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Applying One Reason Decision-making:
The Prioritisation of Literature Searches

Michael D. Lee, Natasha Loughlin, and Ingrid B. Lundberg
University of Adelaide, Australia

The prioritisation of literature searches aims to order the large numbers of articles returned by a simple
search so that the ones most likely to be relevant are at the top of the list. Prioritisation relies on having
a good model of human decision-making that can learn from the articles users select as being relevant
to make predictions about which of the remaining articles will be relevant. We develop and evaluate two
psychological decision-making models for prioritisation: A “rational” model that considers all of the avail-
able information, and a “one reason” model that uses limited information to make decisions. The models are
evaluated in an experiment where users rate the relevance of every article returned by PsycINFO for
a number of different research topics, with the results showing that both models achieve a level of prioritisa-
tion that significantly improves upon the default ordering of PsycINFO. The one reason model is shown
to be superior to the rational model, especially when there are only a few relevant articles. The implications
of the results for developing prioritisation systems in applied settings are discussed, together with implica-
tions for the general modeling of human decision-making.

W’hen a researcher first does a literature search, they
usually are only able to supply general search criteria,
such as one or two keywords, to indicate their broad topic
of interest. Typically, these initial searches will return a large
number of potentially relevant articles. Faced with this infor-
mation overload, one option for the researcher is to refine their
search, and hope that a more manageable list of articles
is returned. Often, however, this refinement is difficult,
because the researcher is unsure exactly what sorts of materials
are available, and there is a need to “sample” or “explore” the
large initial list of articles before a more detailed search can
be constructed with any confidence.

Prioritisation offers a different approach to dealing with the
information overload. The basic idea is to begin presenting the
articles, requiring the user to indicate whether or not that
article is of interest. As each article is examined, prioritisation
acts to re-order the remaining articles so that the relevant ones
are placed at the top of the list. If prioritisation is effective, the
problem of information overload is solved without the user
ever having to construct a refined search. They only need
to work from the top of the prioritised list until they reach the
point where the articles are no longer of sufficient relevance
to be worth pursuing.

While the prioritisation problem has been tackled in a variety
of information retrieval contexts using machine learning
techniques (e.g., Balabanovic, 1998; Macskassy, Dayanik,
& Hirsch 1999; Mehran, Dumais, Heckerman, & Horvitz
1998), it has typically not been tackled from a cognitive model-
ing perspective. This is unfortunate, because prioritisation rests
on the ability to predict whether or not a user will evaluate
an article as a relevant one, and so requires an effective model
of human decision-making to be successful.

In this paper, we develop and evaluate two cognitive models
for the prioritisation of literature searches. One is a “rational”
model, that performs exhaustive calculations, while the other
is a “one reason” model, that requires only limited time by
making assumptions about the nature of its environment. In the
next section, we describe how literature searches are repre-
sented by these models, and how information about them
is learned. We then describe the two models in detail, before

presenting the results of an experiment where both are evalu-
ated on real-world data. Finally, we draw some conclusions
regarding the theoretical implications of the results for under-
standing human decision-making, and the applied implications
for building a literature search prioritisation system.

TWO MODELS OF DECISION-MAKING

Representation and Learning Assumptions

We follow Gigerenzer and Todd (1999), and a substantial body
of other cognitive modelling (e.g., Medin & Schaffer, 1978;
Tversky, 1977), in representing stimuli in terms of the
presence or absence of a set of discrete features or properties,
which we call cues. This means that each article is represented
by information such as the authors of the article, the journal
it appeared in, keywords in the title or the abstract, the
language of publication, and so on.

As the user provides information, rating some articles
as relevant and rejecting others, it is possible to learn how the
individual cues are associated with the different judgments.
At any stage, it is known how many times a cue has been
associated with a previously presented article, and how many
of those articles have been relevant. From these counts, it is
possible to measure the evidence the presence of a cue
provides for a new article being relevant. In effect, the cues
correspond to our representational assumptions, while the
adjustment of evidence values associated with the cues corre-
spond to our learning assumptions.

