric by pairwise averaging, resulting in a range of standard deviations
between 0.065 and 0.166. The average value of these standard errors was calculated
according to Eq. (6), giving an estimate of data precision s=0.125 for this data set.

The same multidimensional scaling algorithm developed for the Monte Carlo
analysis was used to find representations in spaces having between one and seven
dimensions, all operating under the city-block metric. The residual errors obtained
from this process, together with the known parametric complexities and estimate of
data precision, were then substituted into Eq. (5) to give BIC values for each of the
candidate representations. In addition, BIC values for data precision estimates of
s=0.10 and s=0.15 were obtained, so that the sensitivity of the pattern of change
in the BIC to the s value estimated directly from the data could be examined.
While, as argued earlier, it is important that the estimate of data precision be con-
strained by the raw data available from the empirical process of collection, it is also
prudent to examine the extent to which dimensionality determination relies on this
estimate. Even using the same collection methodology with the same stimulus set,
it is likely that estimates of data precision will vary from experiment to experiment.
The peturbation of the estimated s value provides a simple mechanism for examin-
ing the robustness of the conclusions of a complexity analysis to these effects.

The results of this analysis for the Kruschke (1993) data are shown in Fig. 3,
which shows the pattern of change of the BIC as the dimensionality of the underly-
ing representational space increases, for each of the three estimates of data preci-
sion. Also shown, against the right hand scale, is the percentage of variance in the
target proximity data explained by the best fitting configuration of each dimen-
sionality. It can be seen that the minimal BIC measure for each of the assumptions
regarding data precision occurs when the dimensionality is two, corresponding to
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FIG. 3. BIC values (left hand scale) for the rectangle data, using s values of 0.10, 0.125, and 0.15
(top to bottom). The variance explained (right hand scale) for the best fitting configuration of each
dimensionality is shown by the broken line.

FIG. 4. Best fitting two dimensional configuration for the rectangle domain (cf. Kruschke 1993,
Fig. 8).
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a marked elbow in the variance explained index of data accommodation. It is
reasonable to note that, for this data set, the appropriate dimensionality could have
been heuristically determined solely on the basis of a measure of data-fit with con-
siderable confidence. In general, however, the BIC approach provides a principled
and objective means to make this decision for data that are more problematic and,
unlike the detection of an elbow by a human observer, are readily amenable to
automation. The choice of the Kruschke (1993) data to demonstrate the application
of the BIC was largely based on the availability of the raw data needed to estimate
s directly. Unfortunately, the great majority of published similiarity or proximity
matrices obtained by averaging across subjects do not provide information regard-
ing the variances of the individual pairwise measures.

In any case, the best fitting two dimensional configuration is shown in Fig. 4,
with depictions of each of the stimuli being placed at their derived locations. The
spatial model is entirely consistent with the explicit procedure by which the stimuli
were constructed, in the sense that the x-axis corresponds to the lateral position of
the interior segments while the y-axis corresponds to the height of the rectangles.
It is also worth noting that the representation shown in Fig. 4 is visually identical
to that presented by Kruschke (1993, Fig. 8), upon which the reported cognitive
process modeling was based.

DISCUSSION

The Monte Carlo evaluation and practical application presented above suggest
that the BIC has considerable utility in terms of evaluating and developing multi-
dimensional scaling representations for cognitive modeling. When a spatial con-
figuration appropriately represents the similarity structures observed within a
domain, the BIC measure provides a simple and principled means of evaluating the
relative evidence in favor of configurations with different dimensionalities. In this
way, a model may be formulated with sufficient dimensionality to accommodate the
similarity relationships without introducing the unnecessary complexity of super-
fluous dimensions. Furthermore, the evaluation of the BIC allows for��indeed
requires��information regarding the precision of the available data to be explicitly
and rationally introduced into the decision process of dimensionality determination.
For these reasons, the BIC approach to dimensionality determination seems to con-
stitute a significant advance on the heuristic search for error `elbows' that charac-
terizes current practice.

There are, however, several shortcomings of the suggested approach that should
be acknowledged. First, it is important to understand that the BIC measure
represents only an approximation to the true Bayesian measure of model goodness
(see Kass 6 Raftery, 1995, p. 778). In particular, the BIC considers only what
Myung and Pitt (1997) term the number of parameters component of model com-
plexity and, as a consequence, measures model complexity solely in terms of
increases in dimensionality. A consequence of this is that the BIC is insensitive to
the component of model complexity Myung and Pitt (1997) term the functional
form component, which relates to the different levels of complexity that are
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involved in different forms of parametric interaction within a model. In the context
of multidimensional scaling representations, this is a significant shortcoming, since
there are both theoretical grounds and empirical evidence (Shepard, 1974) suggest-
ing that non-Euclidean distance metrics are generally capable of achieving more
error-free representations than the Euclidean metric. Presumably, these differences
arise from variations in the inherent complexity of the way in which the coordinate
locations of a spatial representation interact, as dictated by different distance
metrics. Accordingly, the use of the BIC to compare spatial representations
generated within coordinate spaces using different distance metrics is not justified.
Clearly, given the importance of being able to use multidimensional scaling
representations of integral, separable, and other stimulus domains in cognitive
modeling, the extension of the general Bayesian framework for model comparison
to consider this issue constitutes a worthwhile topic for future research.

A second, more general, shortcoming concerns the need to retain the criterion of
substantive interpretability in model generation noted by Shepard (1974). While, as
argued in the Introduction, it is inappropriate to base dimensionality decisions
solely upon grounds of interpretability, the BIC measure is only sensitive to
evidence related to the data-fit and parametric complexity of the derived model.
Any exercise in model building should be constrained by both theory and data,
which means that both substantive interpretation (theory) and a measure such as
the BIC (data) should be taken into account when considering the relative merits
of various multidimensional scaling representations.
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