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Abstract. Additive clustering was originally developed within cognitive psychology to enable the development
of featural models of human mental representation. The representational flexibility of additive clustering, however,
suggests its more general application to modeling complicated relationships between objects in non-psychological
domains of interest. This paper describes, demonstrates, and evaluates a simple method for learning additive
clustering models, based on the combinatorial optimization approach known as Population-Based Incremental
Learning. The performance of this new method is shown to be comparable with previously developed methods
over a set of ‘benchmark’ data sets. In addition, the method developed here has the potential, by using a Bayesian
analysis of model complexity that relies on an estimate of data precision, to determine the appropriate number of
clusters to include in a model.

Keywords: additive clustering, population-based incremental learning, PBIL, Bayesian information criterion,
BIC, cognitive modeling

Introduction

Additive clustering

Additive clustering models, developed by Arabie and Shepard (1973; see also Shepard,
1974; Shepard & Arabie, 1979) in the context of cognitive modeling, provide simple yet
powerful accounts of the observed similarities between sets of stimuli. Central to additive
clustering is the fundamental premise it shares with all clustering models: that groups of
objects in a domain may, in some context, be treated as equivalent. As Shepard and Arabie
(1979, p. 91) argue, however, “generally, the discrete psychological properties of objects
overlap in arbitrary ways”. Accordingly, additive clustering does not enforce either of the
constraints that limit partitioning and hierarchical clustering approaches. Unlike partitioning
clustering approaches, additive clustering allows each stimulus to belong to any number of
clusters and, unlike hierarchical clustering approaches, additive clustering places no ‘nest-
ing’ constraints upon the sets of stimuli that may be encompassed by successive clusters.
Rather, additive clustering characterizes stimuli in terms of a series of discrete, potentially
overlapping properties.

Formally, an additive clustering representation involving m clusters and n sti-
muli is defined by an n × m matrix of binary membership variables F = [ fik],



40 M.D. LEE

where:

fik =
{

1 if stimulus i is in cluster k

0 otherwise.

Using this representation, the observed similarity between each pair of stimuli S = [si j ] is
considered to have arisen from the clusters to which both belong. In particular, if the kth clus-
ter is assigned a weight wk , denoting its importance or salience, then the estimated similarity
of the i th and j th stimuli is the sum of the weights of the common clusters, as follows:

ŝi j =
∑

k

wk fik f jk .

Under this simple similarity model, the representational flexibility of additive clustering has
allowed the development of convincing accounts, in several stimulus domains, of the com-
plicated patterns of interaction between different sources of stimulus similarity evident in
human judgments (Hojo, 1982; Lee, 1999b; Shepard & Arabie, 1979; Tenenbaum, 1996).
For example, using data measuring the ‘abstract conceptual similarity’ of the numbers
0–9, Tenenbaum (1996) developed an 8 cluster model, explaining in excess of 90% of the
variance in the data, that incorporated clusters relating to both the numerical magnitude
(e.g., {1, 2, 3, 4} and {6, 7, 8, 9}) of the numbers, and various arithmetic concepts (e.g.,
{2, 4, 8} and {3, 6, 9}). As Tenenbaum (1996) argues, to capture the human judgments of
similarity in this way “an overlapping clustering model is necessary . . . to accommodate
the multiple causes of similarity”.

Despite reported successes predominantly relating to psychological measures of similar-
ity, there is no fundamental reason for restricting additive clustering analyses to cognitive
modeling. In many non-psychological modeling tasks, the target domain of interest is nat-
urally characterized in terms of a set of objects, related to each other through measures of
pairwise similarity (Lee, 1999a). A host of measures, such as ratings of similarity, indices
of correlation or proximity, counts or probabilities of co-occurrence, confusion, or substitu-
tion, or any other measures which might broadly be termed ‘associative’, are all amenable
to interpretation as similarities. In addition, sets of objects that are best characterized in
terms of quantitative lists of properties may be subjected to any distance metric or various
other comparative techniques to provide measures of the similarity between each pair of
objects (Cox & Cox, 1994).

Clearly, the notion of representing domains of interest in terms of their constituent objects,
and the strength of the relationships between them, is a very general one. Given the success
of additive clustering models in developing meaningful psychological representations from
this sort of information, it seems likely that additive clustering techniques may be amenable
to more general application.

Limiting additive clustering complexity

Previous techniques

Typically, the cluster membership variables F and weights w = (w1, . . . , wm) extracted
from a given similarity structure S are determined by minimizing an error measure of the
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form:

E =
∑
i< j

(si j − ŝi j )
2.