Following Lee, Chandrasena and Navarro (2002), we adopt
a Bayesian approach to learning. The basic idea is that we start
with complete ignorance about how the cues relate
to relevance, and each time a cue is observed to be associated
with a relevant article, it comes to provide greater evidence
that a new article with the cue will also be relevant. Similarly,
as a cue is associated with more irrelevant articles, it provides
greater evidence that a new article will also be irrelevant.
The basic result from Bayesian statistics (Gelman, Carlin,
Stern, & Rubin, 1995, p. 31) we use is that, if an event (such
as a cue being associated with a relevant article) occurs k times
out of n trials, the best estimate of its underlying probability
is (k+1)/(n+2). Lee, Chandrasena and Navarro (2002) provide
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a more detailed explanation of this Bayesian approach to learn-
ing, with a particular focus on its theoretical advantages over
other methods.

The rational and one reason models we consider both use
cue representations and Bayesian evidence values, but differ
in the way they calculate and combine the evidence values
to reach a final decision. In this sense, the two models make
the same assumptions regarding how people represent and
learn about the articles, but make different assumptions regard-
ing their decision processes in judging relevant articles.

The Rational Model

The “rational” approach assumes that people combine all
of the available information is combined in some (near)
optimal way. This means that the evidence provided by all
of the cues must be weighted and integrated to arrive at a final
decision. Because it uses all of the data, the rational approach
is often regarded as a normative theory of decision-making,
and is central to the decision and utility theoretic frameworks
widely used in the physical sciences, and in behavioural
sciences such as psychology and economics (see Doyle, 1999,
for an overview).

Our version of a rational approach works by estimating the
probability that an article is relevant, as opposed to irrelevant,
on the basis of the cues it has. As it turns out, it is simpler
to calculate this probability on a log-odds scale. This is a
straightforward transformation: a probability of 0.75 means an
event will occur three times out of four, which correspond to
odds of 3:1, or log-odds of In3 =~ 1.10. The log-odds scale has
the advantages of being symmetric about the origin and
additive: log-odds of zero mean that the probability
of relevance is 0.5, and equal positive or negative increments
represent equal amounts of evidence in favor of relevance
or irrelevance. It should be emphasised, however, that making
decisions based on the log-odds is identical to making decision
based on the probabilities themselves.

Formally, the log-odds that an article is relevant (denoted G
for “good”), as opposed to irrelevant (denoted B for “bad”),
given their cue representations, is written as:

Lgp=1n pGlep )
p(B | ClyeennCy)
Using Bayes’ Theorem, this may be re-written as:

Legg=1In PO 4 P& G) .
p(B) p(Cioe.nCy |B)
The rational model we use here assumes that the evidence
provided by each cue is independent when integrating them
to give an estimate of the overall log-odds that an article
is relevant, so the log-odds become:

Log=In PO) 45 1n PElO)
pB) = ple]B)

Given the log-odds for every article, prioritisation involves
simply sorting from the greatest log-odds value to the smallest.
In this way, the articles most likely to be relevant are at the
top, and those least likely to be relevant are at the bottom.
Notice that, in doing this ordering, the prior odds, p(G)/p(B)
will be constant for every article, and so do not need to be
calculated. Prioritisation is based entirely on the evidence
provided by each of the cues associated with the articles.

The evidence values p(c,.] G)Ip(c; ] B) can be estimated
on the basis of the user’s acceptance or rejection of previous
articles. In this way, the evidence values are continually
learned from the user, starting at uninformative prior values,
but evolving over time to reflect the preferences implicit
in user decisions. Formally, suppose at a given point there
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have been g relevant articles, in which the i-th cue has been
present x times, and b irrelevant articles, in which it has been
present y times. Using the Bayesian approach to learning,
we have:

plc;| G) o e+ Dig+2) '
plc,|BY v+ Db +2)
It is the sum of these evidence values, for each of the cues

belonging to a new article, that gives a rational estimate of the
log-odds that it is relevant.

