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Abstract

Text classification involves deciding whether or not a document is about a given topic. It is an
important problem in machine learning, because automated text classifiers have enormous potential
for application in information retrieval systems. It is also an interesting problem for cognitive science,
because it involves real world human decision making with complicated stimuli. This paper develops
two models of human text document classification based on random walk and accumulator sequential
sampling processes. The models are evaluated using data from an experiment where participants clas-
sify text documents presented one word at a time under task instructions that emphasize either speed or
accuracy, and rate their confidence in their decisions. Fitting the random walk and accumulator models
to these data shows that the accumulator provides a better account of the decisions made, and a “bal-
ance of evidence” measure provides the best account of confidence. Both models are also evaluated
in the applied information retrieval context, by comparing their performance to established machine
learning techniques on the standard Reuters-21578 corpus. It is found that they are almost as accurate
as the benchmarks, and make decisions much more quickly because they only need to examine a small
proportion of the words in the document. In addition, the ability of the accumulator model to produce
useful confidence measures is shown to have application in prioritizing the results of classification
decisions.
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1. Introduction

A central problem in information retrieval is the classification of text documents. Given a
particular document, and a particular topic, the classification problem is to determine whether
or not the document is about the topic. A range of machine learning techniques have been
applied to the text classification problem (see, for example,Yang & Liu, 1999), many of
which involve solving difficult optimization problems, or doing other extensive calculations.
In addition, most of these text classifiers consider every word in the document, even when the
individual documents have a large number of words. Taken together, these properties mean that
machine learning classifiers take time to process large text corpora. While this is not always
a problem, there are some applied situations where users require fast “on-line” text document
classification for large numbers of documents.

As with many artificial intelligence and machine learning problems, there is much to be
learned from examining the way in which humans perform the task of text classification. In
particular, it is worth making the effort to understand how people manage to make quick and
accurate decisions regarding which of the many text documents they encounter everyday—
newspaper articles, e-mails, journal articles, postal correspondence, and so on—are about topics
of interest. Conversely, cognitive models of human decision making can benefit from studying
human performance on a real world task such as text classification, using complicated natural
stimuli such as text documents. There are, of course, advantages in studying decision making
with artificial stimuli, as if often done in the categorization and decision making literature (e.g.,
Bourne, 1974; Medin & Schaffer, 1978; Nosofsky, 1986; Shepard, Hovland, & Jenkins, 1961),
because of the experimental control that is achievable. A central and long-standing argument
of ecological approaches (e.g.,Brunswik, 1943; Simon, 1956), however, is that it is also impor-
tant to consider the role of non-arbitrary stimulus environments in supporting (or confounding)
human decision making. Indeed, a number of more recent research efforts have explicitly incor-
porated models of environmental structure in developing formal accounts of human cognitive
processes. These includeShepard’s (1987, 1994)(see alsoMyung & Shepard, 1996) theory
of stimulus generalization,Anderson’s (1990, 1991, 1992)rational theory of memory, catego-
rization, inference and problem solving, and the “fast and frugal” heuristic models of decision
making developed byGigerenzer and Todd (1999)(see alsoTodd & Gigerenzer, 2000).

This paper develops and evaluates cognitive models of human decision making, and also
uses these models to design and test automated text classification systems. The structure of
this paper is as follows: in the next section, three psychological observations about human
text classification are outlined. These observations relate to the way in which people seem
to make text classification decisions, and provide an impetus for developing models that use
random walk and accumulator sequential sampling processes. The results of an experiment are
then presented, in which people classify text documents presented one word at a time, under
instruction conditions that emphasize either speed or accuracy. The ability of the random walk
and accumulator models to capture the decisions made by people, their confidence in those
decisions, and the number of words they read before making the decisions, is then examined.
Finally, the random walk and accumulator models are evaluated as automated text classification
systems, by comparing their performance to established machine learning techniques on a
benchmark problem.
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2. Psychological observations about text classification

2.1. Non-compensatory decision making

When people decide whether or not a text document is about a topic, they often make
non-compensatory decisions, in the sense that they do not consider all of the words in the
document. For example, if asked whether a newspaper article is about the U.S. Presidency,
and the first seven words read are “Motorists living in rural and regional Australia. . . ,” many
people might choose to answer “no,” even if they were permitted to read the remainder of the
article.

In developing their fast and frugal heuristics,Gigerenzer and Todd (1999)present a com-
pelling case for the role of environmental structure in facilitating non-compensatory decision
making. Their basic argument is that people are able to use efficient and robust decision making
strategies by relying on regularities in their task environment. If, for example, an environment
has a structure where the first pieces of information found in a search are predictive of the
information that would be found by more extensive searching, it is possible (and sensible) to
make a decision based on a limited search. It is also reasonable to make limited searches in
environments with diminishing returns, where the first pieces of information are significantly
more important than those that follow. When these sorts of regularities exist in a task environ-
ment, non-compensatory decision making provides a mechanism for making decisions that are
both fast and accurate.

In the context of text document classification, it seems likely that words near the beginning
of a text document will often provide some clear indication of the semantic topic of that
document. Generally, writers inform their audience of the topic of a document at or near the
beginning of the document, and so early words should provide a strong indication of the topic
of a document. If this is true, it provides an environmental regularity to which people are
almost certainly sensitive, and could enable the effective use of non-compensatory decision
making.

2.2. Competing models in decision making

A second psychological observation involves the relationship between the “yes” decision
“the document is about the topic,” and the “no” decision “the document is not about the topic.”
When people are asked to make this decision, they actively seek information that would help
them make either choice. In other words, it is possible for both “yes” and “no” decisions to be
made in a non-compensatory way.

For example, if asked whether a newspaper article is about the U.S. Presidency, and the first
word is “The,” it seems likely that most people would not be able to make a decision with any
degree of confidence. If, however, the first word is “Clinton,” it seems likely that most people
would confidently respond “yes.” Conversely, if the first word is “Cricket,” it seems likely
most people would confidently respond “no.”

When people answer “no” in the final scenario, it suggests that they are actively evaluating
the word “Cricket” as evidence in favor of the document not being about the topic (in the same
way they actively evaluate the word “Clinton” as evidence that the document is about the topic).
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This behavior implies that people treat the “yes” and “no” choices as two competing models,
and are able to use the content of the document as evidence in favor of either model. Importantly,
this behavior is not consistent with a “hypothesis-testing” approach to decision making, where
the decision “yes” is treated as an alternative hypothesis, and is accepted if sufficient evidence
is found in its favor, but is rejected in favor of the null hypothesis of deciding “no” if insufficient
evidence is found.

2.3. Complete decision making

A third psychological observation is that when people decide whether or not a text document
is about a topic, they generate more information than just a binary choice. People give answers
having taken a period of time, and are able to express a level of confidence in their decision.
As argued byVickers and Lee (1998, p. 178), these measures provide a source of additional
empirical constraints that assist in the process of model development, evaluation and compar-
ison. Certainly, it is important that a cognitive model of the text classification decision making
process is able to make predictions about performance measures such as confidence and time.

3. Sequential sampling models of text classification

Sequential sampling process models of decision making (e.g.,Busemeyer & Rapoport, 1988;
Laming, 1968; Link & Heath, 1975; Nosofsky & Palmeri, 1997; Ratcliff, 1978; Smith, 2000;
Vickers, 1979) assume that stimuli are continually sampled for information, until sufficient
evidence has been accrued to favor one decision over the alternatives, or no more information
is available. Most commonly, these models involve random walk or accumulator processes.
In a random walk model, where there are two alternative decisions, each successive piece
of information is used to adjust an accrued evidence total, and a decision is made once a
threshold level of information has been reached for one of the decisions. Accumulator models,
in contrast, maintain separate evidence totals for both possible decisions, and make a decision
when one of these totals reaches a threshold. Within these general frameworks, random walk
and accumulator models allow all sorts of variations, involving issues such as how information
is accumulated and retained, and how thresholds are regulated (seeSmith, 2000for a detailed
technical discussion).

The important point is that random walk and accumulator models naturally capture the three
psychological observations. Both models establish explicit evidence thresholds for each pos-
sible decision; non-compensatory decisions can be made, since the stimulus is only examined
until the point where the threshold is exceeded; and both models generate predictions regarding
how much stimulus information will be gathered before a decision is made, and what measure
of confidence will be given to that decision.