It is generally recognized that the binary nature of the cluster membership variables makes
this a difficult optimization problem and, accordingly, a wide variety of extraction tech-
niques have been proposed. These include mathematical programming (Arabie & Carroll,
1980; Chaturvedi & Carroll, 1994), qualitative factor analytic (Mirkin, 1987), extraction
and regularization (Lee, 1999b; Shepard & Arabie, 1979), and probabilistic expectation-
maximization (Tenenbaum, 1996) approaches. While all of these techniques have short-
comings, it is probably fair to suggest that they generally achieve sufficiently good minima
to derive models of some theoretical and practical utility.

As noted by Shepard and Arabie (1979, p. 98), however, the ability to specify an arbi-
trarily overlapping cluster structure, when coupled with the ability to manipulate cluster
weightings, enables any similarity structure to be accommodated perfectly by an additive
clustering model. This means that E can always be reduced to zero or, equivalently, that
the variance of the similarity data accounted for by the model, which is measured by:

v = 1 − E∑
i< j (si j − s̄)2

, (1)

where s̄ is the arithmetic mean of the similarity values, can always assume unity. While
the modeling flexibility afforded by additive clustering is clearly desirable in terms of
providing an ability to accommodate similarity data, the introduction of unconstrained
and parameterized cluster structures potentially detracts from other fundamental modeling
goals, such as the achievement of interpretability, explanatory insight, and an ability to
generalize accurately beyond given information.

Previously developed techniques for learning additive clustering models have most often
addressed this potential difficulty by limiting the number of clusters extracted to some
pre-determined number. A rationale for making this choice is rarely articulated, although
Shepard and Arabie (1979, p. 102) suggest that for an n stimulus domain it is appropriate
to seek a model accounting “for at least 80% of the variance . . . with no more than about n
weights in most cases”. In general, however, the development of additive clustering models
does not appear to have been explicitly or systematically constrained by an analysis which
balances the need to improve a model’s fit to the data, with the competing need to limit
model complexity.

Bayesian complexity measure

Lee (2001b) presented a simple means of quantitatively addressing this balance using the
Bayesian Information Criterion (BIC), an established and well understood measure that
incorporates both data-fit and model complexity (Schwarz, 1978; see also Kass & Raftery,
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1995; Myung & Pitt, 1997). The BIC takes the general form:

BIC = −2 log p (ML) + P log N ,

where p (ML) is the maximum probability density of the model, P is the number of param-
eters in the model, and N is the sample size. Cast in terms of additive clustering models,
the maximum likelihood estimate is the probability of a similarity matrix S, given the de-
rived cluster matrix F, and associated weight values w. An appropriate formulation of this
probability is provided by Tenenbaum (1996), in which it is assumed that p (S | F, w) has
a Gaussian distribution with common variance σ 2, as follows:

p (S | F, w) ∝ exp

(
− 1

2σ 2

∑
i> j

(si j − ŝi j )
2

)
= exp

(
− E

2σ 2

)
. (2)

By equating the number of parameters in an additive clustering model with the number of
cluster weights1, ignoring an additive constant arising from the coefficient of proportionality,
and observing that a similarity matrix for n objects incorporates n(n − 1)/2 samples, an
additive clustering formulation of the BIC measure is given by:

BIC = E

s2
+ m log

(
n(n − 1)

2

)
, (3)

where s is a sample estimate2 of the data precision population parameter σ .
It should be noted that the BIC has limitations as a measure of model ‘goodness’, since

it is derived as an asymptotic approximation to posterior probability of a model being
true, and relies on a number of simplifying assumptions (Schwarz, 1978; see also Kass &
Raftery, 1995). There are good grounds for preferring the BIC over the AIC (Akaike, 1974),
because the BIC places relatively greater importance on likelihoods than priors (Kass &
Raftery, 1995, p. 790). This is appropriate, since additive cluster modeling usually aims to
reveal the latent structure in similarity data, which requires that model selection primarily be
constrained by the data at hand. More serious challenges to the BIC arise from the fact that it
counts only the number of parameters as a measure of model complexity, and is insensitive to
the ‘functional form’ component of model complexity caused by differences in parametric
interaction (Myung & Pitt, 1997). There are a number of alternative measures that do
account for parametric interaction (see Kass & Raftery, 1995), including new results based
on differential geometry (Myung, Balasubramanian, & Pitt, 2000), and at least one of these
measures has been applied specifically to additive clustering models (Lee, 2001b). While
many of these alternatives are theoretically preferable, they are also considerably more
difficult to incorporate into an algorithm for model generation, and require significantly
greater computational resources. In this sense, the BIC could be argued to represent a
practical balance between the accuracy of results and simplicity of implementation. Perhaps
the most significant practical limitation of the BIC is that it is a conservative measure
(Raftery, 1999), in the sense that it has a tendency to favor additive clustering models with
too few clusters. It could also be argued, however, this conservatism is the lesser of two
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evils. As Grünwald (2000, p. 148) concludes: “If you overfit, you think you know more
than you really know. If you underfit, you do not know much, but you know that you do not
know much. In this sense, underfitting is relatively harmless, while overfitting dangerous”.