The One Reason Model

In developing their “fast and frugal” approach to modeling
human decision-making, Gigerenzer and Todd (1999; see also
Gigerenzer & Goldstein, 1996; Todd & Gigerenzer, 2000)
challenge the rational approach. They argue that because
human decision-making processes evolved in competitive
environments, they need to be fast, and because they evolved in
changeable environments, they need to have the robustness that
comes from simplicity. Rational models usually do not meet
these constraints, because they involve extensive and often
complicated calculations in their decision-making processes.

The emphasis of fast and frugal modeling on the role of the
environment follows ecological approaches' to psychology
(e.g., Brunswik, 1943; Simon, 1956, 1982), and suggests that
understanding human decision-making requires understanding
not just mental processes, but also the external task environ-
ment, and its interaction with mental processes. As Gigerenzer
and Todd (1999) argue, the fact that environments are
not arbitrary means that they can play a role in supporting
(or confounding) human decision-making. For example, in an
environment where one piece of information in a stimulus
is highly predictive of the remaining pieces of information,
and the search for additional information is an effortful
process, it is adaptive to consider only the first piece of infor-
mation. Similarly, in an environment of diminishing returns,
where each successive piece of information provides less
information than previous pieces, it makes sense to base
decisions on the first few pieces of information. Gigerenzer
and Todd (1999) show that many real-world stimulus domains
have these sorts of information structures, and develop
a number of cognitive models that make inferences by assum-
ing the presence of environmental regularities.

Unfortunately, none of these models is directly applicable
to prioritisation, and so we developed a new model using the
basic fast and frugal approach. Gigerenzer and Todd (1999)
argue that their models of human decision-making are based on
simple mechanisms that answer three fundamental questions:

+ How should a stimulus environment be searched for infor-
mation?

* When should this search for information be terminated?

« Once the search has been terminated, what decision should
be made given the available information?

In the context of finding relevant articles, as required for prior-

itisation, it is not difficult to provide answers to these questions:

¢ Unread articles should be searched in terms of cues, looking
for articles with cues that provide strong evidence that they
are relevant.

* The search should be terminated as soon as a candidate
relevant article has been identified. Since users read articles
serially, there is no benefit in seeking to sort the unread
articles beyond attempting to ensure that at any time the top-
most article is the one most likely to be good.

+ The best available article should be placed at the top of the
list, as the next one to be read by the user.



These answers suggest a simple fast and frugal decision model
for prioritisation. The cues are ordered in terms of the evidence
they provide in favor of an article being relevant. As with the
rational model, these evidence values are easily estimated
on the basis of the user’s acceptance or rejection of previous
articles, and so start at uninformative prior values, but are
continually updated over time by learning from the cumulative
information provided by all of the user decisions. Formally,
if the i-th cue has been associated with n articles, k of which
were relevant, then the ratio (k + 1)/(n + 2), corresponding
to what Gigerenzer and Todd (1999) call the validity of the
cue, provides an appropriate measure. Starting with the highest
validity cue, a search is made for an unread article with that
cue. If this search is successful, the process terminates without
considering any further cues. If no article is found, the search
continues using the next best cue, and this process is repeated
until an article is found. This model is closely related to Take
the Best, and belongs to the class of what Gigerenzer and Todd
(1999) term “one reason decision-making” models. Only one
reason, in the form of the presence of a high evidence cue,
is ever required to find the next article for presentation.

EXPERIMENT

Data Collection
To compare the rational and one reason models, we tested their
ability to prioritise literature searches from the PsycINFO
(2001) database. Our data set contained 10 different literature
searches, done by people with experience in using the system,
but without detailed knowledge of the models being evaluated.
For each of the ten searches, a topic was chosen, and a small
set of keywords was chosen for an initial search. Every one of
the articles returned by PsycINFO was then evaluated indepen-
dently, assessing whether or not it was relevant to the topic.

