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On the Complexity of Additive Clustering Models

Michael D. Lee

Defence Science and Technology Organisation

Additive clustering provides a conceptually simple and potentially powerful
approach to modeling the similarity relationships between stimuli. The ability
of additive clustering models to accommodate similarity data, however, typi-
cally arises through the incorporation of large numbers of parameterized
clusters. Accordingly, for the purposes of both model generation and model
comparison, it is necessary to develop quantitative evaluative measures of
additive clustering models that take into account both data-fit and complexity.
Using a previously developed probabilistic formulation of additive clustering,
the Bayesian Information Criterion is proposed for this role, and its application
demonstrated. Limitations inherent in this approach, including the assumption
that model complexity is equivalent to cluster cardinality, are discussed.
These limitations are addressed by applying the Laplacian approximation of
a marginal probability density, from which a measure of cluster structure
complexity is derived. Using this measure, a preliminary investigation is made
of the various properties of cluster structures that affect additive clustering
model complexity. Among other things, these investigations show that, for a
fixed number of clusters, a model with a strictly nested cluster structure is the
least complicated, while a model with a partitioning cluster structure is the
most complicated. � 2001 Academic Press

INTRODUCTION

Additive clustering models (e.g., Arabie 6 Carroll, 1980; Chaturvedi 6 Carroll,
1994; Mirkin, 1987; Shepard 6 Arabie, 1979; Tenenbaum, 1996) provide powerful
yet conceptually simple accounts of the observed similarities between sets of stimuli.
Given a matrix of pairwise similarities S=[sij], additive clustering derives a set of
weighted stimulus clusters, which may, in various contexts, also be interpreted as
domain classes or features. What distinguishes additive clustering from other clustering
approaches is that the relationship between the given set of stimuli and the derived
clusters is entirely unconstrained. As Shepard and Arabie (1979, p. 91) argue
``generally, the discrete psychological properties of objects overlap in arbitrary
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ways.'' For this reason, unlike standard partitioning clustering approaches that
place each stimulus in only one cluster, additive clustering allows each stimulus to
belong to any number of clusters. Furthermore, unlike hierarchical clustering
approaches that allow stimuli to lie in more than one cluster, additive clustering
places no constraints upon the set of stimuli that may be encompassed by a cluster.

The similarity model underpinning additive clustering, introduced by Arabie and
Shepard (1973; see also Shepard, 1974; Shepard 6 Arabie, 1979), assumes that the
similarity between any given pair of stimuli is determined by the number of clusters
to which both stimuli belong. Formally, if the m derived clusters for n stimuli are
defined by an n_m matrix of binary membership variables F=[ fik], where

fik={1 if stimulus i is in cluster k
0 otherwise,

and the k th cluster is assigned a weight wk , denoting its importance or salience,
then the estimated similarity of the i th and j th stimuli is

ŝij=:
k

wk fik f jk . (1)

Typically, the patterns of cluster membership and the weights extracted from a
given similarity matrix are determined by minimizing an error measure of the form

E= :
i< j

(sij& ŝij)
2.

It is generally recognized that the binary nature of the cluster membership variables
makes this a difficult optimization problem and, accordingly, a wide variety of extrac-
tion techniques have been proposed, including mathematical programming (Arabie 6

Carroll, 1980), qualitative factor analytic (Mirkin, 1987), and probabilistic expecta-
tion-maximization (Tenenbaum, 1996) approaches. While all of these techniques have
shortcomings, it is probably fair to suggest that they generally achieve sufficiently good
minima to derive models of some theoretical and practical utility.

The focus of this paper, however, is on another difficulty in deriving additive
clustering models, relating to the need to control model complexity, which is less
satisfactorily addressed by established techniques. As noted by Shepard and Arabie
(1979, p. 98), the ability to specify an arbitrarily overlapping cluster structure, when
coupled with the ability to manipulate cluster weightings, enables any similarity
structure to be accommodated perfectly by an additive clustering model. This
means that E can always be reduced to zero or, equivalently, that the variance of
the similarity data accounted for by the model, which is measured by

v=1&
E

� i< j (sij&s� )2 , (2)

where s� is the arithmetic mean of the similarity values, can always assume unity.
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While the modeling flexibility afforded by additive clustering is clearly desirable in
terms of providing an ability to accommodate similarity data, the introduction of
unconstrained and parameterized cluster structures potentially detracts from other
fundamental modeling goals such as the achievement of interpretability, explanatory
insight, and the ability to generalize accurately beyond given information.

