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A simple but pervasive type of decision requires
choosing which of two alternatives has the greater (or the
lesser) value on some variable of interest. Examples of
these forced-choice decisions range from the everyday
(e.g., deciding whether a red or a green curry will taste
better for lunch), to the moderately important (e.g., de-
ciding whether Madrid or Rome will provide the more
enjoyable holiday), to the very important (e.g., deciding
whether cutting the red or the black wire is more likely
to lead to the destruction of the world).

The Rational Approach
One approach to modeling the way people make these

decisions, often referred to as the rational approach, as-
sumes that all of the relevant available information is
combined in some (near) optimal way. At lunchtime, this
means that knowledge of the ingredients of the different
curries, previous experiences with the two curry types,
current sensory information about the available curries,
and a range of other relevant information must be weighed
and combined to give an overall preference. Simon (1976)
described this approach as substantively rational, be-
cause its overarching goal is to maximize the utility of

the decision made, regardless of the efficiency of the pro-
cesses required to make the decision. This rational ap-
proach is often viewed as a normative theory of decision
making and is central to the decision and utility theoretic
frameworks widely used in the physical sciences and in
the behavioral sciences, such as psychology and eco-
nomics (see Doyle, 1999, for an overview).

A large number of well-known and successful models
in cognitive psychology aim for substantive rationality.
For example, the MINERVA 2 model of memory retrieval
(Hintzman, 1984) uses the sum of every memory trace,
weighted by the frequency of each trace, to remember or
reconstruct stimuli. Similarly, the ALCOVE model of
category learning (Kruschke, 1992) makes categoriza-
tion decisions by potentially considering the weighted
sum of evidence for each category alternative provided
by every stimulus in a domain, and the same is true of the
closely theoretically related context model (Medin &
Schaffer, 1978) and generalized context model (Nosof-
sky, 1984). There are also various Bayesian cognitive
models, including accounts of generalization (Myung &
Shepard, 1996; Shepard, 1987) and concept learning
(Tenenbaum, 1999; Tenenbaum & Griffiths, 2001), that
integrate across prior-weighted probability densities to
determine response probabilities and, so, strive for sub-
stantive rationality in a very direct way. Finally, there are
substantively rational psychological models—most no-
tably, Anderson’s (1990, 1991, 1992) rational model—
that introduce time and memory constraints into the cri-
teria for decision making but continue to allow for the
weighting and combination of all of the relevant avail-
able evidence to optimize decisions under these criteria.
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An evidence accumulation model of forced-choice decision making is proposed to unify the fast and
frugal take the best (TTB) model and the alternative rational (RAT) model with which it is usually con-
trasted. The basic idea is to treat the TTB model as a sequential-sampling process that terminates as
soon as any evidence in favor of a decision is found and the rational approach as a sequential-sampling
process that terminates only when all available information has been assessed. The unified TTB and
RAT models were tested in an experiment in which participants learned to make correct judgments for
a set of real-world stimuli on the basis of feedback, and were then asked to make additional judgments
without feedback for cases in which the TTB and the rational models made different predictions. The
results show that, in both experiments, there was strong intraparticipant consistency in the use of ei-
ther the TTB or the rational model but large interparticipant differences in which model was used. The
unified model is shown to be able to capture the differences in decision making across participants in
an interpretable way and is preferred by the minimum description length model selection criterion.



The Fast-and-Frugal Approach
In developing their fast-and-frugal approach to mod-

eling human decision making, Gigerenzer and Todd
(1999; see also Gigerenzer & Goldstein, 1996; Todd &
Gigerenzer, 2000) challenged the rational approach and
emphasized what Simon (1976) describes as procedural
rationality. They argued that because human decision-
making processes evolved in competitive environments,
they needed to be fast, and because they evolved in change-
able environments, they needed to have the robustness
that comes from simplicity. This emphasis on the role of
the environment in shaping human decision processes
follows more general ecological approaches to psychol-
ogy (e.g., Brunswik, 1943; Simon, 1956, 1982) and sug-
gests that understanding human decision making re-
quires understanding not just mental processes, but also
the external task environment and its interaction with
mental processes.

As Gigerenzer and Todd (1999) have argued, the fact
that environments are not arbitrary means that they can
play a role in supporting (or confounding) human decision
making. For example, in an environment in which one
piece of information in a stimulus is highly predictive of
the remaining pieces of information and the search for ad-
ditional information is an effortful process, it is adaptive
to consider only the first piece of information. Similarly,
in an environment of diminishing returns, in which each
successive piece of information provides less information
than do previous pieces, it makes sense to base decisions
on the first few pieces of information. Gigerenzer and
Todd showed that many real-world stimulus domains have
these sorts of information structures and developed a
number of cognitive models—including the take the best
(TTB) model of forced choice, the QuickEst model of
value estimation, and the categorization by elimination
model of categorization—that make inferences by assum-
ing the presence of environmental regularities.