Table 1 details the ten literature searches, giving a descrip-
tion of the topic, the initial search keywords, the number
of articles returned by the initial search, and the number
of articles relevant to the topic found by exhaustive evaluation.
The first five topics all relate to different keywords searches,
while the remaining five relate to only two different searches.
In this way, we are testing prioritisation not just of different
searches, but also of different topics within the same search.
A range of topics are covered, most falling within the disci-
pline of psychology, but with some (e.g., the foreign policy
topics) extending into the social sciences more generally.

139

All of the initial searches returned a large number of articles,
ranging from 327 to 606. Importantly, the relative number of
relevant articles varies significantly, ranging from a very small
fraction (e.g., 3 out of 327), to a significant minority (e.g., 127
out of 342). This variation allows us to test the effectiveness
of the two models for different base-rates of relevant articles.

Within the datasets, the returned articles were represented
using cues defined by standard PsycINFO fields. For each
field, the entire text entry for the article was considered, and
common English words (such as “the” and “a”) were removed
using a stoplist. All of the remaining words were used
to generate a cue by pairing it with the field name.
For example, an article authored by Robert Goldstone would
have the cues “Author = Robert” and “Author = Goldstone”.
The field within which a word appeared was regarded as estab-
lishing a different meaningful context for that word, and so
distinct cues were created for repeated words in different
fields. This means, for example, that if the word “study”
appeared in both the title and the abstract of an article’s entry,
its representation would include both “Title = study” and
“Abstract = study” cues. A complete list of the fields used
to create cues is given in Table 1, together with a concrete
example of a cue for each field. Across the 10 datasets, the
number of cues used to represent all of the articles ranged from
4346 to 10,712, with a mean of 7447.

Literature Search Prioritisation

Results

Both the rational and one reason models were applied to the
datasets by simulating their impact on the order in which
articles would have been presented to users. This was done
by presenting the first article in the dataset, and then using the
information regarding whether or not it was relevant to update
the evidence values for the cues. Using one or other of the
decision models, the next prioritised article was then
presented, its relevance noted, and evidence scores updated
again. This process continued until all of the articles had been
presented, and a record was kept of the order in which they
had been seen.

Figures 1 and 2 summarise the results of 50 independent
applications of both models to all ten datasets. They take the
form of effort-reward graphs, relating hypothetical levels
of effort (i.e., the proportion of the articles read by the user)
to the resultant level of reward (i.e., the proportion of relevant
articles found). Figure 1 shows the curve representing the

Table |
The Search Keywords, Topic, Number of Relevant Articles, and Total Number of Articles for the 10 Datasets
Initial Search Topic Relevant Total
“drug abuse and delinquency” The relationship between family and teenage delinquency or drug abuse 103 450
“effects of abuse” Child physical and sexual abuse including incestuous and sibling abuse
but not spousal abuse 127 342
“social facilitation” Social intelligence in people with intellectual disabilities 59 606
“teamwork and teams” Studies of teamwork and team training that operated
in an adventure-based setting 3 327
“extroversion and introversion” Differences between extroverted and introverted people’s ability to deal
with noise disturbances 464
“eyewitness testimony” The use of line-ups for identifying suspects 9 379
— The use of polygraph procedures to determine the credibility
of eyewitness testimony 379
“foreign policy” The role of prime ministerial leadership styles in foreign policy decision-making 4 384
— Foreign policy using propaganda or the impact of propaganda on foreign policy 4 384
— Foreign policy with nuclear implications 17 384
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Table 2

The PsycINFO Fields Used to Define Cues, and an Example
of a Cue from Each Field

Field

Sample Cue

Document Type
Title

Author

Journal Name
Language

Abstract

Key Phrase

Age Group
Population
Population Location

“Document Type = Journal-Article”
“Title = conditioning”

“Author = jones”

“Journal Name = Psychonomic”
“Language = English”

“Abstract = findings”

“Key Phrase = group”

“Age Group = Adulthood”
“Population = Human”

“Population Location = US”