Measuring data precision

The intended role of s is one of quantifying the inherent precision of the data, independent
of its subsequent application to any particular type of cognitive or other representational
analysis. In terms of the empirical collection of similarity data, the established and prevailing
practice (e.g., Ekman, 1954; Gati & Tversky, 1982; Gregson, 1976; Johnson & Tversky,
1984; Kruschke, 1993) is to form similarity matrices by averaging the individual ratings or
confusion probabilities of a large number of subjects. More formally, given a set of individual
similarity matrices Sk = [sk

i j ] derived from the data collected from each of k = 1, 2, . . . , K
subjects, it is the averaged similarity matrix S = 1

K [
∑

k sk
i j ] = [si j ] that is used. In this case,

the natural approach to determining s is to calculate the average of the standard errors for
each of the pooled cells in the final matrix, as follows:

s = 1

n (n − 1) /2

∑
i< j

√∑
k

(
sk

i j − si j
)2

K − 1
. (4)

This estimate of data precision is entirely determined by the raw data, and may be cal-
culated before fitting any additive clustering model. The evaluation of BIC measures for
candidate models is then straightforward, and the model with the minimal BIC value may
be taken as constituting an appropriate compromise between the need to accommodate the
original data, and the requirement to minimize the parametric complexity of the represen-
tational model.

Unfortunately, it is sometimes the case that the raw ratings data needed to calculate s is
not available. In this case, it is necessary to rely on experience with other averaged similarity
matrices collected in much the same way, as guidance regarding appropriate assumptions
for s. For example, Lee (2001a) examined ratings of the similarity of rectangles with in-
terior line segments used by Kruschke (1993), and found an s value of 0.125. Meanwhile,
unpublished analyses of similarity ratings for simple geometric shapes (Lee, 1998), embed-
ded textures (Woodruff, 1998), and various other stimulus sets (Mark Steyvers, personal
communication) revealed s values between approximately 0.05 and 0.15. Heuristically, it
seems that noise standard deviations under a Gaussian distribution of 5%, 10% and 15%
correspond to what might loosely be termed ‘precise’, ‘average’ and ‘imprecise’ data sets.
Thus, s values of 0.05, 0.10, and 0.15 may reasonably be employed with normalized sim-
ilarity matrices, when the raw data required to generate a first-principles estimate of data
precision is not available.

It is worth emphasizing, however, the importance of s in forcing an explicit and quan-
titative estimate of data precision to be made as part of the complexity analysis. Through
the averaging process, it is possible for two similarity matrices to be identical in terms
of their individual entries, but to have different associated levels of precision. Under the
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approach being advocated here, these two matrices may demand additive clustering repre-
sentations with different levels of complexity. This allows precise data collected, say, from
domain experts exhibiting close agreement in their judgments, to be represented using many
clusters, while ensuring that less precise data are not over-fit by a similarly complicated
representation. Using this argument, it is clear that previous additive clustering algorithms
that have pre-determined the number of clusters to be derived have, effectively, been making
implicit assumptions regarding the level of data precision. Even when the raw data needed
to estimate s in a principled way is not available, it seems appropriate to make this assump-
tion explicitly, by specifying s heuristically, rather than implicitly through constraining the
number of clusters.

A new additive clustering method

A two-stage approach is adopted by the new method for generating additive clustering
representations developed here. In the first stage, for an n object domain, an n cluster model is
learned, and a record is made of the κ clusters with the greatest associated weights considered
during this process. In the second stage, an assumption is made regarding the precision of
the similarity data, and a model is built from these ‘candidate’ clusters on the basis of
minimizing the BIC measure. Although it would be equally possible to apply the BIC in the
case of an algorithm that simply generated candidate additive clustering representations,
there are two reasons for using a two-stage approach. The primary motivation is that, as
with extraction and regularization approaches Lee (1999b), domain specific knowledge,
in the form of collateral information or substantive hypothesis, can potentially be used to
augment or modify the set of candidate clusters. Secondly, in practice, the separation of the
two stages is also useful when the data precision estimate s must be specified heuristically,
since it is relatively computationally efficient to generate models corresponding to a range
of different s values, using the same set of candidate clusters.