Unifying the TTB and the Rational Approaches
Gigerenzer and Todd (1999) have mounted an im-

pressive theoretical case for the ecological rationality of
their fast-and-frugal models, showing that they often
match or outperform competing rational models for de-
cision accuracy when tested in real-world domains and
do so more quickly and with fewer cognitive resources.
Empirical comparisons of rational and fast-and-frugal
models (e.g., Bröder, 2000; Newell, Weston, & Shanks,
2003), however, have reached more equivocal conclu-
sions. In these experiments, people make decisions for
which the fast-and-frugal and the rational models give
different predictions. The standard finding is that only
subsets of people behave in a way consistent with using
a noncompensatory fast-and-frugal decision-making
process. From this finding, the theoretical conclusions
drawn by Bröder focused on the need to understand how
individual differences influence the selection of alterna-
tive decision-making strategies for different tasks.

Although there is no inherent contradiction in arguing
that different people make decisions in different ways
under different conditions, it is a less than completely
satisfying conclusion. The finding seems empty without
some attempt to provide a unifying account of why peo-
ple use different strategies, when they use different
strategies, and how they manage to use different strate-
gies with the same cognitive apparatus. Pinker (1997)
put the concern more bluntly: “In psychology, invoking
‘strategies’ to explain funny data is the last refuge of the
clueless” (p. 282).

The goal of this article is to develop and evaluate a uni-
fying theoretical account of the TTB model and its ratio-
nal alternative. The theoretical unification is achieved by
viewing both as special cases of a sequential-sampling
decision-making process. The basic idea is that the TTB
model corresponds to the case in which the first piece of
sampled evidence that favors one decision is sufficient,
whereas the rational approach requires all of the available
information to be sampled before a decision is made. By
setting different threshold levels of evidence required for
decision making, both the TTB and the rational models
become special cases of a more general evidence accu-
mulation account.

THE TWO DECISION MODELS

The Take the Best Model
In developing their TTB decision model, Gigerenzer

and Todd (1999) followed a substantial body of other
cognitive modeling (e.g., Medin & Schaffer, 1978; Tver-
sky, 1977) by representing stimuli in terms of the pres-
ence or absence of a set of discrete features or properties
that they called cues. This means that, for a stimulus do-
main with k cues, a Stimulus A is represented by a set of
binary variables a1, . . . , ak, where ai 5 1 if Stimulus A
has the ith cue and ai 5 0 if it does not. The TTB deci-
sion model, like many described by Gigerenzer and
Todd, is based on the validities of these cues. Validities
estimate the rate at which a cue makes correct decisions,
in those cases in which it distinguishes between the two
alternatives.

Formally, this means that the validity, vi of the ith cue
is defined as

where the stimulus that has the ith cue has been denoted A
and the stimulus that does not is B. Because either A . B
or A , B, the value 1 2vi gives p (A , B |ai 5 1, bi 5 0).
It is also always possible to define cues so that every va-
lidity is greater than or equal to .5. If a cue ever has a 
validity less than .5, replacing it with its complement
(i.e., defining stimuli in terms of the absence of the cue,
rather than its presence) encodes exactly the same infor-
mation and changes the validity to a value greater than .5.

Given a set of stimuli defined in terms of a set of cues
and a known ranking of the stimuli in terms of the deci-
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344 LEE AND CUMMINS



DECISION-MAKING MODELS 345

sion variable, it is possible to estimate cue validities by
considering every possible pairing of stimuli. Gigerenzer
and Todd (1999) adopted a frequentist approach to esti-
mation, calculating cue validities as the proportion of
correct inferences made across those stimulus pairs
where a cue discriminates (i.e., one stimulus has the cue,
and the other does not). This means that an estimate, v̂i,
of cue validity is given by the proportion

Although this approach to estimating validities is often
adequate, it does not take into account how often the cue
discriminates when its validity is calculated. For exam-
ple, a cue that gets its one and only decision right across
all stimulus pairs (i.e., gets 1 correct out of 1) will have
the same validity of 1 as a cue that makes 150 decisions
and gets them all correct. It seems clear that the second
of these cues, where a large data sample is available, is
likely to be more valid than the first, but the frequentist
approach is not sensitive to the difference.