Publication Type “Publication Type = Empirical-Study”

mean performance of both models averaged over the datasets.
For example, once a user has read the first 60% of the priori-
tised articles using the one reason model, they have seen about
90% of the relevant articles. Because the models have
a stochastic element, arising from breaking ties when two
or more articles have equal evidence, the best- and worse-case
performance is indicated by error bars (where large enough
to be visible). The chance level of effort-reward performance,
where each extra 10% of reading yields another 10% of the
relevant articles, is shown by the thin solid line, and the perfor-
mance obtained by reading the articles in the default reverse
chronological order used by PsycINFO is shown by the thick
broken line. The thin broken lines show the best and worst

0.2t

: -0~ One Reason
-0~ Rational |
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L " 1 1 i i 1 i il
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Figure |

Effort-reward graph showing the average prioritisation
performance of the Rational and One Reason models across
all 10 datasets. Each dataset has been given equal weight

in forming the average, and the error bars represent best-
and worst-case performance across 50 independent applica-
tions of each model. The performance of the normal reverse
chronological ordering, and chance performance, are also

shown for comparison
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possible performance corresponding, respectively, to the cases
where all relevant articles are presented first, and all relevant
articles are presented last.

It is clear from Figure 1 that the one reason model outper-
forms the rational model, and that both approaches to prioriti-
sation are superior to either the default ordering or a random
ordering. Using the one reason model, for example, the first
30% of articles contain more than 60% of the relevant ones,
compared to 40% for the rational model. It is also clear,
however, that neither of the models achieves anything
approaching the best possible performance, and that it is neces-
sary to read all of the articles to guarantee finding all of the
relevant ones.

Figure 2 shows the weighted average performance across all
of the datasets, taking into account the number of relevant
articles. This means, for example, that the dataset with nine
relevant articles is weighted three times as much as the dataset
with three relevant articles in forming the average performance
curves. In effect, this aggregation treats all of the datasets as
if they were one large multi-faceted search, whereas Figure 1
treats the datasets as a series of separate searches. Under the
weighted average, Figure 2 shows the one reason and rational
models now have similar performance, and that they remain

superior to both the default and random orderings. Once again,
however, both models fall short of optimality, and all of the
articles must be read to find the relevant ones.

The similar performance of the two models under
a weighted average in Figure 2 suggests that the better perfor-
mance of the one reason model in Figure 1 is due to data sets
with small numbers of relevant articles. To test this idea, we
used a measure of prioritisation effectiveness based on effort-
reward performance that considered the level of the perfor-

mance curve in relation to chance performance, averaged

across all possible levels of effort. Geometrically, this measure
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Figure 2

Effort-reward graph showing the average prioritisation perfor-
mance of the Rational and One Reason models across all 10
datasets. Each dataset has been weighted according to the
number of relevant articles in forming the average, and the
error bars represent best- and worst-case performance across
50 independent applications of each model. The performance
of the normal reverse chronological ordering, and chance
performance, are also shown for comparison.



is basically the area between a model’s performance curve and
the chance line on an effort-reward graph. After normalisation,
this measure takes the value one for best-case performance,
zero for worst-case performance, and 0.5 for chance perfor-
mance. Figure 3 shows the prioritisation performance measure,
for both rational and one reason models, as a function of the
proportion of relevant articles in the data set. This confirms
that, for those data sets with a small proportional of relevant
articles, the prioritisation performance of the one reason model
is generally superior to the rational model. Indeed, for many
of these data sets, the rational model does not perform much
better than chance. For data sets with a larger proportion
of relevant articles, both the models seem to perform similarly,
as would be suspected from Figure 2.

The prioritisation performance measures shown in Figure 3
allow statistical inferences to be made about the differences
between the rational and one reason models. In particular, it is
possible to examine whether the distribution of performance
scores for the two models have significantly different means
and/or variances. Most psychological research tackles these
problems using Null-Hypothesis Significance Testing (NHST),
despite long-standing and authoritative demonstrations
(e.g., Edwards, Lindman, & Savage 1963; Lindley 1972) that
it is an inconsistent, incoherent, and irrational methodology for
statistical inference. Accordingly, we use the Bayesian
approach to model selection (e.g., Kass & Raftery, 1995;
Lindley, 1972; Pitt, Myung, & Zhang, 2002; Sivia, 1996)
to examine the two distributions, relying on the theory and
software described in Lee (2002a).