This familiar conflict between maximizing data-fit and minimizing model complexity
is often acknowledged in the development of previous techniques and has typically
been tackled through the general strategy of attempting to use a minimal number
of clusters to account for a maximal degree of similarity structure variance. Some
techniques (e.g., Tenenbaum, 1996) accomplish this by setting the number of
clusters to be derived at a fixed value and then seeking the best data-fit possible,
while other techniques (e.g., Lee, in press b) set a target data-fit level and then seek
a minimal number of clusters that achieve this fit.

No established technique, however, explicitly quantifies the trade-off between
accuracy and complexity during the process of model generation. Consequently, the
criteria by which the data-fit benefits of, for example, including an extra cluster are
weighed against the concurrent complexity drawbacks are difficult to elucidate in
any precise or practically useful form. Furthermore, without a quantitative measure,
it is difficult to compare different additive clustering models when one model
provides better data-fit than another, but relies upon a greater number of clusters
to achieve this fit. Clearly, the articulation of an evaluative measure of a model that
considers both the data-fit and the number of clusters would be useful in the
generation and comparison of additive clustering models. The first goal of this paper
is to suggest that, when the complexity of additive clustering models is equated with
cluster cardinality, the application of the Bayesian Information Criterion (BIC)
provides such a measure.

APPLICATION OF THE BAYESIAN INFORMATION CRITERION

The BIC is an established and well understood measure which incorporates
both data-fit and model complexity (Schwarz, 1978; see Kass 6 Raftery, 1995;
Myung 6 Pitt, 1997 for overviews). For a particular model A, the BIC takes the
general form

BICA=&2 log( p(MLA))+P log N,

where p(MLA) is the maximum likelihood estimate of the model, P is the number
of parameters in the model, and N is the sample size. Qualitatively, it can be seen
that this measure increases whenever either model complexity, as measured by the
number of model parameters increases or when the model's accommodation of
the data worsens. Accordingly, in terms of both model development and comparison,
the candidate model with the minimal BIC value is to be preferred.

Cast in terms of additive clustering models, the maximum likelihood estimate is
the probability of a similarity matrix S, given the derived cluster matrix F, and
associated weight values w=(w1 , ..., wm). An appropriate formulation of this
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probability is provided by Tenenbaum (1996), in which it is assumed that
p(S | F, w) has a Gaussian distribution with common variance _2, as follows:

p(S | F, w)= `
i< j

1

(_ - 2?)
exp \&

(sij& ŝij )
2

2_2 +
=

1

(_ - 2?)n(n&1)�2
exp \&

1
2_2 :

i< j

(sij& ŝij )
2+ . (3)

An additive clustering instantiation of the BIC may be generated using this
framework, by equating the number of parameters in an additive clustering model
with the number of clusters and observing that a similarity matrix for n stimuli
incorporates n(n&1)�2 measures, to give

BICA=&2 log [
1

(_ - 2?)n(n&1)�2
exp \&

1
2_2 :

i< j

(sij& ŝij )
2+=+m log \n(n&1)

2 +
=&2 log { 1

(_ - 2?)n(n&1)�2=&2 log {exp \&
1

2_2 :
i< j

(sij& ŝij )
2+=

+m log \n(n&1)
2 +

=n(n&1) log(_ - 2?)+
1
_2 :

i< j

(sij& ŝij)
2+m log \n(n&1)

2 +
=n(n&1) log(_ - 2?)+

E
_2+m log \n(n&1)

2 + . (4)

In effect, _ quantifies the inherent precision of a matrix of similarity data and
provides an indication of the level of data-fit an additive clustering representation
should seek to model the stated relationships between stimuli. If the given similarity
values are known to be very accurate, for example, the inclusion of additional
clusters may well be warranted to capture all of the detail provided. If, however,
the constraining data are imprecise, then it may be appropriate to model only
the major representational clusters using a relatively simple model. An important
property of this conception is that precision is a property of a similarity matrix
itself and is independent of its use within any representational framework. This
means that _ should be derived from an understanding of the process by which the
similarity values themselves were generated and not estimated as a parameter
within the process of fitting a particular representational model.

One means of determining data precision, particularly applicable within the com-
mon experimental situation where the final similarity matrix is derived by averaging
across measures provided by a number of subjects, is to calculate _ as the average
of the standard deviations for each of the pooled cells in the matrix. In other words,
_ is a sample estimate of the precision obtained by averaging across the standard
deviation of each of the similarity values. Effectively, these values quantify the agree-
ment across different subjects, or across the same subject on different occasions, in
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their ratings of the stimulus pairs. Close agreement, which provides precise data, is
heralded by small values of _, whereas noisy or imprecise data are indicated by
large values of _.