To overcome this problem, Lee, Chandrasena, and
Navarro (2002; see also Lee, Loughlin, & Lundberg, 2002)
proposed a Bayesian approach to estimating cue validi-
ties. The basic idea is to establish a prior distribution for
the validity of each cue and to modify these priors, using
the evidence provided by a cue making correct or incor-
rect decisions. As a cue makes more correct decisions,
higher values for its validity become more likely; as it
makes more incorrect decisions, lower values for its va-
lidity become more likely. Bayes’s theorem formally de-
scribes the way in which the prior beliefs are modified
by data to give a probability distribution over the range
[0, 1] of possible cue validities. Defining the estimated
Bayesian validity of a cue as the mean of this distribution
and assuming a uniform prior, a standard result from
Bayesian statistics (e.g., Gelman, Carlin, Stern, & Rubin,
1995, p. 31) gives

As a cue makes more decisions, the frequentist and
Bayesian validity estimates converge toward the same
value. When the available data are limited, however, the
Bayesian approach is sensitive to the sample size and pro-
vides a better measure. For example, the cue that made
one correct decision has Bayesian validity (1 1 1)/(1 1
2) < .67, whereas the cue that made 150 correct deci-
sions has Bayesian validity (150 1 1)/(150 1 2) < .99.

Once validities for each cue have been estimated, the
TTB decision model is straightforward. For a given pair
of stimuli, the cue with the highest validity is examined.
If this cue discriminates between the stimuli (i.e., one
stimulus has the cue, and the other does not), the favored
stimulus is chosen, and no further cues are examined. If,
however, the cue does not discriminate, the cue with the
next highest validity is examined. This process continues
until either a decision is made or all of the cues have

been exhausted (because the stimuli have identical cue
representations) and, so, a random guess must be made.

The Rational Model (RAT)
The motivation behind substantively rational decision

models is to use all of the relevant available information.
This can be done by evaluating the probability that Stim-
ulus A is greater than Stimulus B, having considered
whether or not the stimuli have each of the cues. If the
probability is greater than .5,  it is rational to choose
Stimulus A; if the probability is less than .5, it is rational
to choose Stimulus B; if the probability is exactly .5, it is
rational to guess.

Formally, the log-odds that Stimulus A is greater than
Stimulus B, given their cue representations, is written as 

Using Bayes’s theorem, this may be rewritten as

Since Stimulus A’s being greater than Stimulus B is a pri-
ori equally as likely as Stimulus B being greater than
Stimulus A [i.e., p(A . B) 5 p(A , B) 5 .5], the priors
do not provide any information, which means the log-
odds reduce to the evidence provided by the cues them-
selves, as follows:

If the simplifying assumption is made that each of the cues
provides an independent source of evidence in making a
decision,1 the required log-odds can be approximated by

This result has a straightforward interpretation. The log-
odds are found by summing the evidence provided by
each of the cues in favor of the alternative decisions. For
cues that do not distinguish between the stimuli (i.e.,
a1 5 bi 5 1 or ai 5 bi 5 0), this evidence will be zero.
For those cues that do discriminate, it turns out that the
evidence can be expressed in terms of cue validities.
When the cue favors Stimulus A (i.e., ai 5 1 and bi 5 0),
the log-odds for that cue are given by ln [vi /(1 2vi )].
When the cue favors Stimulus B (i.e., ai 5 0 and bi 5 1),
the log-odds are ln [(1 2vi) /vi ], which is the same as 2ln
[vi /(1 2vi )].

Putting these results together allows the log-odds that
Stimulus A is greater than Stimulus B to be written as 

(1)

where the first sum is across the cues favoring Stimu-
lus A (the FA set), and the second sum is across the cues
favoring Stimulus B (the FB set).
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Having calculated these log-odds, the rational deci-
sion model is straightforward. If LAB is positive, indicat-
ing that the cues provide more evidence for Stimulus A’s
being greater than Stimulus B, this decision should be
made. If LAB is negative, Stimulus B should be chosen as
being the greater. If LAB is exactly zero, a random choice
should be made.

A UNIFYING MODEL BASED ON
EVIDENCE ACCUMULATION

Sequential-sampling processes have been extensively
studied as models of human decision making (e.g., Buse-
meyer & Rapoport, 1988; Busemeyer & Townsend, 1993;
Diederich, 1997; Laming, 1968; Link & Heath, 1975;
Nosofsky & Palmeri, 1997; Ratcliff, 1978; Smith, 2000;
Vickers, 1979; Wallsten & Barton, 1982), particularly in
relation to elementary psychophysical tasks, such as
judging which of two lines is longer. Although there are
many variants, at their heart sequential-sampling models
assume that stimuli are searched for information until
sufficient evidence has been accrued to favor one deci-
sion or no more information is available.

Figure 1 shows a particular sequential-sampling pro-
cess, known as a random walk, accruing information in
making a comparison between two stimuli. Each of the
cues is examined, from the highest validity to the lowest,
and the evidence provided by that cue is used to update
the state of the random walk in favor of choosing Stimu-
lus A or Stimulus B. The evidence provided by a cue cor-
responds to its log-odds value, as defined in Equation 1.
If Stimulus A has the cue and Stimulus B does not, the
random walk moves toward choosing A. If Stimulus B has
the cue and Stimulus A does not, the random walk moves

toward choosing B. If both stimuli either have or do not
have the cue, the state of the random walk is unchanged.