Algorithmically, both stages are tackled by adapting the ‘black-box’ combinational
optimization technique known as Population-Based Incremental Learning (PBIL) (Baluja,
1994). Accordingly, before describing the operation of the two stages, it seems worth giving
a generic overview of the PBIL optimization method.

Population-based incremental learning

The basic approach of PBIL is to encode potential solutions to an optimization problem in
terms of a bit string, and maintain and update an explicit measure of the (unconditional)
probabilities describing the state of each of these bits in good solutions. For a problem
that requires α bits to specify a potential solution, this explicit measure takes the form of a
probability vector p = (p1, p2, . . . , pα).

On each iteration, a set of β potential solutions {v1, v2, . . . , vβ} are stochastically gen-
erated according to the current state of p. This means that each vi is a bit string, where
the probability of the j-th bit being 1 is given by p j . Each of these candidate solu-
tions is then evaluated against the optimization problem at hand, giving a set of measures
{�(v1), �(v2), . . . , �(vβ)}.
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After ordering this set, the solution that corresponds to the best evaluative measure, vbest,
is then used to update p with the standard competitive learning rule (see Hertz, Krogh, &
Palmer, 1991):

pnew = (1 − λ) pold + λvbest, (5)

where 0 < λ ≤ 1 is a learning rate parameter. Each element of the probability vector p then
has a small probability µprob of being subjected to ‘mutation’, which involves an additive
shift µshift towards the maximum entropy value of 0.5. The next iteration then commences,
generating another set of candidate solutions according to the updated probability vector.
Across all iterations a record is maintained of the best solution vector found, and the algo-
rithm terminates once a fixed number of evaluations τ have proceeded without improvement
to this best solution.

In both of the applications of the basic PBIL approach employed here, the following
parameter values were used: a total of β = 50 solutions were generated in each potential
solution set, a learning rate of λ = 0.1 was used, the mutation probability was µprob = 0.02
with an associated shift of µshift = 0.05, and the optimization process was terminated after
τ = 5, 000 potential solutions were tried without improvement. These values were deter-
mined, reasonably uncritically, on the basis of values previously employed in tackling var-
ious other optimization problems using PBIL (see Baluja, 1994; Baluja & Davies, 1998),
and proved to work well.

Candidate cluster generation

To generate an n cluster model, the PBIL probability vector p was constructed with α = n2

elements, each initialized to 0.5, encoding the presence or absence of each of the n objects
in the n clusters. Effectively, p serves as a vectorial representation of the probabilities of
the elements in the matrix F being 0 or 1. Each cluster structure represented in the potential
solution set stochastically generated from p was appended with a cluster containing all
stimuli, to accommodate an additive constant in the similarity model. For these augmented
cluster structures, the best-fitting weight vector, in terms of the error measure E , was found
using a standard non-negative least-squares algorithm (Lawson & Hanson, 1974). The actual
minimal values of E were then used to compare the set of potential solutions, choose the
best, and update the probability vector.

During the process of generating and evaluating potential solutions, a record was main-
tained of the κ = 100 clusters within these solutions with the greatest weights. It was these
clusters which served as the candidates for inclusion in the final model generated during the
second stage. For the 10-object numbers domain reported later, this process took about 315
seconds when implemented in Matlab, and run on an 1100 megahertz PC. For the 16-object
phoneme domain reported later, this process took about 1,280 seconds.

Model generation

In the model generation stage, a probability vector p was constructed with β = κ = 100
elements, all initialized to 0.1, encoding the presence or absence of each of the candidate
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clusters from a potential model. After stochastically generating a set of potential models, the
all-encompassing cluster was again added, and the best-fitting weight vector, in terms of E ,
found as before. In this stage, however, the assumption regarding data precision embodied
by the estimate s allowed each potential model to be evaluated in terms of the BIC measure,
considering both the error E and the number of clusters included in the model. Thus, for
each set of potential models, the one that constituted a trade-off between data-fit and model
complexity was used to update the probability vector.