Unfortunately, when the raw data needed to form estimates of precision in this
or any other rigorous sort of way are not available, the choice of _ must be made
on more subjective and heuristic grounds. In this case, results obtained on a collec-
tion of various similarity matrices (Lee, 1999a) might provide some broad
guidance. For normalised similarity or proximity matrices, a _ value of about 0.10
seems to correspond to reasonably precise data, while values over 0.20 seem to
correspond to particularly imprecise data. Despite the generality of these sorts of
guidelines, the role of _, in forcing an explicit and quantitative assumption to be
made about data precision before fitting an additive clustering model, is an impor-
tant one. It is possible for two similarity matrices to be identical in terms of their
individual entries, but to have different associated levels of precision. Under the
approach being advocated here, these two matrices are likely to demand additive
clustering models with different levels of complexity. This allows precise data collected,
say, from domain experts exhibiting close agreement in their judgments, to be fit by
a detailed model with many parameters, while ensuring that less precise data are
not over-fit by a similarly complex model.

An Illustrative Application

As an illustrative application of the BIC approach, consider four competing additive
clustering models of the domain of n=16 consonant phonemes. Each of these models
used a similarity matrix given by Shepard (1972, Table 4.1), originally derived from
Tables I through VI of the auditory confusion probabilities reported by Miller and
Nicely (1995). The first two additive clustering models are provided by Tenenbaum
(1996, Table 2) and Shepard and Arabie (1979, Table 2), accounting, respectively, for
90.20 of the variance using 9 clusters and 94.50 of the variance using 17 clusters.
These patterns of data-fit and cluster cardinality clearly raise issues of model com-
parison, in that it is not obvious to what extent the additional clusters incorporated
within Shepard and Arabie's (1979) model are sufficiently justified by the evident
advantages in similarity structure accommodation.1

The third and fourth models of the phoneme domain, detailed in Table 1, were
generated using the additive clustering technique developed by Lee (1999b) and
raise the closely related issue of model generation. The 10 cluster model augments
the set of middle voiceless fricatives [%, s] to the clusters of the 9 cluster model,
thus increasing, after an adjustment of the cluster weights, the variance accounted
for from 85.5 to 87.40. Once again, in terms of a process of incremental model
construction, it is not obvious whether or not this additional cluster should, on the
basis of the improvement in data-fit, be included in the final model.
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TABLE 1

The 10 and 9 Cluster Phoneme Models

Phonemes in cluster Weight in 10 cluster model Weight in 9 cluster model

[f, %] 0.386 0.391
[d, g] 0.220 0.226
[p, k] 0.202 0.197

[p, t, k] 0.200 0.202
[v, �] 0.171 0.159

[b, v, �] 0.139 0.144
[m, n] 0.113 0.107

[d, g, z, z� ] 0.084 0.082
Additive constant 0.028 0.029

[%, s] 0.112 ��

The phoneme similarity matrix S from which the 10 and 9 cluster models were
derived has variance �i< j (sij&s� )2=0.694, which allows E measures for each of the
models to be evaluated using (2). These measures, together with the cluster cardinalities,
were used to generate BIC indices for each of the four models across the interval
_=[0.02, ..., 0.20]. The results of this analysis are shown in Fig. 1 and provide a
range of useful information relating to questions of model comparison and construction.

In terms of comparing the models of Tenenbaum (1996) and Shepard and Arabie
(1979), the BIC measure suggests that the additional clusters of the latter model are
justifiable if the target similarity data are believed to be exceptionally precise. Once

FIG. 1. Bayesian Information Criterion values across different levels of data precision for the four
phoneme models.
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(approximately) _>0.03, corresponding to an assumed variance in (3) of about
0.001, the pattern of change of BIC measures indicates that the data are no longer
capable of supporting the additional data-fit provided by the more complicated
model. A similar state of affairs is evident in relation to the 10 and 9 cluster models,
where the inclusion of the extra cluster constitutes a modeling improvement only
when (approximately) _<0.04. It is also worth observing that Tenenbaum's (1996)
model is superior to both the 10 and 9 cluster models across the entire interval of
_ values considered. This is to be expected, since the 10 and 9 the cluster models
have the same or greater number of clusters, yet explain less of the similarity structure
variance than Tenenbaum's (1996) model.