The basic idea behind the Bayesian analysis is to consider
four possibilities for the two distributions: (a) that they have
the same mean and the same variance (1mlv); (b) that they
have different means but the same variance (2mlv); (c) that
they have the same mean but different variances (Im2v); and
(d) that they have different means and different variances
(2m2v). The more complicated of these accounts, such
as assuming different means and variances, will of course
always fit the observed data better than a simpler account, such
as assuming the same mean and same variance. Bayesian
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Figure 3

The prioritisation performance of both models across all of
the data sets, shown as a function of the proportion of
relevant articles in the data sets.
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model selection, however, is not based on goodness-of-fit, but
instead considers which model is most likely given the data, in
a way that naturally balances goodness of fit with model
complexity (Roberts & Pashler, 2000). In this way, the Bayes
Factor between any two models can be can be estimated,
quantifying how much more likely one is than the other (Kass
& Raftery, 1995).

The results of applying these ideas to prioritisation perfor-
mance is summarised in Figure 4. The four top panels show
the performance measures for both the rational (black dots)
and one reason (white dots) models. Each panel shows the
best-fitting Gaussian distribution or distributions correspond-
ing to the four possible assumptions about the equality
of means and variances. Where different distributions are
assumed, the darker lines correspond to the rational model,
while the lighter lines correspond to the one reason model.
Under the Bayesian analysis, the most likely account was
found to be the one that assumed different means and different
variances (2m2v). The Bayes Factors of the other possibilities
in relation to this account are shown in the bottom panel. It can
be seen that the 1m2v, 2mlv and 1mlv accounts are, respec-
tively, 1.5, 2.6 and 4.2 times less likely.

Within the Bayesian framework for statistical inference,
what constitutes a “significant difference” is a question of the
standard of scientific evidence for the problem at hand, and
is not automated by reference to some critical value. Bayes
Factors are naturally interpreted on a meaningful scale defined
by betting, so that saying one account is twice as likely
as another means that we should be willing to gamble twice
as much money on the first account being correct. Against this
background, we draw two basic conclusions from the analysis
shown in Figure 4. The first is that there is considerable
evidence the one reason model has less variable (i.e., more
consistent) performance, because those possibilities that
assume the same variance (Imlv and 2mlv) are the least
likely. The second is that there is some evidence the one
reason model has better prioritisation performance, because
this assumption (2m2v) is 1.5 times more likely than mean
performance being the same (1m2v).

Literature Search Prioritisation
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Figure 4

Bayesian analysis of the difference in prioritisation perfor-
mance between the rational (black dots, darker lines), and one
reason (white dots, lighter lines) models. The top four panels
show the best-fitting distributions for the four possible
Gaussian assumptions, and the bottom panel shows the
estimated Bayes Factors in relation to the different means and
different variances (2m2v) account, which is the most likely
given the data.
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DISCUSSION

We start our discussion by considering the applied implica-
tions or our results, before turning to their message for model-
ing human decision-making. Our experimental results
demonstrate the potential of prioritisation in applied settings,
but also show that there is some way to go before a useful
applied system can be developed. While both the one reason
and rational models clearly outperform the defauit ordering
currently provided by PsycINFO, neither consistently manages
to find all of the relevant articles before the user has had to do
a significant amount of work. For an applied system,
we suspect that something like 90% of the relevant articles
would need to be found in the first 20-30% of those presented
for almost every topic search. Our conclusion is that, while we
believe we are on the right path, some improvement is neces-
sary before the real-world problem of information overload
is resolved without the need for refined searches.