The important observation about Figure 1 is that the
TTB and the RAT models correspond simply to different
required levels of evidence being accrued before a deci-
sion is made. If a very small evidence threshold were set,
the sequential-sampling process would choose Stimu-
lus A, in agreement with the TTB choice. Alternatively,
if a very large evidence threshold were set, the sequential-
sampling process would eventually choose Stimulus B
(because the final log-odds are in its favor), in agreement
with the RAT model. In general, if a threshold is small
enough that the first discriminating cue is guaranteed 
to have log-odds that exceed the threshold, sequential-
sampling corresponds to the TTB decision model. If a
threshold is large enough that it is guaranteed never to be
reached, the final log-odds are used to make a forced de-
cision, and sequential sampling corresponds to the RAT
decision model.2

In this way, both the TTB and the RAT models can be
considered as special cases of an evidence accrual model,
corresponding to the use of low and high evidence thresh-
olds, respectively. Thus, one unifying way of explaining
experimental results in which people make decisions con-
sistent with both fast-and-frugal and rational models, is
that all of the people were using an evidence accrual de-
cision process but that different people required different
levels of evidence before making their decisions.

Adding to the plausibility of this account is that in
many real-world environments, cue validities show
sharply diminishing returns (Martignon & Hoffrage,
1999) and, so, only small changes in required evidence
will be sufficient to switch between TTB and RAT deci-
sion making. For example, the sequential-sampling de-

Figure 1. The unified model, using a random walk evidence accumu-
lation decision process. Successive values are shown for the log-odds as
each cue is examined from highest validity to lowest.
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cision in Figure 1 will be consistent with the TTB model
for any evidence threshold less than about 3.5 and will be
consistent with the RAT model for any larger value.

EXPERIMENT

The methodology used to evaluate the unified model
takes the form of a two-phase decision-making experi-
ment. In the first phase, called the training phase, par-
ticipants learn to make correct decisions, using feedback.
During this phase, the participants are never required to
make decisions that discriminate between the TTB and
the RAT models. In this way, the participants are able to
learn about the validities of the various stimulus cues,
without the feedback encouraging them to adopt either
decision strategy. In the second phase, called the test
phase, the participants are asked to make a number of de-
cisions for new combinations of stimuli drawn from the
same domain but do not receive feedback. These test
phase comparisons are designed so that the TTB and the
RAT models now do make different predictions about
which decision will be made.

Method
Participants. Forty adult participants completed the experiment.

There were 16 males and 24 females, with a mean age of 28 years.
Stimulus domain. One potential criticism of previous empirical

comparisons (e.g., Bröder, 2000; Newell et al., 2003) is that the
stimulus domains used were artificially constructed, despite the em-
phasis placed by Gigerenzer and Todd (1999) on the role of the
structured environment in allowing fast-and-frugal heuristics to op-
erate effectively. For this reason, we used a stimulus domain previ-
ously considered in fast-and-frugal modeling (Czerlinski, Gigeren-
zer, & Goldstein, 1999), based on data originally reported in
Johnson and Raven (1973). These data relate to the Galapagos Is-
lands, forming cues by quantizing a number of continuous mea-
sures, such as land area, elevation, and so on. The decision variable
is a count of the number of species on each island.

Several of the stimuli in this real-world domain had exactly the
same cue representation, which would have made a forced-choice
decision impossible when they were presented together. To avoid
this difficulty, in each of these cases, the stimulus that had the great-
est decision variable value was retained, and all of the others were
removed. A number of cues were also replaced with their comple-
ment to ensure that every cue validity was greater than .5. The final
stimulus domain resulting from these modifications is shown in
Table 1.

Stimulus presentation . In both the training and the test phases,
it is necessary to present the stimuli in a way that conveys informa-
tion about which cues they have but is not subject to individual dif-
ferences arising from varying prior exposure. This means that the
stimuli must have a surface presentation that is artif icial, while
maintaining the underlying cue structure that mimics the real envi-
ronment. This was achieved by depicting each stimulus as a gas in
a canister, where the cues corresponded to gas molecules with dif-
ferent colors, and describing the decision variable as the poison-
ousness of the gas. The colors for the cues were selected to en-
courage interpretation on a nominal level of data scaling, so that no
natural ordering would be implied. In addition, the gas displays
were animated, so that the molecules moved randomly within the
confines of their canister. The animation prevents configural effects
from emerging from the superposition of different cues in the same
locations within a static display and means that there are no f ixed

spatial relationships among the cues. For this reason, the gas display
is a useful alternative to artificial stimuli, such as faces, trains, ro-
bots, and other static displays of featural stimulus representations
that have previously been used (e.g., Vandierendonck & Rosseel,
2000). The animated gases present graphically all of the cue infor-
mation in the underlying representation but do not convey any other
information as a by-product of the presentation.