While the preceding form of analysis assists decisions to be made regarding which
model is better at a given level of precision, it is not immediately obvious as to how
the significance of magnitude differences in BIC measures should be gauged. Fortunately,
as its name suggests, the BIC measure is grounded in Bayesian probabilistic reasoning
(again, see Kass 6 Raftery, 1995; Myung 6 Pitt, 1997). As such, it is possible to interpret
differences in BIC measures across models or levels of data precision in terms of a
meaningful scale of probabilities, rather than resorting to some form of consensual
subjective callibration. One way in which this objective evaluative comparison may
be accomplished is through considering the ratio of the posterior odds of the cluster
structures of model A, in relation to a second model, B, as revised according to
Bayes' theorem

p(FA | S)
p(FB | S)

=
p(FA)
p(FB)

p(S | FA)
p(S | FB)

,

where p(FA) and p(FB) are the prior probabilities of the two cluster structures,
which are reasonably assumed to be equal in most practical applications.2 In this
case, the so called Bayes factor

BAB=
p(S | FA)
p(S | FB)

determines the posterior odds. However, as Kass and Raftery (1995, p. 778) demonstrate,
the logarithm of the Bayes factor is approximated by the difference between the
BIC measures of the two models, as follows

2 log BAB rBICB&BICA . (5)

Through this relationship, it is possible to interpet differences in BIC measures. In
particular, as Kass and Raftery (1995) observe, 2 log BAB exists on the same scale
as likelihood ratio test statistics. In this context, Table 2 reproduces the standards
of evidence suggested by Kass and Raftery (1995, p. 777), which serve as a useful
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TABLE 2

Kass and Raftery's (1995) Suggested Interpretative Scale for 2 log BAB

2 log BAB Evidence

0 to 2 Not worth more than a bare mention
2 to 6 Positive

6 to 10 Strong
>10 Very strong

initial framework within which to evaluate differences in the BIC measures of
additive clustering models.

Figure 2 depicts 2 log BAB for the two pairs of phoneme models considered
earlier, with the various demarcation points of the interpretative scale superimposed
as horizontal lines. The comparison of Tenenbaum's (1996) model with that of
Shepard and Arabie (1979) reveals that the difference in BIC values in Fig. 1
provides strong evidence in favor of the latter model at low _ values, but strong
evidence in favor of the former when (approximately) _>0.03. As before, any deci-
sion as to which model is to be preferred hinges upon what is known or assumed
regarding the precision of the similarity data. In contrast, the developmental com-
parison of the 9 and 10 cluster models shows strong evidence in favor of the inclusion
of the additional cluster for low _ values, whereas the impetus for maintaining the
9 cluster model ranges only to ``positive'' as _ increases. As such, unless there are

FIG. 2. Approximation to twice the logarithm of the Bayes factor comparing the phoneme models
of Tenenbaum (1996) and Shepard and Arabie (1979), and the 9 and 10 cluster phoneme models.
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strong grounds for doubting the precision of the similarity data, it seems reasonable
to conclude that the inclusion of the additional cluster is justified.

The application of BIC measures to comparing and generating additive clustering
models in the ways described above has the advantage of being both conceptually
and computationally simple. In terms of practical operation, the primary domain-
specific issue is one of determining, through whatever means are available, a reasonable
prior assumption regarding the precision of the similarity data. Once such an assump-
tion is made, the generation of BIC measures and Bayes factor approximations
provides valuable quantitative insight regarding the trade-off between data-fit and
complexity operating within additive clustering models.

There are, however, at least two deficiencies of the BIC measure approach that
warrant further consideration. First, it is important to emphasize that (5) only
approximates (twice the logarithm of) the Bayes factor and that the BIC measure
in general makes simplifying assumptions regarding model complexity which may
not always be justified (see Kass 6 Raftery 1995, p. 790). Because of these limita-
tions, at the very least, the application of the BIC measure to target domains
containing a relatively small number of stimuli requires caution. The second deficiency
of the proposed BIC measure involves the implicit assumption that the complexity
of an additive clustering model is equivalent to its cluster cardinality. Although this
assumption pervades previous discussion of additive clustering model complexity, it
seems clear that, in fact, model complexity is determined by the patterns of cluster
encompassment, cluster overlap, and general cluster structure of a model and not
simply the number of clusters employed. The second goal of this paper is to attempt
to develop a quantitative understanding of the way in which these types of features
of cluster structures relate to additive clustering model complexity.

BEYOND CARDINALITY AS A MEASURE OF COMPLEXITY

The progression from cluster cardinality as a measure of complexity to one which
allows for general cluster structure relates to the distinction drawn by Myung and
Pitt (1997, p. 81) between the number of parameters and the functional form com-
ponents of model complexity. Traditionally, when F and w values are derived from
a given similarity matrix, the clusters are treated as the model per se, while the
associated weights are viewed as cluster parameters tuned to minimize the error
measure.3 It is in this sense that the number of clusters constitutes the number of
parameters complexity component, as was assumed to develop the BIC measure in
(4). The functional form component, in contrast, relates to the way in which the
parameters interact within the model which, in the additive clustering context, is
controlled by the patterns of encompassment and overlap within a cluster structure.
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tions, the derived values of the weights are usually not included, although sometimes the weight ranked
order of each cluster is indicated. In other words, it is the clusters contained in the matrix F which are
typically interpreted as the model extracted from a given similarity structure, with the weights being
regarded merely as a suitable parameterization of this model.