The initial value for the elements of p was set to 0.1 to reflect the fact that, in general,
most of the candidate clusters were excluded from models with relatively low BIC values.
Experience suggests that, unless the similarity data constraining model development is
particularly precise, only about 10% of the candidate clusters, under the specified parameter
regime, are likely to be included in the final model. While there is no fundamental reason why
the theoretically preferable maximum entropy value of 0.5 could not be employed, using an
initial value of 0.1 proved to generate equally good final models with greater computational
efficiency. For example, in relation to the 10-object numbers domain reported later, the
model generation process using the value 0.1 took about 54 seconds on average when
implemented in Matlab, and run on an 1100 megahertz PC. Using the value 0.5 increased
this average running time to about 251 seconds. In terms of scaling to larger problem
sizes, the 16-object phoneme domain reported later took an average of 368 seconds when
using the initial value 0.1.

Evaluation using artificial data

As a basic test of the proposed method for generating additive clustering models, its abil-
ity to recover a known, but noise corrupted, set of clusters with associated weights was
examined. Largely following the methodology adopted by Tenenbaum (1996), a set of 12
stimuli were assigned to 8 clusters with probability 0.5, and cluster weights were chosen
by sampling independently from the uniform distribution on the interval [0.1, 0.6]. The
resultant similarity matrix was then calculated and normalized, and zero-mean Gaussian
noise with a standard deviation of 0.10 was independently added to each similarity value.

In attempting to recover the known additive clustering representation, all three of the
heuristically determined broad assumptions regarding data precision, corresponding to the s
values 0.05, 0.10 and 0.15, were considered. Having derived a set of candidate clusters by
recording the most highly weighted clusters found in learning an 8 cluster model, the model
generating stage was repeated 50 times under each of these precision assumptions.

Figure 1 graphically depicts the results of the 3 × 50 = 150 additive clustering models
generated in this way. Each model is represented in terms of the number of clusters it
contained (along the x-axis), and the percentage of variance in the data it explained (along
the y-axis). Models generated under different assumptions regarding data precision are
shown by different markers. To allow some visual indication of the relative frequency with
which various models were derived, the x location of each of the markers was subjected to
a small random displacement about the appropriate integral cluster cardinality value.

Figure 2 shows the expected complexity controlling behavior of the new method, in
that the assumption of greater data precision leads to models being generated that have
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Figure 1. Performance on 8-cluster artifical data with noise standard deviation σ = 0.10.

greater numbers of clusters, and explain more of the variance in the data. It can be seen
that, when the correct assumption regarding data precision is made by setting s = 0.10,
there are two models, with 7 and 8 clusters respectively, that are frequently generated.
An examination of the actual recovered cluster structures revealed that the best-fitting 8
cluster representation was the one used to generate the data, while the best-fitting 7 cluster
representation simply omitted the least weighted cluster from the generating model. The
frequent recovery of the 7 cluster model provides a concrete demonstrations of the tendency
of the BIC to underfit the data by favoring an additive clustering model with too few
clusters.

Nevertheless, the performance of the new method on this recovery problem, and on several
others examined but not reported in detail here, suggests that it is capable of recovering the
bulk of a noise perturbed additive clustering structure when an accurate estimate of data
precision is available. The main caveat to place on the application of the new method is
that great care should be taken in accepting additive clustering models that assume high
levels of data precision on a heuristic basis. If the true precision of the data does not
meet the same level as the assumed precision, the derived additive clustering model is
likely to have overfit the data, and the less weighted clusters should be interpreted with
caution.
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Figure 2. Performance on the numbers domain.

Comparative applications

Although a claim of this sort is necessarily subjective and open to debate, it is probably
reasonable to argue that there are four previously reported additive clustering models that
are sufficiently impressive to serve as de-facto performance benchmarks. Two of these,
relating to number similarity and consonant phonemes confusion data, were generated
using Tenenbaum’s (1996) technique. The third relates to the social relationships between
industrial workers, and was developed using Mirkin’s (1987) approach, while the fourth
relates to kinship data, and was derived using SINDCLUS. Accordingly, the application
of the proposed new method to these four data sets provides a means for its comparative
evaluation.

Numbers 0–9

As described earlier, Tenenbaum’s (1996) number model relates to human judgments
of the abstract conceptual similarities between the numbers 0–9 collected by Shepard,
Kilpatrick and Cunningham (1975). The actual similarity matrix was generated by averag-
ing ratings both across subjects, and across three conditions—verbal, written-numeral, and
written-dots—of stimulus presentation. Unfortunately, as anticipated earlier, the raw data



LIMITED COMPLEXITY ADDITIVE CLUSTERING 49

needed to estimate the precision of this averaged data are not available, so the heuristically
determined broad assumptions regarding data precision, corresponding to the s values 0.05,
0.10 and 0.15, were again considered.