This improvement must come from building better models
of human decision-making, and it is here that our results have
some clear lessons. Most importantly, the superior perfor-
mance of the one reason model over the rational model
suggests that more complicated decision processes are proba-
bly not the answer. The one reason model uses a single piece
of information about an article in deciding it is the best avail-
able, whereas the rational model considers every piece
of information about every article to make the same decision.
This makes the one reason model much more computationalily
efficient, and so it has the potential to scale to the large
volumes of information that characterise real-world problems.
Given that statistical analysis of the prioritisation performance
measures showed the one reason model is clearly more consis-
tent and probably more effective than the rational model,
it seems unlikely that adding more complications to the
decision mechanisms will yield an improved model. In this
sense, our results support Gigerenzer and Todd’s (1999) claim
that much of human decision-making is based on applying
a simple heuristic to limited information. The relatively good
performance of the one reason model suggests that, at least
for some articles, users based their decisions on a single piece
of information.

The real deficiency of our decision-making models,
we suspect, lies in their representations. While PsycINFO
users may well regard an article as relevant as soon as they see
the author is “Robert Goldstone”, the same probably does
not apply if they can only see that the first name of the author
is “Robert”. This means that the important cue is something
like “Author = Robert Goldstone”, but our current representa-
tional approach creates only the separate cues “Author
= Robert” and “Author = Goldstone”. As has often been noted
(e.g., Brooks, 1991; Pinker, 1998), a model of a cognitive
process is only as good as the model of stimulus representation
on which it relies. Using word boundaries to define cues, as we
have, may be appropriate sometimes, but many of the cues to
which users are sensitive seem likely to be more complicated.

For this reason, we believe that improved prioritisation
performance will result from developing representational
techniques that identify the cues actually used by people, and
applying the one reason model to representations of the articles
based on these cues. These sorts of representational techniques
will, of course, also be required for developing better models
of human cognition more generally within the fast and frugal
framework. There are (at least) two complementary ways in
which this research problem could be tackled. The machine
learning community has developed a number of methods for
extracting “key phrases” from textual information (e.g.,
Cohen, 1995) that could be tested as the basis for specifying
representational cues. Alternatively, there is a large literature
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within psychology that focuses upon making inferences about
human mental representations from empirical measures
of similarity (e.g., Shepard, 1974, 1980; Tversky, 1977,
see Goldstone, 1999 for an overview). Within this framework,
cues could be found by applying representational techniques
such as multidimensional scaling (e.g., Cox & Cox, 1994)
or additive clustering (e.g., Lee, 2002b; Shepard & Arabie,
1979; Tenenbaum, 1996) to data measuring the similarities
between article summaries. It would be straightforward
to evaluate both the machine learning and experimental
psychology approaches, by examining the level of prioritisa-
tion performance they provided under the one reason and ratio-
nal models. Both approaches offer the promise of contributing
to the solution of an applied probiem by improving prioritisa-
tion performance, as well as furthering our understanding of
basic cognitive representational structures and decision-
making processes.

FOOTNOTE
1 The phrase “ecological approaches” is intended here to extend well
beyond Gibsonian ideas of ecological optics, and encompasses more
general psychological theorising that emphasises the role the environ-
ment plays in guiding cognitive processes.

ACKNOWLEDGEMENTS
This research was supported by the Australian Defence
Science and Technology Organisation, and by the University
of Adelaide Faculty of Health Sciences B3 Scheme. We thank
an anonymous reviewer for helpful comments.

REFERENCES

Balabanovic, M. (1998). Exploring versus exploiting when learning user
models for text recommendation. User Modeling and User-Adapted
Interaction, 8, 71-102.

Brooks, R.A. (1991). Intelligence without representation. Artificial Intelli-
gence, 47, 139-159.

Brunswik, E. (1943). Organismic achievement and environmental proba-
bilities. Psychological Review, 50, 255-272.

Cohen, 1.D. (1995). Highlights: Language- and domain-independent
automatic indexing terms for abstracting. Journal of the American
Society for Information Science, 46(3), 162-174,

Cox, T.F., & Cox, M.A.A. (1994). Multidimensional scaling. L.ondon:
Chapman and Hall.

Doyle, J. (1999). Rational decision-making. In R.A. Wilson & F.C. Keil
(Eds.), MIT encyclopedia of the cognitive sciences (pp. 701-703).
Cambridge, MA: MIT Press.