This integration of the psychological observations suggests text classifiers that examine
each word in a text document sequentially, evaluating the extent to which that word favors
the alternative “yes” and “no” decisions, and using the evidence value to update the state of a
random walk or accumulator model. All that is missing from this specification is a concrete
formulation of the notion of evidence.
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3.1. Measuring evidence

The evidence measure developed here is essentially a measure of how often a word occurs in
documents about a topic relative to how often it occurs in documents not about that topic. The
presence of a word like “Clinton” in a document provides strong evidence that the document
is about the U.S. Presidency, because it occurs regularly in documents about the topic, and
rarely in documents that are not about the topic. In contrast, a word like “Cricket” provides
strong evidence against a document being about the presidency, because it seldom occurs in
documents about the topic, but does appear in documents about other topics. Finally, words
like “the” or “tine” provides little evidence in favor of either decision, because they occur at
the same rate in documents both about and not about the topic (which is often in the case of
“the,” and much less often in the case of “tine”).

Using these ideas, the evidence that theith word in a dictionary provides about topicT,
denoted byVT (wi), may be defined formally on a log-odds scale as follows:

VT (wi) = ln
p(wi|T)

p(wi|T̄ )
≈ ln
|wi ∈ T |/|T |
|wi ∈ T̄ |/|T̄ | , (1)

whereT is “about a topic,”T̄ is “not about a topic,” |wi ∈ T | is the number of times wordwi oc-
curs in documents about topicT, and |T| is the total number of words in documents about topic
T. Because they lie on a log-odds scale, these evidence values are symmetric about zero: words
with positive values (“Clinton”) suggest that the document is about the topic, words with neg-
ative values (“cricket”) suggest that the document is not about the topic, and words with values
near zero (“the,” “tine”) provide little evidence for either alternative. In practice, evidence val-
ues can be calculated using a text corpus that contains a reasonably large number of documents,
each of which has been identified as either being about or not being about a set of topics.

Throughout this study, the standard Reuters-21578 text corpus (Lewis, 1997) is used as a
source of real world text documents. This corpus contains a set of 21,578 news articles and
involves 90 topics, covering a diverse range of trade, resource and economic concepts, such
as “copper,” “housing,” “money-supply” and “coffee.” Every article has been assessed against
every topic by human readers, with a list of those topics an article is judged to be about prefacing
the document title, text, and other metadata in the corpus.

Beyond converting all characters to lower case, no pre-processing of the corpus, such as
word stemming, was undertaken. This means that words were defined simply as unique strings
of characters and numbers separated by spaces. The evidence that each such word provides for
each topic was calculated according toEq. (1), using the so-called “ModApte split” training set
(Lewis, 1997; Yang & Liu, 1999). This split defines a standardized way of separating the corpus
into a set of training documents and a set of test documents, and so allows independent research
efforts to be compared meaningfully, because they are tackling the same basic problem.

From the evidence values, the possibility that the documents have an environmental regu-
larity, in the form of using higher evidence words at or near their beginning, is able to be tested
in a quantitative way.Fig. 1shows the mean absolute evidence provided by words according to
their relative position in the documents. It can be seen that words at the beginning of documents
provide much more evidence than those in the middle or near the end, although there is a small
increase for words at the very end, presumably associated with “summing up.” Of course, this
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Fig. 1. The mean absolute evidence provided by words in the Reuters-21578 corpus, as a function of their relative
position in the document.

analysis of one corpus does not prove that there is a general environmental regularity across
all text documents, and it may well be the case that corpora from the other sorts of genre
studied in the field of text and discourse processing (e.g.,Biber, 1988) do not exhibit the same
pattern. It would be an interesting exercise to measure the change in evidence across document
position for other collections of news articles, as well as for other forms of writing, such as
longer magazine-style documents, formal and informal personal correspondence, instruction
manuals, James Joyce novels, speech that has been converted to text, documents written in
languages other than English, and so on.

3.2. Random walk model

In random walk models, the total evidence is calculated as the difference between the
evidence for the two competing alternatives, and a decision is made once it reaches an upper
or lower threshold. This process can be interpreted in Bayesian terms (e.g.,Carlin & Louis,
2000; Gelman, Carlin, Stern, & Rubin 1995; Leonard & Hsu, 1999; Lindley, 1972), where the
state of the random walk is the log posterior odds of the document being about the topic. Using
Bayes’ theorem, the log posterior odds is given by

ln
p(T |D)

p(T̄ |D)
= ln

p(T)

p(T̄ )
+ ln

p(D|T)

p(D|T̄ )
,
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whereD is the document being classified in terms of topicT. We then assume that the document
can be represented in terms of itsn wordsw1, w2, . . . , wn, so that:

ln
p(T |D)

p(T̄ |D)
≈ ln

p(T)

p(T̄ )
+ ln

p(w1, w2, . . . , wn|T)

p(w1, w2, . . . , wn|T̄ )
.

Finally, to make the calculation tractable, it is assumed that each word provides independent
evidence, so that the log posterior odds becomes:

ln
p(T |D)

p(T̄ |D)
= ln

p(T)

p(T̄ )
+ ln

p(w1|T)

p(w1|T̄ )
+ ln

p(w2|T)

p(w2|T̄ )
+ · · · + ln

p(wn|T)

p(wn|T̄ )

= ln
p(T)

p(T̄ )
+ VT (w1)+ VT (w2)+ · · · + VT (wn). (2)

This final formulation consists of a first “bias” term, given by prior probabilities of “yes”
and “no” decisions, that determines the starting point of the random walk, followed by the
summation of the evidence provided by each successive word in the document.

Once the random walk has terminated, and a decision made according to whether it reached
an upper or lower threshold, a measure of confidence in the decision is determined by the
number of words examined. For documents that require many words to classify, confidence
will be low, while for documents classified quickly using few words, confidence will be high.

Fig. 2 summarizes the operation of the random walk model on a document from the
Reuters-21578 collection that is about the topic being examined. The state of the random
walk is shown as the evidence provided by successive words in the document is assessed. A
threshold value of 50 is shown by the dotted lines above and below. This example highlights
the use of non-compensatory decision making, because the evidence accrued in reading the
first 100 words of the documents led to a correct “yes” decision being made, but the final state
of the random walk, when the entire document has been considered, favors a “no” decision
being made.

It is clear that the random walk is very similar to the standard Naive Bayes classifier, from the
field of machine learning, that has previously has been applied to the text classification problem
(e.g.,Nigam, McCallum, Thrun, & Mitchell, 2000; Yang & Liu, 1999). Naive Bayes classifiers
are effectively random walks that always consider all of the available information, rather than
requiring a target level of confidence to make a decision, and do not model the time course
of decision making. The potential advantages of random walks, and other sequential sampling
processes, is that their emphasis on accruing information in an ordered and temporal way
means they address confidence and time performance measures, and enable non-compensatory
decisions to be made.

3.3. Accumulator model

The accumulator model differs from the random walk by maintaining separate evidence
totals,AT andAT̄ , for the “yes” and “no” decisions, respectively. As with the random walk
model, these totals may begin at non-zero values to reflect decision bias, and then accumulate
evidence by reading the words in the document. When theith word is read, the two evidence
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Fig. 2. Operation of the random walk model in a case where the document is about the topic.

totals are updated as follows:

AT ←
{

AT + VT (wi), if VT (wi) > 0,

AT , if VT (wi) ≤ 0;
and

AT̄ ←
{

AT̄ + VT (wi), if VT (wi) < 0,

AT̄ , if VT (wi) ≥ 0.

In effect, this means that the evidence provided by each successive wordVT (wi) is added to
the “yes” accumulator if it is positive or the “no” accumulator if it is negative. Once either the
“yes” accumulator reaches a positive threshold, or the “no” accumulator reaches a negative
threshold, the corresponding decision is made.

Accumulators can also be interpreted in Bayesian terms,1 by considering each accumulator
as a separate Naive Bayes classifier. As each word is read, the “yes” accumulator accrues the
evidence a word provides for the document being about the topicp(w|T) against the competing
model given by min(p(w|T), p(w|T̄ )). Meanwhile, the “no” accumulator accrues the evidence
a word provides for the document not being about the topicp(w|T̄ ) against the same competing
model min(p(w|T), p(w|T̄ )).