Figure 2 shows the results of the 3×50 = 150 additive clustering models generated in this
way. As before, each model is represented in terms of its number of clusters and data-fit, with
models generated under different data precision assumption shown by different markers.
Also shown are several models previously derived using the same data, represented in the
same way, but indicated by filled markers.

Figure 2 again graphically depicts the general complexity controlling behavior of the
new method, with greater precision giving more complicated models with better data-fit.
More specifically, however, figure 2 reveals that, using s = 0.15, an 8 cluster model with
data-fit equivalent to that presented by Tenenbaum (1996) was twice derived. Furthermore,
the performance of the new method is clearly better than the original ADCLUS method
(Shepard & Arabie, 1979), since models with the same number of clusters typically explain
10% more of the variance, and there are models with fewer clusters which explain the same
amount of variance.

On the basis of figure 2, two of the more impressive models appear to be those which
exhibit the best data-fit using 8 and 9 clusters. These models are detailed in Table 1, which
lists the clusters, their associated weights, the additive constant, and the percentage of
variance in the data explained. This information confirms that, as suspected on the basis
of their equivalent data-fit, the 8 cluster models generated by the new method and by
Tenenbaum (1996) are identical. The 9 cluster model simply appends a lowly weighted
cluster, almost comprised of the even numbers, which contributes to the explanation of
about another 2% of the variance.

Perhaps the most disappointing aspect of the new method’s performance in the number
domain is that the best-fitting 8 cluster solution was derived relatively infrequently.
Tenenbaum (1996) indicates that this model was the best found in 5 runs of his algorithm,

Table 1. The 8 and 9 cluster number models.

Stimuli in cluster Weight in 8 cluster model Weight in 9 cluster model

2 4 8 0.444 0.353

0 1 2 0.345 0.358

3 6 9 0.331 0.326

6 7 8 9 0.291 0.249

2 3 4 5 6 0.255 0.241

1 3 5 7 9 0.216 0.239

1 2 3 4 0.214 0.232

4 5 6 7 8 0.172 0.183

2 4 6 7 8 – 0.105

Additive constant 0.148 0.129

Variance explained 90.9% 92.8%
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whereas a ratio of closer to 1 in 25 is suggested by figure 2. However, in 50 separate trials
of the new method using an s value of 0.125, the same 8 cluster model was found 7 times.
Indeed, if attention is restricted to only those trials which derived 8 cluster models, the best-
fitting model was found with a success rate of 1 in 2. On this basis, it seems reasonable to
claim that the performance of the new method in the number domain is at least comparable
to that reported by Tenenbaum (1996).

Consonant phonemes

The second benchmark additive clustering model reported by Tenenbaum (1996) relates
to a similarity matrix for 16 consonant phonemes, derived from confusion probabilities
originally collected by Miller and Nicely (1955). Tenenbaum (1996) generated an 8 cluster
model accounting for 90.2% of the variance, and noted its superiority to an 8 cluster solution
generated by the MAPCLUS algorithm (Arabie & Carroll, 1980) that explained only 88.3%
of the variance. Even though the quantitative form of the relationship between cluster num-
bers and data-fit is unknown, both of these models would seem likely to compare favorably
to the best reported ADCLUS model (Shepard & Arabie, 1979), which required 16 clusters
to explain 94.5% of the variance. Therefore, as well as benchmarking the performance of
the new method against Tenenbaum’s (1996) 8 cluster model, it is also of some interest to
examine the way in which this complexity issue is resolved by the application of the BIC
evaluative measure.

To these ends, the phoneme similarity data was used to generate 150 models, once again
employing the three levels of data precision corresponding to s values of 0.05, 0.10 and
0.15. Figure 3 summarizes the results of these trials, and indicates that, when s = 0.05,
the new method frequently generated 8 cluster models with better data-fit than the model
reported by Tenenbaum (1996). In addition, the range of cluster cardinalities in the derived
models suggest that the 16 cluster ADCLUS model corresponds to an implicit assumption
of extremely precise data that seems highly unlikely to be justified, particularly given the
methodological origins of the data in measures of confusion. In any case, Figure 3 indicates
that an 11 cluster model derived by the new method explained more of the variance in the
data than the ADCLUS model.

Table 2 details the best of the 8 cluster models that exhibited greater data-fit than
Tenenbaum’s (1996) model, as well as the frequently derived best fitting 5 cluster model that
explained more than 80% of the variance. The only difference in cluster structure between
the new 8 cluster model and Tenenbaum’s is the inclusion of s̆ in the previously incomplete
cluster of unvoiced consonants, which contributed to the explanation of another 1.6% of the
variance. Meanwhile, the impressive 5 cluster model is seen simply to consist of a subset of
the larger model, selecting the front unvoiced fricatives, unvoiced stops, back voiced stops,
front voiced, and (almost) voiced consonant clusters.