Application of Laplacian Approximation

One way in which a quantitative understanding of the relationship between
cluster structure and model complexity may be developed is through the so-called
Laplacian approximation of the marginal probability density (see Kass 6 Raftery,
1995, p. 777), given by

p(S | F)=|
[0, 1] m

p(S | F, w) p(w | F) .dw

r
(2?)m�2 p(S | F, w*) p(w* | F)

|&{2 log( p(S | F, w*) p(w* | F))|1�2 , (6)

where w* is the maximum likelihood estimate of the weights, p(w* | F) is the prior
probability distribution of the weights over the given cluster structure, and | } |
denotes the matrix determinant function. Kass and Raftery (1995, p. 778) suggest
that this approximation is problematic when n(n&1)�2<5m. Given the usual additive
clustering practice, initially advanced by Shepard and Arabie (1979, p. 102), of seeking
models with m�n, this restriction seems likely to be satisfied. In particular, taking
the worst case when m=n, the lower bound is exceeded for domains containing
only 11 or more stimuli. In addition, the explicit assumption of normality in (3)
should be expected to assist the accuracy of the approximation.

Another potential difficulty with the Laplacian approximation, more particular
to the additive clustering context, relates to the limited domain of integration.
Additive clustering models require nonnegative weights, but the approximation to
the definite integral in (6) is made over the entire space Rm. Once again, however,
this may be justified on the grounds of the limited numbers of clusters derived in
additive clustering models. Since only clusters associated with significantly nonzero
weights are typically included in a final model, the maximum likelihood weight
vector w* should lie well within the bounds of valid integration. This means, in
turn, that the Laplacian approximation should tend not to accumulate significant
volumes of integrand mass beyond the applicable domain of nonnegative weights.

Determining a universally appropriate prior distribution expressing the relation-
ship between the clusters and their associated weights is more difficult, because it
seems likely to be domain specific.4 For example, in some domains of application,
there may be grounds for believing that clusters encompassing larger numbers of
stimuli have larger associated weightings. Alternatively, it may be the case that non-
overlapping isolated clusters typically have smaller weights. Previously, Tenenbaum
(1996) has assumed, in generating artificial data, that the operation of a uniform
distribution across a restricted interval is ``grossly typical'' (p. 6) of observed weight
distributions. This does not seem unreasonable and has the attraction of being the
maximum entropy distribution if plausible maximal and minimal values can be
specified (Kagan, Linnik, 6 Rao 1973), although other choices might appear to be
equally well motivated (see Kass 6 Wasserman, 1996, for a general overview).
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Perhaps the most reasonable way to proceed is by consolidating those com-
ponents of the Laplacian approximation dependent upon the determination of a
prior distribution with those components relating to data precision and cluster
cardinality into one general function Q(m, _). Whatever prior assumption relating
particular weight values to cluster structures is made, it is reasonable to expect
Q(m, _) to decrease as m increases, since an arbitrary higher-dimensional weight
vector will generally be less likely than a lower-dimensional one. With this function
Q in place, the Laplacian approximation of (6) simplifies to

p(S | F)r
p(S | F, w*)

|&{2 log p(S | F, w*)|1�2_Q(m, _). (7)

The denominator of (7) is a Hessian matrix, given by

&{2 log p(S | F, w*)={2 \ 1
2_2 :

i< j \sij&:
k

wk f ik fjk+
2

+ ,

which may be found by noting that

�2

�wx �wy _
1

2_2 :
i< j \sij&:

k

wk f ik f jk+
2

&=
�

�wy _&
1
_2 :

i< j \sij&:
k

wk fik fjk+ f ix fjx&
=

1
_2 :

i< j

fix fjx f iy fjy ,

implying that the complexity depends on the generic cluster structure, independent
of specific values of the best-fitting weights and takes the form

H=
1
_2 G,

where

G=_
:

i< j

f i1 f j1 :
i< j

f i1 fj1 fi2 fj2 } } } :
i< j

f i1 fj1 fim fjm

& .
:

i< j

f i2 fj2 f i1 f j1 :
i< j

fi2 fj2 } } } :
i< j

f i2 fj2 fim fjm

b b . . . b

:
i< j

fim fjm fi1 fj1 :
i< j

f im fjm f i2 fj2 } } } :
i< j

fim f jm

The 1�_2 may be incorporated into the general function Q(m, _) in (7). This means
that the Laplacian approximation can finally be written as

p(S | F) r
p(S | F, w*)

|G|1�2 _Q(m, _)