Training phase procedure. If all of the stimulus pairs in Table 1
are considered, the cue validities take values that lead to the TTB
and the RAT models making a different decision for one of the
pairs. This is the pairing of Stimulus 2 and Stimulus 7, where the
TTB model chooses Stimulus 2 because it has the high-validity sec-
ond cue that Stimulus 7 does not have, whereas the RAT model
chooses Stimulus 7, because the log-odds are 0.02 in its direction.
To avoid the learning phase favoring either decision model, this
stimulus pair was removed from the training set, and the validities
were recalculated in relation to the remaining 119 pairs. It is these
validities that are shown in Table 1, and their use leads to the TTB
and the RAT models making the same decisions for all of the stim-
ulus pairs presented during training.

The fact that the two models make the same decisions does not,
of course, mean that these decisions are necessarily correct. The
correctness of a decision, as provided in feedback to the partici-
pants, is determined by which stimulus has the larger poison value.
As it turns out, the decision models are correct for 102 out of 119
stimulus pairs, which corresponds to a proportion correct of .86.

During the training phase, the participants were presented with
six contiguous blocks of trials. The first of these blocks contained
19 stimulus comparisons, whereas the remaining five contained 20
comparisons. On each trial, the two gases were presented in their
canisters adjacent to one another on the screen, and the mouse
pointer was initially placed halfway between them. The participants
chose the gas they believed to be the most poisonous by moving the
pointer into the appropriate canister. Once a decision was made,
feedback was provided by highlighting the canister of the most poi-
sonous gas in red. The participants could view this feedback for as
long as they wanted and pressed the mouse button to commence the
next trial. The 119 trials were presented in a random order for each
participant, and the placement of each gas in the left or the right
canister was also randomized on every trial.

Test phase procedure. It is important during the test phase that
both stimuli have the same number of cues, so that the participants

Table 1
The Stimulus Domain, Detailing the Assignment of the Six

Cues to Each of the 16 Stimuli (With the Decision
Variable Values for Each Stimulus and the

Bayesian Validities of the Cues)

Stimulus Cue 1 Cue 2 Cue 3 Cue 4 Cue 5 Cue 6 Decision
Number (.97) (.90) (.82) (.64) (.56) (.55) Variable

1 3 16
2 3 3 18
3 3 3 21
4 3 3 25
5 3 31
6 3 3 3 40
7 3 3 3 3 44
8 3 3 3 51
9 3 3 3 3 62

10 3 3 3 70
11 3 3 3 3 3 97
12 3 3 3 3 104
13 3 3 3 3 3 3 280
14 3 3 3 3 3 285
15 3 3 3 3 347
16 3 3 3 3 3 444
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cannot use this information as the basis for making their decisions.
Although a cue corresponding to the number of gas molecules has
a validity of only .88 and, so, is less informative than Cue 1 and
Cue 2 from Table 1, it is easy to detect differences in the number of
molecules perceptually, and so it could form part of the basis for de-
cision making if equal numbers were not used during the test phase.

Given the cue validities in Table 1, there are only five diagnostic
stimulus comparisons in which each stimulus has the same number of
cues. These comparisons are {Cue 1, Cue 6} versus {Cue 2, Cue 3},
{Cue 1, Cue 5} versus {Cue 2, Cue 3}, {Cue 1, Cue 5, Cue 6} versus
{Cue 2, Cue 3, Cue 4}, {Cue 1, Cue 4, Cue 5} versus {Cue 2, Cue 3,
Cue 4}, and {Cue 1, Cue 4, Cue 5, Cue 6} versus {Cue 2, Cue 3,
Cue 4, Cue 5}. In each comparison, the TTB model favors the first
stimulus, because it has a high-validity cue that the second does not,
whereas the rational model favors the second stimulus.

In the test phase, the participants moved the mouse pointer in the
same way to make a decision as in the training phase. Once a deci-
sion had been made, feedback was not provided, but the participants
were instead required to express their confidence on a 5-point scale,
where 1 represented random guess and 5 represented completely
certain . The time taken for the participants to make a decision (but
not to rate their conf idence) was also collected in this phase. The
five comparisons were presented in random order for each partici-
pant, and the placement of each gas in the left or the right canister
was again randomized.