Industrial workers

The third comparative evaluation of the new method involves correlational measures of
similarity derived by Breiger, Boorman and Arabie (1975, Table 3)3 from an observational
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Table 2. The 5 and 8 cluster consonant phoneme models.

Stimuli in cluster Weight in 5 cluster model Weight in 8 cluster model

f θ 0.350 0.399

p t k 0.267 0.162

d g 0.243 0.243

b v ∂ 0.176 0.182

d g v ∂ z z̆ 0.066 0.075

p k – 0.197

m n – 0.127

p t k f θ s s̆ – 0.049

Additive constant 0.034 0.024

Variance explained 81.3% 91.8%

Figure 3. Performance on the consonant phonemes domain.
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Table 3. The 12 cluster industrial worker model.

Stimuli in cluster Weight

W2 W5 I3 0.356

W6 S2 I3 0.223

W5 W6 W7 W8 W9 S4 I1 0.194

W1 W3 W4 S1 I1 0.178

W4 W6 W7 W8 W9 S1 S2 S4 0.176

W7 W8 W9 S2 I3 0.155

W1 W2 I1 0.136

W1 W2 W3 W4 W5 S1 S2 I1 0.127

W1 W2 W3 W4 0.099

W6 W8 W9 S4 0.096

W1 W2 W3 W4 W5 S1 I1 I3 0.067

W1 W3 W4 W7 S1 0.065

Additive constant 0.041

Variance explained 94.8%

study of 14 industrial workers conducted by Roethlisberger and Dickson (1939). As before,
50 trials were conducted at each of three levels of data precision, and the results are presented
in figure 4.

It can be seen, in relation to 7 cluster models, that the benchmark developed by Mirkin
(1987) is not achieved by the new method, with the best fitting model explaining 87.7%,
rather than 89.7%, of the variance in the data. Only once 8 clusters are incorporated is more
than 90% of the variance able to be explained, although this performance remains superior
to that reported for ADCLUS, which required 10 clusters to explain 89.0%. Nevertheless,
under assumptions of data precision corresponding to s values greater than 0.1, which seems
most reasonable, Mirkin’s (1987) solution is likely to be preferable. Perhaps, therefore, the
main contribution of the trials summarized in figure 4 relates to the 12 cluster model
generated under the assumption of precise data, explaining almost 95% of the variance,
which is detailed in Table 3.

Kinship

The final comparative evaluation involves data collected by Rosenberg and Kim (1975)
measuring the similarity of 15 common kinship terms, such as ‘father’, ‘cousin’, and ‘grand-
mother’. These data were calculated from the results a sorting procedure performed by 6
groups of 85 subjects, where each kinship term was placed into one of a number of groups,
under various conditions of subject instruction.

Figure 5 displays the results achieved by the new method on this data, again using 50
trials, and assuming the same three heuristic levels of data precision. Also shown in the
‘benchmark’ performance of the SINDCLUS algorithm (Chaturvedi & Carroll, 1994; see
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Table 4. The 5 and 9 cluster kinship models.

Stimuli in cluster Weight Weight

granddaughter grandfather grandmother grandson 0.295 0.296

aunt cousin nephew niece uncle 0.273 0.223

brother daughter father mother sister son 0.229 0.192

aunt daughter granddaughter grandmother mother niece sister 0.199 0.212

brother father grandfather grandson nephew son uncle 0.198 0.211

brother sister – 0.291

father mother – 0.276

aunt uncle – 0.266

nephew niece – 0.263

Additive constant 0.248 0.242

Variance explained 80.6% 89.8%

Figure 4. Performance on the industrial workers domain.
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Figure 5. Performance on the kinship domain.

also Arabie, Carroll, & DeSarbo, 1987), which found a 5 cluster solution explaining 80.6%
of the variance in the data4.

Figure 5 shows that the new method derives the benchmark SINDCLUS model on 48 out
of the 50 trials where s = 0.15. Table 4 details this model, and the 9 cluster model explaining
89.8% of the variance that is frequently generated when s = 0.10. The 5 cluster model is
readily interpretable in terms of the familial relationships it represents (e.g., the nuclear
family kinships ‘brother’, ‘daughter’, ‘father’, ‘mother’, ‘sister’, ‘son’), and the 9 cluster
model simply appends more detailed breakdowns of several of these relationships (e.g.,
augmenting the nuclear family cluster with the sibling ‘brother’ and ‘sister’, and parental
‘father’ and ‘mother’ clusters).