Because accumulators maintain separate evidence totals, there are a number of ways in which
the confidence in a decision may be assessed. Following the approach used for the random
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walk, confidence may be determined by the number of words read. Alternatively, confidence
may be assessed using a “balance of evidence” approach (Vickers, 1979; see alsoVan Zandt,
Colonius, & Proctor, 2000), where it is measured as the difference between the evidence totals as
a proportion of the total evidence accumulated. When accumulators use asymmetric thresholds
(that is, when the values of the thresholds are different), it is necessary to express the evidence
in each accumulator as a proportion of its threshold (Vickers, 1985, 2001b). Formally, this
means that the general balance of evidence approach calculates confidence as:

|AT /kT − |AT̄ /kT̄ ||
AT /kT + |AT̄ /kT̄ |

, (3)

wherekT is the threshold for the “yes” accumulator, andkT̄ is the threshold for the “no”
accumulator.

Fig. 3shows the operation of the accumulator model on the same text document considered
in Fig. 2. The state of both accumulator totals are shown as successive words in the document
are read, and thresholds of 50 are once again indicated by dotted lines. As with the random
walk model, the accumulator model makes a non-compensatory “yes” decision, because the
“yes” accumulator is the first to reach its threshold. After all of the words in the document
have been read, however, a “no” decision is favored, because the “no” accumulator has greater
(absolute) evidence.

Fig. 3 also demonstrates the way in which the different methods of assessing confidence
for accumulator models may make different predictions. If confidence is determined by the
number of the words read, only the point at which the “yes” accumulator reaches the thresh-
old is important. Any text document classified after the same number of words would have

Fig. 3. Operation of the accumulator model on the same document shown inFig. 2.



168 M.D. Lee, E.Y. Corlett / Cognitive Science 27 (2003) 159–193

the same confidence measure. Under the balance of evidence approach, however, documents
classified at the same point could be given different confidence measures depending on the
level of evidence in the “no” accumulator. For example, if the “no” accumulator contains no
evidence, confidence will be high, whereas, if it contains almost as much evidence as the “yes”
accumulator, confidence will be low.

4. Experiment

The experiment reported here considers a limited form of human text classification, where
words are presented serially at a constant rate until a decision is made regarding whether or
not the document is about a given topic. While this task clearly does not incorporate important
aspects of everyday text classification, such as the layout of the text, it is a task that people are
able to do easily, and corresponds to the real world task of, for example, deciding whether or
not the news flash on a scrolling electronic display is worth continuing to read. More impor-
tantly, the control afforded by the serial presentation methodology allows for the collection of
empirical data that support quantitative evaluation of the random walk and accumulator text
classification models.

4.1. Participants

Eighty-two participants, some of whom received partial course credit for their involvement,
completed the text classification task. There were 51 females and 31 males, aged between 18
and 65, with a mean age of 30 years.

4.2. Stimuli

Each participant classified a total of 50 text documents. These documents, and the topics
against which they were classified, were selected from the ModApte test set of the Reuters-21578
corpus. The 50 documents comprised five sets of 10 documents, where each set displayed a
particular qualitative form of serial evidence accrual. The first set contained documents that,
using the evidence totals learned from the training set, were observed to be consistently about
the topic in question. The second set contained documents that were consistently not about
the topic. The third set contained documents that started off being about the topic, but then
showed a change towards not being about the topic. The fourth set contained documents that
started off not being about the topic, but then showed a change towards being about the topic.
These document and topic combinations proved very difficult to find, as was expected given the
overall evidence structure of the corpus summarized inFig. 1. Finally, the fifth set contained
documents that never provided substantial evidence that they were either about or not about
the topic.

These five qualitative forms are graphically characterized inFig. 4, which shows the random
walk pattern of evidence accrual for one of the documents against its topic for each type. For
each curve, the number of words read progresses along thex-axis, and the total evidence for
the alternative decisions is shown on they-axis. The 50 documents and their topics, which are
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Fig. 4. Examples of each of the five question types, displayed using the random walk approach to evidence accrual.

detailed inTable 1, were selected by the visual examination of a large number of random walks
like these. It is important to note that the pattern of evidence accrual was the sole criterion for
selection. In particular, the assessment of human readers provided as part of the Reuters-21578
corpus was not used in any way as a basis for choosing stimuli.

Because each of the stimuli are real text documents, it is not possible to exercise precise
control over the lengths of documents in each of the five sets.Table 2provides descriptive
statistics summarizing the length properties of the documents chosen, and indicates that the
documents in sets 1, 2, 3, and 4, all have broadly similar length characteristics. The documents
in the fifth set, however, are clearly shorter, because it proved impossible to find lengthy
documents that never accrued substantial evidence for either classificatory decision.

4.3. Method

The 82 participants were randomly allocated to two experimental groups with different task
instructions. In the “speed” experimental group, participants were instructed to make their
decisions as quickly as possible, while participants in the “accuracy” experimental group were
told to ensure their decisions were as accurate as possible.

At the commencement of each trial, the participant was presented with a question of the
form “Is this document aboutxxx?,” wherexxxdenoted the short description of the topic given
in Table 1. The participant then pressed a “start” button, following which the body of the
document (not including the document title) was presented one word at a time at a rate of one
word per second, with the display of each successive word replacing the previous word. If the
end of the document was reached, the text “〈end-of-document〉” was displayed indefinitely.
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Table 1
The 50 documents and their topics used in the experiment, giving the question type, the number of the document
within the Reuters corpus, the title of the document, and the topic description

Type Number Title Topic

1 14826 Asian exporters fear damage from U.S.–Japan rift Trade
1 14833 Indonesia sees CPO price rising sharply Palm oil
1 14839 Australian foreign ship ban ends but NSW ports hit Commercial shipping
1 20787 U.S. may end additional sanctions against Japan Trade
1 17479 Coniston group to continue bid for Allegis Company acquisition
1 17492 Gas carrier escaped gulf attack last week—Lloyds Commercial shipping
1 18835 European community criticizes U.S. trade measures Trade
1 19000 Joint action said vital to boost world growth Gross national product
1 19028 Fed data suggest no change in monetary policy Interest rates
1 18752 Steel firms study USX unit price hike Iron/steel
2 18776 Indonesian debt service ratio peaks, minister says Unemployment
2 14827 Pilots propose wage cut to fund buyout Personal income
2 14830 Nissan may supply parts to Mexican Ford, Chrysler Palladium
2 20778 Artillery shells said to fall on Kuwait border Malaysian ringgit
2 14831 New Zealand raises foreign investment threshold Wool
2 14942 Asian shows mixed performance in 1986 Linseed oil
2 18781 Growth of palm oil use set to slow, output to rise Cotton oil
2 14824 Yugoslav workers may be angered by lost subsidies Personal income
2 15471 Belgium launches bonds with gold warrants Wool
2 17380 West German tapioca use seen declining Tapioca
3 15549 U.S. said to view G-7 meeting as major success Japanese yen
3 14923 French traders forecast EC sugar tender Barley
3 15511 Physi-technology sees loss, in default Company earnings
3 15567 India foodgrain target 160 million tonnes in 1987/1988 Rice
3 15219 Talks continue on tin agreement extension Tin
3 15817 Consensus seen on tin pact extension Tin
3 15213 Medtronic sees 15 pct earnings growth Company earnings
3 15743 London eurodollar bonds close lower Foreign exchange
3 14908 South Africa mines body sees May day work stoppage Gold
3 14840 Indonesian commodity exchange may expand Vegetable oil
4 15352 Deficit cuts seen unable to cure trade deficit U.S. dollar
4 17101 Venezuela re-establishes posted product prices Heating oil
4 18996 OECD urges action to cut U.S. budget deficit Balance of payments
4 19047 U.S. seeks Japan help in event of 1988 recession Interest rates
4 15240 Hartmarx targets earnings growth Gross national product
4 15829 Royal Dutch unit to cut heating oil price Heating oil
4 18834 First Wisconsin adds loan losses Company earnings
4 16636 Texacosays some oil flows re-established Crude oil
4 15389 RTZ sees rising U.S. output aiding 1987 results Company earnings
4 15738 U.S. to push strong summit agriculture statement Grain
5 14825 French government wins confidence vote Trade
5 15033 Zambia does not plan retail maize price hike Grain
5 16012 Egypt seeking 500,000 t corn—U.S. traders Rice
5 20785 Pacific stock exchange closing figures delayed Trade
5 18496 Austrian current surplus grows in 4 months Interest rates
5 14922 Rain boosts central Queensland sugar cane crop Coffee
5 18001 Brazil’s Sarney renews call for war on inflation Crude oil
5 17384 EC unemployment falls below 17 million in March Wheat
5 17049 Qantas to buy extended range Boeing 767 aircraft Company acquisition
5 17825 Fluorocarbon completes acquisition Petroleum chemicals
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Table 2
Descriptive statistical summary of document lengths across the entire stimulus set, and in terms of the five document
types