B
p(S | F, w*)

|G|1�2 if m, _ are fixed. (8)
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The first evaluative measure of an additive clustering model given in (8) is readily
interpretable in terms of its three components. The maximum likelihood p(S | F, w*)
is the measure of data-fit, which needs to be maximized, the value |G|1�2 is a
measure of cluster structure complexity, which needs to be minimized, and the func-
tion Q quantifies the complexity effect of cluster cardinality, and the general effect
of changes in data precision, in the ways described earlier. When considering a
model with a fixed number of clusters, relating to data of a given precision, the
value of Q(m, _) is a constant. This leads to the second evaluative measure given
in (8), which incorporates only the data-fit and cluster complexity components.
Clearly, it is through the analysis of the complexity matrix G that an understanding
of the complexity effects of various cluster structures in additive clustering models
can be developed.

Interpretation and Nature of the Complexity Matrix

The interpretation of the elements of G in terms of the cluster variables fik is
relatively straightforward. The k th diagonal element, �i< j fik f jk , constitutes a
count of the number of pairs of domain stimuli lying in the k th cluster, whereas
each off-diagonal element, of the form �i< j f ix fjx f iy fjy , counts the number of
pairs of stimuli lying in both the xth and y th clusters. Accordingly, the diagonal
elements give an indication of cluster size within a model, while the off-diagonal
elements relate to the patterns of cluster overlap. This interpretation makes it clear
that G is constrained by the relationship gij�min(gii , gjj), since the number of
stimulus pairs in the overlap of two clusters cannot be greater than the number of
pairs in the whole of either cluster.

Importantly, it will generally be the case that G is positive definite, which ensures
that the complexity measure |G|1�2 is strictly positive, as is required for meaningful
interpretation. To see this, note that G may be rewritten as C TC, where

C=_
f11 f21

f12 f22

b
f1m f2m

f11 f31

f12 f32

b
f1m f3m

} } }
} } }
b

} } }

f21 f31

f22 f32

b
f2m f3m

} } }
} } }
. . .
} } }

f(n&1)1 fn1

f(n&1)2 fn2

b
f(n&1)m fnm

& ,

and therefore is positive definite when CT has full rank. Since the best-fitting
weights of an additive clustering models satisfy the relationship CTw=s, where s=
(s12 , s13 , ..., s23 , ..., s(n&1) n)T, the full rank of CT allows the matrix inversion which,
together with the non-negativity constraint on w, determines the values of the
weights. When CT does not have full rank, however, it is not clear whether poten-
tial solutions for the weights will be sufficiently constrained to allow the derivation
of a meaningful model. In any case, in general, it seems very unlikely that well-con-
structed additive clustering models, given their emphasis on cluster parsimony, will
exhibit the degeneracies associated with CT not having full rank.

It is also worth noting that if, somehow, a method of model construction does
create a degenerate cluster structure, it may often be able to be remedied using the
following observation. When CT does not have full column rank, each of its
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columns can be written as a linear combination of the others. Providing one of
these columns, say the x th, can be rewritten as fix fjx=�k{x :k fik fjk \i< j, with
(wx:k+wk)�0 \k; this cluster can be removed from the cluster structure, without
altering the estimated similarity values, since

ŝij =:
k

wk fik f jk

=wx fix fjx+ :
k{x

wk fik f jk

=wx :
k{x

:k fik fjk+ :
k{x

wk fik fjk

= :
k{x

(wx:k+wk) f ik f jk . (9)

This constructive approach to remediation would apply, for example, in the case
where four stimuli are partitioned by two clusters into two pairs of stimuli, and a
third cluster which encompassed all four stimuli is also included. The relationship
expressed in (9) suggests that this least-weighted partitional cluster should be
removed, with its weight added to the outer cluster, and the weight of the remaining
partitioning cluster reduced by the same amount.