Results
Training phase learning. Figure 2 shows the propor-

tion of correct decisions for each of the six training blocks,
averaged across all the participants, together with one stan-
dard error in each direction. The monotonic increase in ac-
curacy, together with the small error bars, indicates that
most, if not all, of the participants learned effectively from
the feedback. Performance was well above the chance
level of .5 after the first block of only 19 trials, suggest-
ing that the validities of at least some of the cues were

not difficult to learn. The asymptotic level of perfor-
mance evident in Blocks 5 and 6 is consistent with the
theoretical limit of .86 imposed by the TTB and the RAT
decision models, which is shown by the broken line.

Test phase decisions. Table 2 shows the raw decision
and confidence data from the test phase, giving the model
consistent with each participant’s decision on each com-
parison and the confidence of the participants in each of
their decisions. It can be seen that, across all the partici-
pants, each of the comparisons produced decisions that
were consistent with both decision models. The number
of decisions consistent with the TTB model out of 40 was
11, 18, 14, 17, and 12 for the five comparisons. On these
grounds, it seems that each comparison provided roughly
equal ambiguous evidence about whether people used the
TTB or the RAT decision model. There also was not
much difference between the confidence the participants
had in their decision for the five comparisons, with mean
values of 2.93, 2.88, 2.95, 3.15, and 3.23.

A more useful analysis of the data considers decisions
within participants, rather than across participants. Ta-
ble 2 shows in bold those participants whose decisions
for each comparison were all consistent with either the
TTB or the RAT model. Nineteen participants, which is
almost half of the sample, met this criterion, with 5 fol-
lowing TTB predictions and 14 following RAT predic-
tions. What is remarkable about the number of consistent
participants is that it was very unlikely to have happened
by chance. If the participants were making random
choices and, so, favoring each model with a probability
of .5 independently on each comparison, only 6.25%
should show consistency. This would correspond to only
2 or 3 of the 40 in the sample being consistent. The prob-

Figure 2. The mean percentage correct across all the participants over
the six training blocks. One standard error is shown about the mean.
The maximum possible percentage correct using the take-the-best and
the rational decision models is shown by the broken line.
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ability of 19 participants being consistent by chance is
(40

19) (1/16)19 (15/16)21, which corresponds to odds of about
2,231,908,215,164 to 1 against. This strongly suggests
that many of the participants were using a consistent 
decision strategy during the test phase but that different
participants were using different strategies. It also makes
it clear that the participants did not use only the number
of molecules as a basis for making decisions during
training.

Confidence and response times. Statistical analysis
of the confidence ratings and response times further sup-
ports this conclusion. The Bayesian information crite-
rion (Schwarz, 1978) approximation to Bayes factors
(Kass & Raftery, 1995) was used to compare the confi-
dence ratings of consistent and inconsistent participants.
Under the assumption that confidence follows a Gauss-

ian distribution, the most likely account is that consis-
tent and inconsistent confidence ratings have different
means and variances. This account, which corresponds
to the assumption the confidence ratings are different be-
tween the groups, was found to be 60.6 times more likely
than the same account, which uses the same mean and
variance for both groups. This can be interpreted as strong
evidence that the participants who made consistent deci-
sions were more confident. Use of the same analysis to
compare the confidence distributions of TTB and RAT
decisions, however, showed that the same account was
67.0 times more likely than the different account. This
can be interpreted as providing strong evidence that the
participants who made consistent decisions were equally
confident, regardless of whether they made decisions con-
sistent with the TTB or the RAT model.

The response times, which suggested that the TTB
participants were faster than the RAT participants, were
also examined for statistical differences. We made the
commonly used (e.g., Cousineau & Larochelle, 1997;
Ida, 1980; Logan, 1992; Van Zandt, 2000), if not univer-
sally accepted, assumption that response times follow a
two-parameter Weibull distribution for the practical pur-
pose of estimating Bayes factors. Under this approach,
the different account, in which both parameters were al-
lowed to vary, turned out to be 1,970 times more likely
than the same account. This can be interpreted as pro-
viding overwhelming evidence that the response times
for TTB decisions are shorter than those for RAT deci-
sions. This makes sense, since the TTB decision model
requires only that a cue be found that discriminates be-
tween stimuli, whereas the RAT decision requires all
cues to be considered.

Unified model evaluation. Given that many partici-
pants made decisions consistent with both the TTB and
the RAT models, the ability of the unified model to en-
compass both approaches should enable it to account for
many of the data. Formally, this can be achieved by al-
lowing the unified model to assume different evidence
threshold parameterizations for different participants or
for different groups of participants and examining the
ability of these families of models to account for all the
decisions made.