Mean Standard deviation Range

All 269 210 20–831
Type 1 307 219 42–732
Type 2 239 136 84–457
Type 3 328 224 98–809
Type 4 381 256 51–831
Type 5 89 50 20–181

At any time during this presentation process, the participant could make a classificatory
decision by pressing a “yes” or a “no” button located immediately beneath the text. At this
point, the participant was required to express their confidence in their decision. This was done
using a five-point rating scale, ranging from 0, which was labeled “uncertain,” through to 4,
which was labeled “definitely yes” for “yes” decisions and “definitely no” for “no” decisions.
Participants were instructed that, if they made a mistake in registering their decision, they should
select a confidence rating of 0. The decision, confidence in the decision, and the number of
words read to make the decision were then recorded, and the topic question for the next trial
was presented. To control for any order effects, the 50 text documents were presented in a
random order for each participant.

4.4. Results

The primary emphasis of our data analysis involves fitting the random walk and accumulator
models, which is done in the next section. For this reason, we only provide a brief analysis of
the raw data here, with a focus on what information the human performance data provide about
the usefulness of sequential sampling accounts. We also try to achieve some clarity by reporting
only a few statistical inference results drawn from a more extensive analysis, selecting those
providing information that is not visually obvious from displaying the data. Our statistical
inferences take the form of Bayes factors (BF:Kass & Raftery, 1995), comparing the odds that
two groups of scores came from the same distribution as opposed to two separate distributions.2

4.4.1. Decisions
The left panel ofFig. 5shows the relationship between the classification decisions for each

document across the speed and accuracy instruction conditions. Each point represents one of
the 50 documents. Thex-coordinate indicates the relative number of “yes” and “no” decisions
under speed instructions, while they-coordinate indicates the relative number of “yes” and
“no” decisions under accuracy instructions. One standard error around these mean decisions
is shown for both experimental groups. The results suggest that, for most of the documents,
the speed and accuracy task instructions did not affect the relative proportion of “yes” and
“no” decisions. The right panel ofFig. 5shows the relationship between decisions aggregated
across each document type, and suggests that each type, except perhaps Type 1, gave the
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Fig. 5. The mean decision for each document (on the left), and for each document type (on the right), in terms of
both speed and accuracy conditions. One standard error is shown about the means.

same decisions across task instructions. Statistical inference supports these conclusions. For
Type 1 documents, it is almost 13 times more likely that the speed and accuracy condition
decisions have different underlying rates of “yes” and “no” decisions (BF= 12.8) but, for all
other document types it is about five times more likely that the speed and accuracy condition
decisions have the same “yes” and “no” rates (BFs= 4.1, 6.5, 6.0, and 5.0, respectively).

4.4.2. Confidence
The left panel ofFig. 6shows the relationship between the confidence in decisions for each

document across the speed and accuracy instruction conditions. As with decisions, the different

Fig. 6. The mean confidence for each document (on the left), and for each document type (on the right), in terms of
both speed and accuracy conditions. One standard error is shown about the means.
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Fig. 7. The mean number of words read for each document (on the left), and for each document type (on the right),
in terms of both speed and accuracy conditions. One standard error is shown about the means.

task instructions generally did not affect confidence. The right panel ofFig. 6, which shows
the relationship between confidence values for each document type, suggests that confidence
is the same across task instructions in all cases. Once again, statistical inference supports these
conclusions, with Bayes Factors showing it is most likely the confidence scores from the speed
and accuracy conditions came from Gaussian distributions with the same mean (BFs= 2.8,
26.5, 21.0, 16.4 and 16.4, for the five types, respectively). There are significant differences in
confidence across the types, however, with Type 5 being different from Type 3 (BF= 28.6) and
Type 4 (BF= 17.0), Type 2 being different from Type 3 (BF= 152.3) and Type 4 (BF= 3.3),
and Type 1 being different from Type 3 (BF= 12.9). The only comparison where it is more
likely confidence is the same is between Types 2 and 5 documents (BF= 12.9).

4.4.3. Number of words read
The left panel ofFig. 7 shows the relationship between the number of words read in each

document across the speed and accuracy instruction conditions. The effect of the different
instructions on the number of words read is clear, with participants always reading more
words, on average, in a document under the accuracy condition. The right panel ofFig. 7shows
the relationship between the number of words read for each document type. The best-fitting
line through the origin and the five points explains 98% of the variance and has a slope of
1.85. This suggests that the effect of the accuracy instructions is proportionately the same for
each document type, and corresponds to participants reading about 85% more words before
classifying a document when under accuracy instructions. It is also clear that Type 1 documents
are classified using fewer words in both the speed and accuracy conditions.

4.4.4. Non-compensatory decision making
Fig. 8examines the number of words read in terms of both instruction conditions, and the

actual decision made. The top panel shows the distributions of words read for “yes” and “no”
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Fig. 8. The distribution of the number of words read to make yes and no decisions, for the speed condition (top
panel), and the accuracy condition (bottom panel).

separately under speed instructions, and shows that “yes” decisions tend to be made using fewer
words than “no” decisions. It is also clear, however, that almost all documents were classified
by all participants within about the first 60 words, regardless of the decision made. The bottom
panel, which relates to the accuracy condition of task instruction, shows a similar pattern: “yes”
decisions are made using fewer words than “no” decisions, but almost all decisions are made
within about 100 words. These distributions make it clear that the participants made both “yes”
and “no” decisions in a non-compensatory way. In fact, of the 82×50= 4,100 decisions made
in total, there are only three cases where a participant read to the end of the document.

4.4.5. Interval of uncertainty
A theoretical device sometimes used in sequential sampling models (e.g.,Juslin & Olsson,

1997; Vickers, 2001a; Vickers & Pietsch, 2001) is the “interval of uncertainty,” which assumes
that evidence values in a small range about zero are not accumulated at all. One way to test
whether such an interval is operating for text classification is to examine the distribution of
evidence values for the words immediately preceding a decision, as compared to the evidence
distribution of all words read. In this comparison, an interval of uncertainty would be revealed
by the terminating words having evidence values only outside an interval around zero.Fig. 9
shows the evidence distribution of the last words read by participants before a decision was
made, and the evidence distribution of all words read. These results do not show any interval of
uncertainty, since both terminating distributions have many evidence values around the value
zero. This is an interesting finding, worthy of further investigation. In particular, it would be
worthwhile examining what role, if any, the structure of sentences played in determining when
decisions were made.
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Fig. 9. The distribution of evidence values for all words read by participants (solid line), and those words immediately
preceding a decision being made (broken line). Results for the speed condition are shown in the top panel, and
results for the accuracy condition are shown in the bottom panel.

4.4.6. Asymmetric thresholds
The top panel ofFig. 9, which relates to the speed condition, shows that the last word

read has a large positive evidence values more often that would be expected from the overall
distribution.3 No such discrepancy is evident in the lower panel ofFig. 9, which relates to the
accuracy condition. This pattern of results is consistent with a sequential sampling model that
combines a small “yes” threshold with a larger “no” threshold under the speed condition, and
uses larger (although still possibly asymmetric) thresholds for both decisions in the accuracy
condition.