Implications for Cluster Structure Complexity

Given a cluster structure for which G is positive definite, the application of
Hadamard's inequality (see, for example, Bellman, 1970, pp. 129�130) shows that

|G|�`
k

:
i< j

f ik f jk , (10)

which implies, for a fixed number of clusters, that a partitioning cluster structure
is the most complicated. This is because equality is achieved in (10) iff G is a diagonal
matrix, which requires that there be no overlap between clusters. Intuitively, the com-
plexity of partitional models arises from the fact that their weight parameterization is
constrained by a relatively limited subset of the available similarity measures. Each
cluster involves only the pairwise relations between stimuli within that cluster, to the
exclusion of the large number of pairwise relationships between stimuli in different
clusters. This means that the best-fitting weights are determined in relation to only part
of the data available in the similarity matrix. Consequently, for weight parameteriza-
tions which differ from the maximum likelihood estimates, the data-fit of partitional
models will generally be poor. Cluster structures which allow some degree of overlap,
in contrast, have the potential to consider all of the available similarity data.
Models with overlapping structures will generally, therefore, have best-fitting
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weights which represent a compromise between various competing fine-tunings and
exhibit data-fit which is more robust across a range of weight parameterizations.

Of the different types of partitioning cluster structures, it follows from (10) that
complexity is minimized when all but one of the clusters encompasses only one pair
of stimuli, and the remaining cluster covers the rest. To see this, note that for any
two clusters in a partition, containing :�;�2 stimuli respectively, the product of
the complexity matrix determinant associated with these clusters, :(:&1)�2_;(;&1)�2,
is reduced by transferring one stimulus from the smaller cluster to the larger one.
That is, :(:+1)_(;&1)(;&2)<:(:&1)_;(;&1). The minimal complexity
matrix determinant, therefore, is achieved by transferring stimuli from smaller
clusters to larger ones, until one cluster is as large as possible. Once again, this may
be understood in terms of the extent to which the similarity measures constrain the
weight parameterization of a cluster structure. Since the number of stimulus pairs
considered by a cluster increases quadratically with the number of stimuli encom-
passed, the proportion of a similarity matrix that constrains weight estimation in a
partitioning model is maximized by including the largest cluster possible. Adopting
a minimum description length perspective on model complexity (Rissanen, 1989;
Zemel, 1995) provides another means of understanding this result. As noted by Li
and Vita� nyi (1993, p. 71), the so-called noiseless coding theorem (Shannon, 1948)
indicates that the minimal average message length needed to convey a structure is
approximately given by the entropy of that structure. Therefore, a partition in
which each cluster encompasses the same number of stimuli is more complicated
because each of the clusters becomes equally likely, maximizing the entropy of the
cluster structure and, in turn, maximizing the message description length necessary
to communicate the structure.

Typically, however, additive clustering models avoid partitioning cluster structures
through the introduction of a universal cluster. This cluster encompasses all stimuli and
corresponds to the inclusion of an additive constant in the basic similarity model (1).
As noted by Arabie and Carroll (1980, p. 212), the incorporation of the universal
cluster is necessary if the data-fit of a model is to be assessed by the variance explained
measure (2). The impact of including this cluster on model complexity may be assessed
as a special case of the following general result. If a cluster structure with complexity
matrix G has an additional cluster encompassing z pairs of stimuli with overlaps
defined by the vector y appended, the augmented matrix

G+=_G
yT

y
z&

bears the relationship

|G+|=|G| (z&yTG&1y)�z |G|,

with equality iff y=0 (Magnus 6 Neudecker, 1988, p. 23).
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In the special case of a partitioning cluster structure, with clusters encompassing
a, b, ..., x pairs of stimuli, the addition of the universal cluster increases the com-
plexity measure ab } } } x by a factor of

n(n&1)
2

&[a b } } } x]T_
1
a

0 } } } 0

& [a b } } } x]
0

1
b

} } } 0

b b . . . b

0 0 0
1
x

=
n(n&1)

2
&(a+b+ } } } +x),

so that the increase is minimized when the sum a+b+ } } } +x is as large as
possible. Encouragingly, this occurs when the original partitioning cluster structure
assumes exactly the same minimal complexity structure as before, with one cluster
encompassing all available stimuli, under the restriction that each of the other
clusters must contain at least two stimuli. To see this, note that for any two clusters
in a partition, containing :�;�2 stimuli respectively, the part of the sum
associated with these clusters, :(:&1)�2+;(;&1)�2, is increased by transferring
one stimulus from the smaller cluster to the larger one. That is, :(:+1)+(;&1)
(;&2)>:(:&1)+;(;&1). The maximal sum, therefore, is achieved by continu-
ing to transfer stimuli from smaller clusters to larger ones until one cluster is as
large as possible. When coupled with the earlier result, this means that the com-
plexity of a partitioning model that includes the universal cluster is also minimized
by having one large cluster encompassing most of the stimuli.