Edwards, W., Lindman, H., & Savage, L.J. (1963). Bayesian statistical
inference for psychological research. Psychological Review 70(3).
193-242.

Gelman, A., Carlin, J.B., Stern, H.S., & Rubin, D.B. (1995). Bavesian
data analysis. L.ondon: Chapman & Hall.

Gigerenzer, G., & Goldstein, D.G. (1996). Reasoning the fast and frugal
way: Models of bounded rationality. Psychological Review 103(4),
650-669.

Gigerenzer, G., & Todd, P.M. (1999). Simple heuristics that make us
smart. New York: Oxford University Press.

Goldstone, R.L. (1999). Similarity. In R.A. Wilson & F.C. Keil (Eds.),
MIT encyclopedia of the cognitive sciences (pp. 763—765). Cambridge,
MA: MIT Press.

Kass, R.E., & Raftery, A.E. (1995). Bayes factors. Journal of the Ameri-
can Statistical Association, 90(430), 773-795.

Lee, M.D. (2002a). Are these two groups of scores significantly different?
A Bayesian approach. Manuscript submitted for publication.

Lee, M.D. (2002b). Generating additive clustering models with limited
stochastic complexity. Journal of Classification, 19(1), 69-85.

Lee, M.D., Chandrasena, L.H., & Navarro, D.J. (2002). Using cognitive
decision models to prioritise e-mails. Proceedings of the 24th Annual
Conference of the Cognitive Science Society, 478-483.

Lindley, D.V. (1972). Bayesian statistics: A review. Philadelphia,
PA: Society for Industrial and Applied Mathematics.

Macskassy, S.A., Dayanik, A.A., & Hirsh, H. (1999). Emailvalet: Learn-
ing user preferences for wireless email. Proceedings of Learning
About Users Workshop, IICAT’99.



Medin, D.L., & Schaffer, M.M. (1978). Context theory of classification.
Psychological Review, 85, 207-238.

Mehran, S., Dumais, S., Heckerman, D., & Horvitz, E. (1998). A Bayesian
approach to filtering junk e-mail. AAAI-98 Workshop on Learning
for Text Categorization.

Pinker, S. (1998). How the mind works. Great Britain: The Softback
Preview.

Pitt, M.A., Myung, 1.J., & Zhang, S. (2002). Toward a method of selecting
among computational models of cognition. Psychological Review,
109(3), 472-491.

PsycINFO. (2001). Norwood, MA: SilverPlatter International.

Roberts, S., & Pashler, H. (2000). How persuasive is a good fit?
A comment on theory testing. Psychological Review, 107(2), 358-367.

Shepard, R.N. (1974). Representation of structure in similarity data:
Problems and prospects. Psychometrika, 39(4), 373-422.

Shepard, R.N. (1980). Multidimensional scaling, tree-fitting, and cluster-
ing. Science, 210, 390-398.

Australian Journal of Psychology — December 2002

143

Shepard, R.N., & Arabie, P. (1979). Additive clustering representations
of similarities as combinations of discrete overlapping properties.
Psychological Review, 86(2), 87-123.

Simon, H.A. (1956). Rational choice and the structure of environments.
Psychological Review, 63, 129-138.

Simon, H.A. (1982). Models of bounded rationality. Cambridge, MA:
MIT Press.

Sivia, D.S. (1996). Data analysis: A Bayesian tutorial. Oxford: Clarendon
Press.

Tenenbaum, J.B. (1996). Learning the structure of similarity. In D.S.
Touretzky, M.C. Mozer, & M.E. Hasselmo (Eds.), Advances in neural
information processing systems, (Vol. 8, pp. 3-9). Cambridge, MA:
MIT Press.

Todd, P.M., & Gigerenzer, G. (2000). Precis of simple heuristics that
make us smart. Behavioral and Brain Sciences, 23, 727-780.

Tversky, A. (1977). Features of similarity. Psychological Review, 84(4),
327-352.

Literature Search Prioritisation