Discussion

On the basis of these four applications of the new additive clustering method, in which
performance twice met a benchmark (numbers, kinship), once improved upon a benchmark
(phonemes), and once fell short of a benchmark (workers), it seems reasonable to claim
at least comparable performance with the best previously developed methods. Equally
importantly, the potential of the new method to balance the number of clusters included in a



LIMITED COMPLEXITY ADDITIVE CLUSTERING 55

model against improvements in data-fit could extend the capabilities of previous methods.
Without the explicit quantitative Bayesian basis provided by the BIC measure, there is no
guarantee that models generated by any other method correspond to reasonable assumptions
regarding the precision of the data from which they are derived.

One issue not directly addressed by the trials summarized by figures 2–5 is whether
the evident consistency of performance happened to be the result of particularly good
sets of underlying candidate clusters. An investigation of this possibility showed that, in
fact, those clusters ultimately included in the best-fitting models of any cardinality, for all
four domains, were consistently derived by repeated applications of the candidate cluster
generation algorithm. For this reason, it seems unlikely that either using more candidate
clusters, or combining repeated runs of cluster generation would significantly improve the
new method’s performance.

Similarly, a number of other explorations failed to produce a clearly superior method.
Following Baluja and Davies (1997, 1998), the possibility of incorporating knowledge of
the conditional dependencies between the bit string states stored in p was investigated. In
practical terms, the additional computational complexity required to model these dependen-
cies did not prove to have sufficiently large compensating performance benefits. It seems
that available computational resources were better spent generating candidate solutions,
rather than attempting to constrain further the region of the state space being explored. In
particular, attempts to capture the dependencies between stimuli in terms of a single cluster,
using optimal mutual information trees, actually resulted in a worsening of performance.
Whether this observation remains true for domains containing larger numbers of objects
than those examined here remains an open question, although it is worth noting that the
performance of the new method on the largest domain, the phoneme domain, was probably
the most impressive.

There is, however, some scope for further investigation of the candidate cluster generation
approach. In particular, the decision to extract clusters from the process of generating
an n cluster model is somewhat arbitrary. Clearly, if a model with too few clusters is
sought, there is unlikely to be sufficient variety in the candidate cluster set, while the
derivation of a model with too many clusters may prevent a sufficient focus being placed
on good clusters, and also increases computational overheads. The decision to derive an n
cluster model represents a heuristic compromise between these two scenarios, but it may
be possible to choose an appropriate model size for candidate cluster generation on a
more principled basis. This capability would be particularly useful when dealing with
larger stimulus domains, since the main computational burden of the current method lies in
generating the candidate clusters. The possibility of learning simple evaluation functions,
rather than sophisticated probabilistic models, to constrain the search for good clusters or
models (Boyan & Moore, 1998) remains to be explored. In this regard, an attempt to develop
useful evaluation functions which identify key features of good additive clustering models
seems likely to be a worthwhile avenue for future research.

In the meantime, however, the new method for additive clustering developed here has
the advantages of being transparently simple, easily implemented, and reasonably compu-
tationally efficient. It allows for the introduction of collateral information into the process
of model construction, and its progress is amenable to meaningful diagnostic interpretation
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at all stages. On the four benchmark data-sets examined, it has proven to generate mod-
els that rival or better the best previously reported models and, finally, it has introduced a
mechanism that has the potential to address the fundamental issue of additive clustering
model complexity in a practical way.
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Notes

1. The rationale for treating only the weights as parameters is that, given a particular cluster structure, it is
the weights that are free to vary to minimize an error measure. This conceptualization is consistent with
that originally advocated by Shepard and Arabie (1979, p. 102), but it should be noted that an alternative
conceptualization is possible, in which the cluster membership variables are also treated as parameters.

2. It is important to distinguish between the use of the symbol s as a sample estimate of the precision of the data,
and the use of si j to denote the similarity between a pair of stimuli. Fortunately, there is no ambiguity, since
the presence or absence of subscripts distinguishes the two cases.

3. Modified according to the corrections noted by Shepard and Arabie (1979).
4. Although Chaturvedi and Carroll (1994, p. 305) report that the representation explains 81.3% of the variance,

a measure of 80.6% was obtained by finding the best-fitting weights in terms of the version of the data set
used here. Presumably, the discrepancy lies in the data, or in the exact measure of variance accounted for that
was used (e.g., whether self-similarity measures were considered). The important point is that the new method
recovers the same cluster structure as SINDCLUS.
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