4.5. Conclusions

The results of the experiment have many encouraging consistencies with a sequential sam-
pling process account of human text classification, at least for the type of stimulus pre-
sentation used in the experiment. It is clear that people’s text classification decisions are
non-compensatory, and it also seems to be the case that their decision making does not suffer
from a failure to read all of the words. When under accuracy conditions, participants basically
made the same decisions with the same confidence as under speed conditions—they just read
almost twice as many words. This suggests that decision making is not necessarily subject to
a speed–accuracy tradeoff in the sense that it is improved by the consideration of more data.
It seems possible to be both quick and accurate in the way advocated byGigerenzer and Todd
(1999), and implemented by random walk and accumulator models.
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The pattern of decisions, words read, and confidence values across the five document types
is often consistent with the definition of those types in evidence accrual terms. For example,
participants made decisions more quickly when the evidence was consistently in favor of
the document being about the topic, and were least confident when classifying those Type 4
documents that violated an expected environmental regularity. There are also, however, some
less intuitive findings that, if replicable, would seem to need a more elaborate sequential
sampling account than is considered here. In particular, it is not clear why decisions for Type
5 documents were similar to Type 2 documents, but different from Types 3 and 4. Given that
Type 5 documents had patterns of evidence accrual that showed no strong evidence in favor of
either decision, it might have been expected they would be classified similarly to ambiguous
Types 3 and 4 documents, and differently from Type 2 documents, where the evidence is clearly
in favor of “no” decisions. One possibility, to which we return inSection 7is that, when faced
with the lack of decisive information in Type 5 documents, people dynamically adjust their
required evidence thresholds to enable a non-compensatory decision to be made, and so their
classifications are not well described by the fixed threshold models considered here.

Meanwhile, a final important conclusion from the experimental results relates to the evidence
distribution of terminating words. This distribution suggests that the inclusion of an interval of
uncertainty is not necessary to model human decision making, but that people may use different
standards of evidence for making “yes” and “no” decisions, and so sequential sampling models
need to allow for asymmetric thresholds.

5. Fitting the empirical data

In this section, two parameter random walk and accumulator models are fit to the empirical
data, where the parameters correspond to the (potentially asymmetric) evidence thresholds for
“yes” and “no” decisions. Before presenting the results of this analysis, it is worth discussing
three modeling challenges that are responsible for the model fitting process that is used.

5.1. Fitting process

The first modeling challenge arises because, when participants classified the documents,
their decisions were far from unanimous. AsFig. 5shows, for both conditions of task instruc-
tion, there are many documents for which different participants made different classification
decisions. Presumably, these differences relate to varying interpretations of the meaning or
scope of the word “about” in the question that was asked. Informal feedback suggested, for ex-
ample, that some participants treated the question “Is this document about trade?” as including
any document that involved goods or services being transferred between countries or regions,
while others limited “yes” decisions to only those documents that met a much narrower defi-
nition, such as negotiations on bilateral trade agreements. It is beyond the scope of our models
to account for these differences in semantic interpretation.

One practical means of addressing this problem is to consider only those classification
decisions that were consistent across all participants. For the speed condition, there are 16
documents (11 “yes” decisions and 5 “no” decisions) where 90% or more of the participants
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agreed in their decision, and there are 18 documents (10 “yes” decisions and 8 “no” decisions)
that meet this criterion for the accuracy condition. In all of the modeling reported here, only
these subsets of documents are used.

We should emphasize that we do not have any reason to believe that the restriction on the
documents considered in model fitting favors one model over the other, and this is certainly
not the intention of the manipulation. The intention is to ensure that the evidence values for
each word in relation to each topic, learned using the Reuters-21578 training set, have some
meaningful relationship to the internal evidence values assumed to be used by our participants.
Limiting the documents considered to those where people agreed strongly in their decisions is
intended to find those decisions less affected by differences in semantic interpretation, and so
make it more likely that the evidence values being supplied to the random walk and accumulator
processes convey the same information that drives human decision making. There is, of course,
no way in which evidence values supporting a “yes” decision can (or should) be used by either
model to produce a “no” decision, yet this is what would be required to explain human perfor-
mance where decisions are not largely unanimous. Fundamentally, the restriction of documents
to those with agreed decisions serves to give the random walk and accumulator models some
(equal) chance at explaining human performance. We should acknowledge, however, that using
agreed decisions does sample from the 50 questions in a biased way. Although at least one doc-
ument of every type is included in the speed condition subset, there are no Type 4 documents in
the accuracy condition subset. In addition, the sampling increases mean confidence from 3.1 to
3.4 for both speed and accuracy conditions, and decreases the mean number of words read from
18.0 to 14.6 for the speed condition, and from 32.9 to 25.8 for both the accuracy condition.

The second modeling challenge arises from the multiple measures of human performance
provided by the decision, confidence and number of words read data. One established practice
for fitting models to empirical data containing several dependent variables is to minimize the
total deviation across all of the measures. This would require finding thresholds that simulta-
neously minimize the difference between model predictions and observed data for decisions,
confidence, and number of words read. Unfortunately, the relationship between the three mea-
sures means that this standard approach does not make sense. A model, for example, that is able
to predict exactly the confidence and the number of words read, but does so for the wrong deci-
sion, has fundamentally failed to provide a useful account of human performance, even though
it may correspond to the minimum of an aggregated error function. In other words, models of
confidence and words read presuppose an effective model of decision making. Accordingly, the
approach to model fitting adopted here is to focus firstly on correctly predicting the decisions
made by people, and only then seek to optimize parameter values to provide the best possible
accounts of their confidence and the number of words read.

The third modeling challenge is that both random walk and accumulator models may fail to
make a decision, particularly if large thresholds are used. To allow the models to be compared
with the human data, where people were required to make a decision, we use forced choice
versions of the models. For the random walk model, this means that, if no decision threshold
has been reached at the end of the document, a classification decision is made according to the
sign of the final state of the random walk. If the evidence total is positive, a “yes” decision is
assumed, while a “no” decision is assumed if the total is negative. For the accumulator model, a
forced choice decision is made according to the relative levels of evidence in the two evidence
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Fig. 10. The parameter space for the accumulator model, in relation to the speed data. Regions of the parameter
space where the model correctly predicts all of the classifications decisions are shown in black, and the region with
the best correlation with the number of words read is circled.

totals. If the “yes” evidence total exceeds the “no” evidence total a “yes” decision is made,
otherwise a “no” decision is made.

5.2. Accumulator model

In fitting both of the models, we considered a parameter grid that extended from 0 to 500 for
both “yes” and “no” thresholds, evaluated at increments of 0.25. For the accumulator model, a
large number of these parameterizations matched all of the participants’ decisions for both the
speed and accuracy conditions. These parameterizations are shown for the speed conditions in
Fig. 10, and for the accuracy condition inFig. 11, with the correct regions of the parameter
space shown in black.

Fig. 10shows that, once the “no” threshold exceeds about 100, correct decisions are made
for “yes” thresholds in the approximate range of 50–100 for the speed data. The unboundedness
of this region results from the forced choice nature of the decision making, and the types of the
documents in the agreed subset. There are also smaller isolated regions of the parameter space
where all decisions are made correctly. In particular, using the notation〈“yes” threshold–“no”
threshold〉, Fig. 10shows parameterizations at approximately 8–8, and around 25–50. Almost
all of the parameterizations that lead to correct decisions use a “yes” decision threshold that is
smaller than the “no” decision threshold, suggesting that participants required relatively less
evidence to make a “yes” than a “no” decision.

Of the correct parameterizations, the best prediction of the number of words read is around
25–50, as shown by the circle inFig. 10, where the correlation with human performance
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Fig. 11. The parameter space for the accumulator model, in relation to the accuracy data. Regions of the parameter
space where the model correctly predicts all of the classifications decisions are shown in black, and the region with
the best correlation with the number of words read is circled.

across all documents isr = .51. Around 25–50, the balance of evidence confidence measure
correlates aboutr = .65 with human performance, whereas the words read confidence measure
correlates only aboutr = .32. These confidence correlations are close to the best achieved
at any of the parameterizations shown inFig. 10: the balance of evidence confidence has
a maximal correlation ofr = .67, while the words read measure of confidence achieves a
maximum ofr = .41. Considering parameter values that achieve good correlations for both
the confidence and words read suggests that parameterizations of about 25–50 provide the best
account of human performance under the speed condition.

Fig. 11 shows the bounded region of the parameter space where the accumulator model
makes correct decisions for the accuracy data. As with the speed data, the parameterizations
all use “yes” decision thresholds that are smaller than the “no” decision thresholds. Unlike the
speed case, however, there are no suitable parameterizations that use small threshold values,
with the combination of approximately 50–140 being the first at which all of the documents
are classified correctly. This suggests that participants under accuracy conditions were more
conservative, in the sense that they required relatively greater (but still asymmetric) evidence
totals for both “yes” and “no” decisions.