To fit the model in this way, the 40 participants were
divided into two groups, on the basis of whether they
made more TTB or more RAT decisions. That is, the par-
ticipants who made three, four, or five TTB decisions
were placed in one group, and the remaining participants
were placed in the other group. Best-f itting evidence
thresholds, in terms of maximizing the number of deci-
sions correctly accounted for, were then found for both
groups. Because of the pattern of cue validities used in
the experiment, there is a range of parameterizations that
are indistinguishable in their predictions, and so any
threshold less than the evidence of the first cue (i.e., less
than about 3.5) leads to TTB decisions, whereas larger
thresholds lead to RAT decisions. With these parameter-
izations for the two participant groups, the unified model

Table 2
Raw Data From the Test Phase, Detailing the Decision and

Confidence for Each Participant on Each Comparison

Participant Q1 Q2 Q3 Q4 Q5

1 R3 T4 R3 R4 R4
2 R4 T3 R3 T5 R3
3 R4 R3 R4 R4 R3
4 R1 R3 T1 R1 R1
5 R2 T3 T2 T3 R3
6 R3 R3 R4 R3 R3
7 T3 T2 R2 T3 T3
8 T3 T4 T3 T4 T3
9 R5 R2 R1 R4 R4

10 R3 R3 R3 R3 R4
11 R5 R5 R4 R5 R4
12 R3 R3 R3 R2 R3
13 R2 T1 T2 T4 T2
14 R4 T4 R2 T2 R4
15 T3 T3 T3 T3 T3
16 T5 T4 R3 R4 R5
17 R2 T2 T3 T4 R4
18 T3 T5 T5 T5 T4
19 R3 T2 R4 R2 R4
20 T1 R2 R1 T2 T1
21 R2 R2 R2 R3 R1
22 R1 R1 T3 T3 R3
23 R4 R3 R3 R3 T3
24 R3 T3 R4 R4 T3
25 T4 T5 T4 T5 R5
26 R1 R1 R1 R1 T1
27 T3 T5 T4 T4 T4
28 R3 R2 R2 R2 R4
29 R2 R3 R5 R4 R5
30 T3 R4 T5 T5 R4
31 R4 R3 R3 R3 R4
32 R4 T1 R4 R3 R3
33 R3 R3 R4 R3 R4
34 R2 R2 R4 R3 R4
35 T2 T4 T2 T2 T2
36 R3 R4 R4 R4 R3
37 R1 R1 R1 T1 R1
38 R4 R4 R2 R3 R3
39 R4 R1 T3 T2 R3
40 T2 T2 T2 R1 T4

Note—Decisions are shown as favoring the TTB (T) or the RAT (R)
model, followed by the confidence value (1–5). Participants who were
consistent with one of the models for all five comparisons are shown in
bold type.
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accounts for 84.5% of the decisions made by all the par-
ticipants. This compares with an accuracy of 64%, under
the assumption that all the participants used the RAT de-
cision model, and of 36% for the TTB model.

Of course, the unified model, through its use of two pa-
rameters, is more complicated than both the TTB and the
RAT decision models, which are parameter free. This
raises the issue of whether the extra complexity is war-
ranted by the improved accuracy of the unified model (e.g.,
Roberts & Pashler, 2000). This concern can be addressed
substantially by using recent developments in psychologi-
cal model selection theory (e.g., Myung & Pitt, 1997; Pitt,
Myung, & Zhang, 2002), which provides Bayesian and in-
formation theoretic criteria for choosing between models
in ways that consider both accuracy and complexity.

One interesting challenge in doing this is that the uni-
fied, TTB, and RAT models are deterministic and do not
specify an error theory. This means that various proba-
bilistic model selection criteria, such as Bayes factors,
minimum description length (MDL; e.g., Grünwald,
2000) or normalized maximum likelihood (Rissanen,
2001), are not immediately applicable. Recently, how-
ever, Grünwald (1999; see also Myung, Pitt, & Kim, in
press) has developed a model selection methodology that
overcomes these difficulties. He has provided a princi-
pled technique for associating deterministic models with
probability distributions, through a process called en-
tropification, that allows MDL criteria for competing
models to be calculated. Applying this method to the
unified, TTB, and RAT models for the decision data re-
sulted in MDL values of 87.6, 138.6, and 130.7, respec-
tively. The much smaller MDL value for the unified
model indicates that it provides a better account of the
data, even allowing for its additional complexity. This
finding is not surprising, since only the unified model
can capture the basic regularity in the human data and
produce decisions consistent with both the TTB and the
RAT models.