To examine ways in which the complexity of more general overlapping cluster
structures may be minimized, consider first a two cluster model in which the first
cluster encompasses a pairs of stimuli and the second encompasses c pairs. Without
loss of generality it may be assumed that a�c, so the cluster structure complexity
of this matrix is given by

G=_a
b

b
c& ,

where b�c. The cluster complexity of this model is minimized when |G|=ac&b2

is minimized, which requires that b=c. If both of the clusters encompass the same
number of stimuli, this choice is degenerate, since it amounts to including exactly
the same cluster in a model twice. Otherwise, however, the choice of overlap b
which minimizes cluster structure complexity is a strictly nested one in which the
smaller second cluster encompasses a subset of the larger first cluster.

An intuitive analysis of cluster structures containing arbitrary numbers of clusters
suggests that this result may be generalized. Suppose the first n clusters of the model,
encompassing a�b�c� } } } �x stimulus pairs, are arranged in a strictly nested
fashion, and a decision is to be made regarding the pattern of overlap of the next
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smallest cluster, which contains z�x stimuli. The complexity matrix then takes the
form

G=_
a b c } } } x y1

& ,

b b c } } } x y2

c c c } } } x y3

b b b . . . b b
x x x } } } x yn

y1 y2 y3 } } } yn z

and it is required that y1� y2� y3� } } } �z be chosen to minimize |G| 1�2. This is
equivalent to minimizing |G| which, geometrically, corresponds to minimizing the
volume of the (n+1)-dimensional parallepiped with edges defined by the rows (or
columns) of G (Horn 6 Johnson, 1985, p. 477). The two ways of accomplishing this
are through minimizing the lengths of the edges, which suggests choosing y1 , y2 ,
y3 , ..., yn=0, or through decreasing the interior angle between the edges, which
suggests choosing y1 , y2 , y3 , ..., yn=z. However, a little thought, and some con-
crete numerical investigation, suggests that the second of these approaches is to be
preferred. It is easy to see that minimizing the length of the edge associated with the
new cluster forces it to be orthogonal with all of the established edges of the
parallepiped. Minimizing the interior angle of the new edge with all others, in
contrast, comes only at the cost of lengthening the one new edge, which, in any
case, is constrained to be shorter than all of the other edges. Accordingly, the
volume minimization benefits of edge reduction seem to be outweighed by the
benefits of interior angle reduction. This implies that the new cluster should be
assigned patterns of overlap which maintain the strictly nested cluster structure.
When formalized, this intuitive argument provides the inductive step which,
together with the case for n=2 given earlier, demonstrates that the complexity of
additive clustering models is minimized by a strictly nested cluster structure.
Clearly, a formal proof of this claim should be a priority for future research.

In the meantime, it may be observed that for a strictly nested cluster structure,
the following elementary row operation

1 0 0 } } } 0 a b c } } } x a b c } } } x

&1 1 0 } } } 0 b b c } } } x b&a 0 0 } } } 0_&1 1 0 } } } 0&_c c c } } } x&=_c&a c&b 0 } } } 0&b b b . . . b b b b . . . b b b b . . . b
&1 1 0 } } } 0 x x x } } } x x&a x&b x&c } } } 0

reveals that |G|=(b&a)(c&b) } } } x. Since a strictly nested model is restricted to
having a>b>c> } } } >x, this means that the complexity of such a structure is
minimized by having each of the successively decreasing clusters encompass almost
as many stimulus pairs as its predecessor.
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CONCLUSION

Because of its flexibility and ease of interpretation, additive clustering seems well
suited to modeling the similarity relationships observed to exist between a set of
stimuli. A crucial determinant of the success of such modeling, however, is the
degree to which the complexity of derived models may be controlled. The BIC
measure developed and demonstrated in this paper provides a quantitive measure,
incorporating a cluster cardinality conceptualization of additive clustering model
complexity, from which decisions in model comparison and construction may be
made. This measure is readily calculated, allows for the introduction of prior
knowledge or assumptions regarding the precision of the similarity data, and is
amenable to interpretation on a meaningful probabilistic scale through its relation-
ship to Bayes factors. The BIC measure, however, does rely on the simplifying
assumption that model complexity is equivalent to cluster cardinality, which may
not be appropriate in all practical situations.

Accordingly, a second measure of additive clustering model complexity, which
considers the complexity effects of different cluster structures, was developed using
the Laplacian approximation of a marginal probability density. A preliminary
investigation of this complexity measure revealed that when a model has the same
number of clusters and the exhibits the same level of data-fit, those with partition-
ing cluster structures are the most complicated, while those with strictly nested
clusters are the least complicated. There remains, however, considerable scope for
further analysis of this source of additive clustering model complexity, providing a
fertile ground for further theoretical research with potential practical application.
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