Of the parameterizations shown inFig. 11, the best correlation with the number of words
read isr = .65 at a small region around 46–212, which is circled. Parameterizations in this
region have correlations with confidence of aboutr = .34 for the balance of evidence measure,
and aboutr = .17 for the words read measure. Once again, these confidence correlations are
not very different from the best achieved across all of the parameterizations: for the balance of
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Fig. 12. The behavior of the random walk and accumulator classification models on a Type 3 document, when using
asymmetric thresholds.

evidence measure, the best confidence correlation isr = .43, while for the words read measure,
the best confidence correlation isr = .17.

The large number of correct parameterizations shown inFigs. 10 and 11indicate that the
accumulator model has a robust ability to capture the human decisions. This is important from a
model selection perspective (e.g.,Myung & Pitt, 1997; Pitt, Myung, & Zhang, 2002; Roberts &
Pashler, 2000), because it shows that the fit between the model and data does not rely on a precise
tuning of parameter values, and so may more confidently be attributed to the model itself.

5.3. Random walk model

At none of the parameterizations examined did the random walk model correctly predict the
participants’ decisions for either the speed or accuracy data. An analysis of those documents
where errors were most common identified a basic deficiency in the random walk model.
This deficiency is highlighted inFig. 12, which shows the behavior of the random walk and
accumulator models on a Type 3 document. For concreteness, asymmetric thresholds of 50 and
100 are shown. The important difference between the two models is that the accumulator makes
a “yes” decision, because the “yes” accumulator is the first to reach the threshold, whereas
the random walk model never reaches the positive threshold, and eventually makes a forced
“no” decision when all of the words in the document have been read. Human classifications of
these sorts of documents, as suggested byFig. 5, strongly favor the “yes” decision, and so are
consistent only with the prediction of the accumulator model.
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The deficiency arises because random walks treat evidence in favor of alternative decisions as
being more commensurable than accumulators, in the sense that the presence of evidence in fa-
vor of one decision can be directly negated by equal strength evidence in favor of its alternative.
For example, if a document being assessed in relation to the topic “U.S. Presidency” contains a
high evidence “yes” decision word like “Clinton,” followed by a high evidence “no” decision
word like “cricket,” the random walk has little net evidence in favor of either decision, whereas
the accumulator has significant (and approximately equal) evidence in favor of both. This means
that, when another high evidence “yes” word appears in the document (or the word “Clinton”
is repeated), an accumulator may make the “yes” decision where the random walk will not.

This is the difference in behavior highlighted inFig. 12. The first 25 words or so all provide
evidence that the document is about the topic, but the remaining words provide more ambiguous
evidence, some favoring a “yes” decision and some favoring a “no” decision, with the overall
effect of suggesting the document is not about the topic. For the random walk model, this net
effect causes a “no” decision once all the words have been read. For the accumulator model,
however, those remaining words that do suggest the document is about the topic are sufficient
to prompt a “yes” decision before the “no” accumulator has gathered enough evidence. The
important point is that people also make “yes” decisions when presented with these sorts of
documents, presumably because seeing a word like “cricket” does not eliminate the effect
of the earlier word like “Clinton.” As a consequence, the evidence accrual process used by
the accumulator seems better suited than the random walk to modeling the decisions made
by humans in classifying text documents. It is possible, of course, that more sophisticated
sequential sampling models based on random walks (e.g.,Link & Heath, 1975; Ratcliff, 1978)
could fit the decision data. What the analysis of presented here suggests, through its use of the
most basic random walk and accumulator models, is that any such modeling success would
not be attributable directly to the assumption of random walk evidence accrual.

5.4. Individual differences

Because each participant made decisions about 50 documents, there are enough data to
examine individual differences. This was done by fitting separate “yes” and “no” thresholds
for each participant using the accumulator model. For the speed participants, the best individual
correlations with the number of words read ranged fromr = −.09 to r = .73 with a mean
of r = .41 (SD = 0.18). The correlations with confidence at the parameter values where
the best correlations with the number of words read were achieved ranged fromr = −.05
to r = .79 with a mean ofr = .59 (SD = 0.17) for the balance of evidence measure, and
from r = −.63 tor = .39 with a mean ofr = .09 (SD= 0.23) for the words read measure.
For the accuracy participants, the best individual correlations with the number of words read
ranged fromr = .06 tor = .74 with a mean ofr = .31 (SD= 0.14). The correlations with
confidence at the parameter values where the best correlations with the number of words read
were achieved ranged fromr = .27 to r = .84 with a mean ofr = .65 (SD = 0.11) for
the balance of evidence measure, and fromr = −.43 to r = .25 with a mean ofr = −.03
(SD= 0.18) for the words read measure.

In principle, it would be possible to compare the individual differences and group models
in a rigorous and quantitative way using Bayesian model selection (e.g.,Pitt et al., 2002)
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or minimum description length (e.g.,Rissanen, 1996, 2001) measures, although formidable
computational problems are involved in calculating the necessary definite integrals. Even a
simple measure capable of controlling for model complexity, such as the Bayesian information
criterion (Schwarz, 1978), requires a probabilistic measure of data fit that, in turn, would
require making assumptions about confidence and response time distributions. Given the wide
variety of different distributions regarded as serious theoretical contenders for response times
(e.g.,Luce, 1986), any such assumption would be problematic.4 It is fortunate, therefore, that
the performance of the individual and group models can be interpreted without recourse to
these sorts of measures. The basic message is that there is no strong evidence of in the data of
individual differences in the decision thresholds used by participants. The individual differences
model is much more complicated than the group model, using 41× 2= 82 parameters rather
than two, yet the average correlations with time and confidence almost all decrease. Under
basic principles of model selection, this pattern of results favors the simpler account of the data
that assumes there are no individual differences.

6. Application to information retrieval

Having developed and evaluated the random walk and accumulator models in relation to
human performance, we examined their application to the real world text classification prob-
lem of finding documents about topics of interest in a large corpus. The Reuters-21578 corpus
using the ModApte split into training and test documents is a standard information retrieval
problem, for which the performance benchmarks of established machine learning techniques
are available.Yang and Liu (1999)present results for five classifiers called support vector ma-
chines (SVM), k-nearest neighbor classifiers (kNN), Linear least squares fit classifiers (LLSF),
neural network classifiers (NNets), and Naive Bayes classifiers (NB). SVM classifiers use the
training set to solve a quadratic assignment problem that finds optimal hyperplanes separating
documents into those about a topic, and those not about a topic. These hyperplanes are then
applied to classify new documents from the test set. kNN classifiers establish a metric for
measuring the similarity of documents, and then classify those in the test set based on the
known classifications of training set documents in their proximity. LLSF classifiers generate
a multivariate regression model from a training set that can be applied to new documents. The
NNet classifier uses the training set to learn the connection weights for a three-layer neural
network and then applies this network to classify the test set documents. The NB classifier, as
described earlier, is basically a version of the random walk model that always considers every
word in classifying documents.

Unfortunately,Yang and Liu’s (1999)published results are based on heavily pre-processed
versions of the Reuters-21578 documents, where common or “stop” words have been removed,
and “stemming” algorithms have been applied in an attempt to reduce words like “fishing”
and “fished” to their root word “fish.” As mentioned earlier, the version of Reuters-21578
used in this study involves essentially the raw text documents, and uses a bare minimum of
pre-processing. For this reason, the results obtained for the random walk and accumulator mod-
els are not directly comparable withYang and Liu’s (1999)results, although it is at least possible
to use the machine learning benchmarks as rough guides to acceptable levels of performance.
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To this end, both the random walk and accumulator models were applied to the Reuters-21578
problem, making classificatory decisions for each of the 3,299 test documents against each of
the 90 specified topics. A large number of different parameterizations were tried for both mod-
els, using every possible combination allowed by independently choosing evidence values of
0, 5, 10, 25, 50, 100 and 200 for both the “yes” and “no” decision thresholds.

6.1. Decision performance

Two standard measures of performance, called precision and recall, are used in the informa-
tion retrieval literature to measure decision accuracy for text classification. Precision measures
the proportion of documents a model decides are about a topic that actually are about the topic.
Recall measures the proportion of documents actually about a topic that are identified as such
by the model.