Discussion
One potential criticism of the experiment is that it does

not make the visual search for information an effortful
process. A central tenet of the fast-and-frugal approach is
that the need to search an environment for information
places strong constraints on cognitive processes. It is pos-
sible that the nature of the stimulus presentation is re-
sponsible for the relatively greater number of RAT than
of TTB decision makers. Because of the ready availabil-
ity of all the gas molecules, there would seem to be little
disincentive for people not to gather complete cue infor-
mation before making a decision and, so, behave in a way
compatible with the RAT model.3

The unified model explicitly incorporates a search
strategy and, accordingly, makes predictions about what
decisions will be made under task conditions that en-
courage different levels of search. In particular, if the in-
formation needed to make a decision is difficult to find,
the unified model predicts the use of fast-and-frugal

strategies, achieved by reducing the required evidence to
make a decision. In a follow-up experiment, reported
only briefly here, we asked participants to make judg-
ments about the poisonousness of the gases under con-
ditions in which only part of the canister was visible, so
not all of the molecules were visible at once. Seven of 20
participants consistently made TTB decisions, but none
consistently followed the RAT model. Once again, the
odds of the TTB consistency’s arising by change are neg-
ligible (8,130 to 1 against), and an analysis of confidence
rating showed that the consistent participants were sig-
nificantly more confident. The unified, TTB, and RAT
models accounted for 78%, 64%, and 36% of the deci-
sions, respectively, and had MDL values of 54.1, 65.3,
and 69.3. The unified model, therefore, also provided the
best account of human performance in this second ex-
periment, in which more effortful information search
was required.

More generally, it is useful to interpret the unified
model as a natural extension of the fast-and-frugal ap-
proach. Effectively, what the evidence accrual model
does is extend the TTB account of one-reason decision
making to two-reason, three-reason, or many-reason de-
cision making. In these extensions of the TTB model, it
may be necessary for a stimulus to have two or more
high-validity cues that its alternative does not, rather
than just relying on the first discriminating cue. This
seems reasonable: Whereas choosing a red curry may
demand only one good reason, many people would pre-
fer to buy a plane ticket to Madrid only after they had es-
tablished several advantages over Rome (Allen, 2000).
By assuming that people must reach some threshold of
evidence before making a decision, it is possible to cap-
ture the different importance of different decisions in a
natural way that begins at the fast-and-frugal and ends at
the rational. Furthermore, the evidence accrual formula-
tion gives a sensible account of why decisions take
longer in some environments than in others. In environ-
ments in which relatively little strong evidence is avail-
able to support any decision, more information will need
to be found before a decision is made. In environments
in which there is readily available information that pro-
vides strong evidence for a particular decision, response
times may still be short even when the decision is a very
important one.

More comprehensive data are needed to test the ade-
quacy of the simple random walk sequential-sampling
process assumed in the version of the unified model pre-
sented here. It may be that variants, such as multiple ac-
cumulator sampling processes (e.g., Lee & Corlett, 2003;
Vickers, 1979), are needed to capture human perfor-
mance. Similarly, whether or not it is useful to incorpo-
rate asymmetric or dynamic evidence thresholds (e.g.,
Ashby, 1983; Busemeyer & Townsend, 1993; Vickers,
1979) or memory models to describe the retention of in-
formation (e.g., Pietsch & Vickers, 1997; Smith, 2000;
Usher & McClelland, 2001) or an interval of uncertainty
in evidence accumulation (e.g., Juslin & Olsson, 1997;
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Vickers, 2001; Vickers & Pietsch, 2001), or to employ
any of a range of other theoretical mechanisms from the
sequential-sampling process literature requires more de-
tailed experimentation.

The obvious way to generate the necessary additional
empirical constraints is to examine how the two factors de-
scribed above—the setting of internal cognitive evidence
thresholds based on the utility and consequences of a de-
cision and the supply of information available through
searching an external environment—interact in human de-
cision making. There are a variety of experimental meth-
ods from the decision-making literature by which to ma-
nipulate the evidence thresholds used by people in making
decisions, including manipulating the costs and benefits
of making correct and incorrect decisions and demanding
different target levels of confidence through speed–
accuracy tradeoffs (e.g., Vickers, 1979). There has also
been previous work in which the decisions made in envi-
ronments with different significance structures have been
studied (e.g., Bullock & Todd, 1999). Putting these ex-
perimental possibilities together and attempting to model
how quickly, confidently, and accurately people make de-
cisions in differently structured environments under dif-
ferent task demands is a priority for future research.
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NOTES

1. There is a sense in which this independence assumption, by avoid-
ing the full Bayesian treatment, is consistent with the fast-and-frugal
idea of “taking a bet” on the structure of the environment (see Mar-
tignon & Laskey, 1999). It is reasonable to argue, nevertheless, that this
model is “rational” in relation to the TTB model, because it explicitly
integrates the information available in all stimulus cues.

2. Advocates of fast-and-frugal heuristics could argue that this uni-
fication relies on a generous interpretation of the rational model, in the
sense that it really does not make any processing assumptions but sim-
ply requires all information to be available. This is true, but it remains
the case that the complete validity-ordered sampling of cues under the
sequential-sampling process will produce exactly the same decisions as
the rational model.

3. It is also possible to argue, however, that using training examples
in which the decision strategies always agree biases people toward using
the simpler TTB strategy.
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