Fig. 13shows the precision and recall measures for a best performed subset of the para-
meterizations examined. Models are represented by markers located according to their recall
(along thex-axis) and their precision (along they-axis). Random walk models are indicated by
circular makers, while accumulators are indicated by square markers, and the parameterization
of the model is labeled. The precision and recall performance of the five benchmark machines
learning methods are shown by filled markers.

Fig. 13. The precision and recall performance of selected random walk (open circle markers) and accumulator
(open square markers) models, together with the performance of established machine learning techniques (closed
markers). See text for details.
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Fig. 13 shows that most of the best performed models are accumulators. In particular,
those models that achieve either perfect precision (with low recall), or perfect recall (with low
precision) are all accumulator models. Perfect precision is achieved when a large evidence
threshold of 25 is required to make “yes” decisions, but an evidence threshold of zero is used
for “no” decisions. This means that the model is conservative in deciding a document is about a
topic, but readily decides a document is not about a topic. Perfect recall, in contrast, is achieved
when a low evidence threshold of five is used for “yes” decisions, but a very large evidence
threshold of 200 is used for “no” decisions. This means that the model will decide a document
is about a topic on the basis of a little evidence, but is very conservative in deciding a document
is not about a topic. Parameterizations between these two extremes balance the competing
demands of precision and recall according to the different levels of evidence required for “yes”
and “no” decisions.

Fig. 13shows that, across all of the parameterizations considered, neither the random walk
nor accumulator model achieves the combined level of precision and recall performance pro-
duced by the machine learning techniques. There are some parameterizations, however, for
which performance is competitive, particularly when viewed in an operational context. The
25–10 accumulator model and the 25–5 random walk model, for example, have almost the
same recall as the machine learning benchmarks, with a 10–20% difference in precision.
In practice, this means that the sequential sampling models find essentially the same number
of documents that are about topics, but return an extra one or two false alarms for every set of
10 documents found.

In any case, as noted above, some of the observed deficiency in our results can be attributed
directly to the pre-processing of the corpus. To gauge the magnitude of this difference, we
applied the NB classifier to our version of the corpus, and measured its precision to be 0.55
with a recall of 0.86. GivenYang and Liu’s (1999)results for the NB classifier, with a recall
of 0.77 and precision of 0.82, it seems clear that the lack of pre-processing does penalize
the random walk and accumulator results reported here. For this reason, a comparison of
established machine learning techniques with sequential sampling models on exactly the same
problem is a worthwhile topic for further research.

On a different front, it is interesting to note thatFig. 13approximately represents the results of
fitting the random walk and accumulator models to the human judges who “ground-truthed” the
Reuters-21578 corpus. A complete account of this human decision making process would result
in a model achieving perfect precision and recall. In this sense, to the extent that the random
walk and accumulator models achieve their best combined precision and recall performance
under the parameterizations 25–5 and 25–10, respectively, these parameterizations constitute
their best fit to the human data.

The asymmetry in the best parameterizations is different from that obtained from our
experimental data, with more evidence being required to make a “yes” than a “no” deci-
sion. This difference seems to be explained naturally in terms of the different task demands
involved. For the participants in our experiment, relatively few decisions needed to be made,
and the expected base rate of “yes” to “no” decision was presumably about fifty-fifty. Under
these conditions, it seems reasonable to be more comfortable deciding a document is about
a topic, and more cautious about deciding (before all of the document has been seen) that it
is not about a topic. The humans who evaluated the Reuters-21578 corpus, however, had to
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evaluate 21,578 documents against 90 topics, knowing that very few of the document–topic
combinations would require a “yes” decision, but that it was important these combinations
were found. Under these conditions, it seems reasonable to be conservative in making “yes”
decisions, to avoid false alarms, but to require only moderate evidence before making a “no”
decision, to quicken the decision making process. These sorts of utilities in decision making
are naturally handled within Bayesian decision theory (e.g.,Lindley, 1972, pp. 1–3), and so it
should be possible to extend sequential sampling process models to give a rational account of
the different thresholds used in different contexts.

6.2. Time performance

Consistent with the overwhelming focus placed on decision accuracy by the information
retrieval literature,Yang and Liu (1999)do not provide measures of the time taken by the various
machine learning techniques to make their decisions. Timeliness is clearly, however, an impor-
tant determinant of relative performance in an applied setting. In general, the machine learning
techniques involve considerable levels of computation, either during the training process, the
process of classifying new documents, or both. The quadratic assignment problem solved by
SVMs, for example, become computationally intensive for very large problems, LLSF classi-
fiers must solve a large least-squares problem, and NNets are notoriously time consuming to
train. When classifying new documents, most existing machine learning techniques consider
every word in the document, and often have to calculate involved functions. It would, of course,
be possible to apply any of the machine learning algorithms to a limited number of words at
the beginning of each document. This will clearly improve their time performance, but how
precision and recall are affected is an open (and interesting) empirical question.

The random walk and accumulator models, in contrast, are exceptionally easy to train and
make very fast decisions because they are explicitly designed to read only as many words
in the document as they require. Training involves only calculating the evidence value for
each word in relation to each topic usingEq. (1), which can be achieved by examining each
word in the training set of documents exactly once, and maintaining counts of how often a
word is seen in documents about and not about a topic. Classifying new documents involves
looking up appropriate evidence values and adding them to a counter or counters until a
pre-specified threshold total is reached. These are very simple computational processes that
can be implemented efficiently in software.

In terms of time performance, however, the greatest strength of the sequential sampling
models comes from the limited number of words that need to be read to make a decision.Table 3
shows the mean number of words read by the best performed models detailed inFig. 13, and
the minimum and maximum number of words read. For almost all of the parameterizations,
decisions are made using a remarkably small number of words on average, given that the mean
number of words in the test documents is 121. The 25–5 random walk model and the 25–10
accumulator model, for example, examine an average of fewer than five and six words per
document, respectively, which corresponds to less than 5% and 4% of the mean document
length. In practical terms, this means that these models are able to make decisions almost
as accurately as machine learning benchmarks after examining less than 5% of the data, and
so provide comparable decision performance significantly more quickly. On the basis of these
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Table 3
Mean number of words examined, and the range, for various random walk and accumulator models

Model type Thresholds Mean words Range

Accumulator 25–0 1.4 1–30
Accumulator 50–5 3.4 1–102
Accumulator 50–10 6.0 1–114
Accumulator 25–5 3.3 1–80
Random walk 25–0 2.0 1–292
Accumulator 25–10 5.8 1–83
Random walk 25–5 4.5 1–666
Random walk 10–5 3.8 1–297
Accumulator 25–25 12.8 3–147
Random walk 10–25 11.9 2–97
Accumulator 10–10 5.5 1–64
Random walk 5–25 14.0 1–441
Accumulator 25–50 24.0 3–186
Accumulator 10–25 11.9 2–97
Accumulator 10–50 21.6 2–140
Accumulator 5–200 34.7 1–207

The mean number of words in the test documents is 121. The ordering of the different parameterizations corre-
sponds toFig. 13.

results, it seems reasonable to assert that the random walk and accumulator models are superior
to established machine learning techniques on any sensible “decision performance per unit
computation” measure.

It is worth emphasizing that the speed advantages of the random walk and accumulator
models follow directly from the psychological observations on which they are based. The
environmental regularity that words near the beginning of a document will be the most use-
ful allows for fast and accurate decisions. In terms of speed, it is particularly important that
non-compensatory “no” decisions are made, since most of the documents in Reuters-21578
are not about most of the topics. It is the idea that different decisions are effectively competing
explanations of observed data that achieves this, because evidence can be accrued directly in
favor of a “no” decision. Many established text classifiers based on machine learning algo-
rithms do not operate this way. Instead, they construct a measure of the similarity between
the document in question, and some abstract representation of the topic in question. When the
measure of similarity exceeds some criterion value, the decision is made that the document is
about the topic, otherwise the default decision is made that the document is not about the topic.
This means that, in principle, these classifiers must examine all of the words in a document
before making a “no” decision.

6.3. Using confidence to prioritize

The third psychological observation, that the classification decision making process gener-
ates a number of related performance measures, also has applied benefits. In an information
retrieval context the confidence ratings can be used to prioritize the documents returned by a
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Fig. 14. Confidence distributions for the 25–10 forced choice accumulator model.

search, through a familiar mechanism such as a “relevancy score.” The obvious way to perform
prioritization is to order all of the document–topic combinations, starting with those classified
as about the topic with highest confidence down to those with the lowest confidence, and then
appending those document–topic combinations classified as not about the topic, starting with
the lowest confidence and continuing to the highest confidence decision.

This prioritization scheme will be effective to the extent that confidence measures provide
an accurate assessment of the outcome of the decision making process, having high confidence
when the decision is correct and low confidence when it is not.Fig. 14presents an analysis of
the ability of the 25–10 accumulator model to do this using the balance of evidence confidence
measure given byEq. (3). The confidence distributions across all decisions are shown for the
four signal detection classes of hit, miss, correct rejection and false alarm. These distributions
are meaningful, in the sense that the model often has high confidence when it makes a hit or
correct rejection decision, and generally has lower confidence when it produces a miss or a
false alarm.

Fig. 15presents the same analysis for the 25–5 random walk model using the confidence
measure determined by the number of words read. These confidence distributions are far less
meaningful, and display some serious problems. For example, the model more often has high
confidence when it misses than when it hits.

The impact on prioritization of these differences in confidence measures is summarized
in Fig. 16. This “effort–reward” graph shows the proportion of relevant documents (i.e., the
reward) found by working through a given proportion of the prioritized list (i.e., the effort) for
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Fig. 15. Confidence distributions for the 25–5 forced choice random walk model.

Fig. 16. Effort–reward performance for prioritization using the accumulator and random walk models.
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both the random walk and accumulator models. Both approaches result in about 65% of the
relevant document–topic combinations being placed in the first 1% of the list, but the accumu-
lator then performs significantly better, allowing about 95% of the relevant document–topic
combinations to be found by examining the top 10% of the list. In this way, the theoretical
benefits of the balance of evidence measure found in modeling human data also have applied
benefits in allowing more effective prioritization.

7. General discussion

There are two main avenues for improving sequential sampling accounts of text classifica-
tion as models of human performance, and in their application to information retrieval. The first
possibility does not involve changing the sequential sampling processes themselves, but rather
seeks to provide them with better information about a document than is currently provided by
the evidence values. The second possibility does involve changing the sequential sampling pro-
cesses, by extending them to have more realistic and useful memory and learning capabilities.

7.1. Alternative evidence measures

The evidence values defined inEq. (1)basically measure, on a log-odds scale, the frequency
with which a word occurs in topic versus non-topic documents. While this approach has the
advantage of being easily interpreted and calculated, it is an overly simple model of human
semantic representation. When people read text documents, meaning can be accrued from
parts of words, or sequences of words, in a way that is mediated by the earlier content of the
document. Providing sequential sampling models with evidence values that captured some of
this richness in meaning seems likely to improve their performance, without requiring addi-
tional complexity in the information accrual process. In particular, the currently implausible
independence assumption inEq. (2), where the evidence provided by each word is assumed
to be constant regardless of surrounding words, would become more plausible if appropriate
sequences of words, such as key phrases, were the basic unit of evidence.

A variety of more sophisticated evidence measures have been developed in the psychological
and information retrieval literatures. These include the representational vectors generated by
the latent semantic analysis (Landauer & Dumais, 1997) and hyperspace analogue to language
(Lund & Burgess, 1996) approaches, as well as the probabilistic method developed byGriffths
and Steyvers (2002), all of which measure, in various ways, the patterns with which words
appear in the same and different contexts. At the other end of the spectrum, then-gram approach
(Damashek, 1995) uses sequences of successive characters as its basic representational unit,
and has been shown to capture a surprising level of semantic information. How alternative
measures of evidence such as these affect the performance of random walk and accumulator
models is an interesting question for future research.

7.2. Incorporating memory and learning

Whatever form of the semantic information they receive, both the random walk and accumu-
lator models considered here lack two basic psychological ingredients as models of human de-
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cision making: they do not involve any form of memory, nor do they adapt to their environment
in any self-regulating way. The evidence values of words are accrued with perfect accuracy,
without forgetting or distortion over time or as new information arrives, and the thresholds
that determine decision making do not adapt automatically to changes in task demands or the
nature of the stimulus environment. Clearly, real world human text classification involves a
limited memory and a potential to learn and adapt, and so the extension of the models to incor-
porate these characteristics is important theoretically. Previous modeling of human decision
making using sequential sampling processes has considered both of these issues extensively
(e.g.,Pietsch & Vickers, 1997; Ratcliff, 1987; Smith, 2000; Vickers, 1985), and so candidate
extended models should be easy to develop. The main challenge involves the collection of
human performance data that allow the relative merits of these models to be assessed. This
might involve considering the classification decisions made by people on very long documents,
where memory is likely to be important, or presenting document sets with very different “yes”
and “no” base rates, where the adaptation of decisions thresholds is likely to be important.

8. Conclusion

In Section 1, we argued that the decision processes involved in human text document clas-
sification are interesting from both theoretical and applied perspectives. Theoretically, text
documents provide a ready source of richly structured real world stimuli, and so force quanti-
tative accounts of human decision making to consider the role of the environment in relation
to internal cognitive processes. In terms of applications, the ability to classify text documents
automatically is a central problem in information retrieval. We conclude by drawing some im-
plications of the results presented in this paper for both the theoretical and applied problems.

On the applied front, the random walk and accumulator models have been shown to make
classificatory decisions that are competitive with benchmark machine learning techniques on
a standard problem, and are able to make these decisions much more quickly. In any applied
setting where timeliness competes with accuracy as a criterion for good performance, there
are grounds for regarding the sequential sampling models as superior. In addition, the ability
of the accumulator model to produce sensible confidence measures has the applied advantage
of allowing the results of its decision making to be prioritized.

On the theoretical front, the ability of the accumulator model to predict classificatory
decisions that the random walk cannot suggests that it is a superior sequential sampling pro-
cess account of human decision making. Further impetus for accepting the accumulator model
comes from its ability to correlate well with the change in the number of words read by par-
ticipants across speed and accuracy conditions through sensible and interpretable adjustments
in its evidence threshold parameters. Finally, the balance of evidence measure of confidence,
which is only possible under the accumulator approach to information accrual, was also found
to correlate well with human performance.

It is interesting to note that the observed differences between the random walk and accu-
mulator models arise, at least in part, from the non-stationary evidence structure of the text
document stimulus domain (recall, in particular,Fig. 12). The implication is that developing
and distinguishing between cognitive models can be advanced by using natural environmental
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stimuli. The text classification problem is particularly well suited to studying the ecological
rationality of non-compensatory decision making in structured environments, because docu-
ments have such an obvious sequential information structure. We would argue, however, that
any decision making problem where the search for relevant information is effortful, but can
productively follow a non-arbitrary pattern of search, should support non-compensatory deci-
sion making. For example, diners outside an unfamiliar restaurant can decide whether or not it
is vegetarian from the first four or five main courses, and do not need to read the entire menu.
In many football codes, an experienced fan can determine the coach of a team by scanning the
playing field in an ordered way, and does not need to locate every player to make a decision.
In this way, understanding the information structure of environments provides an opportu-
nity to understand the rational basis and processing strategies of human decision making. The
general lesson, we believe, is that real world decision tasks with richly structured stimuli can
productively be applied in developing and evaluating models of human cognitive processes.

Notes

1. We thank Josh Tenenbaum for suggesting this interpretation.
2. We do not report standard null-hypothesis significance testing (NHST) inferences, because

we are sensitive to criticisms of this approach (e.g.,Cohen, 1994; Edwards, Lindman,
& Savage, 1963; Howson & Urbach, 1993; Hunter, 1997; Lindley, 1972) including, in
particular, that NHST violates the likelihood principle, and so does not satisfy a basic
requirement for rational, consistent and coherent statistical decision making.

3. This is especially true given the evidence structure of the document corpus observed in
Fig. 1since, on average, the absolute evidence value decreases as words in a document
are read.

4. It is true that the text classification task generally takes longer than most tasks for which
response time distributions are studied, although with mean response times of 18.0 and
32.9 s for the speed and accuracy conditions, respectively, it is comparable to some
expanded judgment tasks (e.g.,Pietsch & Vickers, 1997).
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