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ilarities are modeled using the recovered features that objects have in common. Unlike
partitioning or hierarchical clustering approaches, most approaches to additive clustering
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freedom demands, however, that the issue of additive clustering model complexity is ad-
dressed. It is important that additive clustering models are generated so as to balance the
competing demands of goodness-of-fit and complexity for substantive interpretation. This
paper uses previous analytic results to derive a stochastic complexity criterion measure for
additive clustering models. This measure simultaneously takes into account the goodness-
of-fit, the number of clusters, and the complexity associated with the patterns of cluster
inclusion and overlap within the model. A new algorithm for fitting additive clustering
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1. Introduction

Additive clustering models (e.g., Arabie and Carroll 1980; Chaturvedi
and Carroll 1994; Mirkin 1987, 1996; Shepard and Arabie 1979; Tenenbaum
1996) provide representationally powerful—but conceptually simple—accounts
of the observed similarities between sets of objects. Given a matrix of pair-
wise similarities S = [s;;], additive clustering derives a set of weighted stim-
ulus “clusters’, which may, in various contexts, also be interpreted as domain
‘classes’ or ‘features’. What distinguishes additive clustering from other clus-
tering approaches is that the relationship between the given set of stimuli and
the derived clusters is nearly always entirely unconstrained!. Unlike standard
partitioning clustering approaches that place each stimulus in only one clus-
ter, additive clustering allows each object to belong to any number of clusters.
Unlike hierarchical clustering approaches, additive clustering places no nesting
constraints upon the sets of objects that may be encompassed by a cluster.

The similarity model underpinning additive clustering, introduced by
Arabie and Shepard (1973; see also Shepard 1974; Shepard and Arabie 1979),
assumes that the similarity between any given pair of objects is determined by
the clusters to which both objects belong. Formally, if the m derived clusters for
n objects are defined by an (also derived) n x m matrix of binary membership
variables F' = [f;], where

1 if object s is in cluster k,
fik =

0 otherwise;

and the weights fitted for each of the clusters, denoting their importance or
salience, are defined by a derived vector w = (wy, wo, ..., w,y, ), then the esti-
mated similarity of the ith and jth objects is

S5 = Zwkfikfjka (D
k

which includes a positive constant, in the form of the weight associated with a
universal cluster that includes all of the objects.

As noted by Shepard and Arabie (1979, p. 98), the ability to specify
an arbitrarily overlapping cluster structure, when coupled with the ability to
manipulate cluster weightings, enables any similarity matrix to be accommo-
dated perfectly by an additive clustering model. While the flexibility afforded

The exception comes in the form of additive clustering techniques (e.g., Carroll and Chaturvedi 1995;
Chaturvedi, Green, and Carroll 2001; DeSarbo 1982) that allow users to place constraints on overlapping
clustering solutions.



Additive Clustering Complexity 71

by additive clustering is clearly desirable in providing an ability to model sim-
ilarity data, the introduction of unconstrained and parameterized cluster struc-
tures potentially detracts from other fundamental modeling goals, such as the
achievement of interpretability, explanatory insight, and the ability to general-
ize accurately beyond given information.

This familiar conflict between maximizing goodness-of-fit and minimiz-
ing model complexity is often acknowledged in the development of techniques
to generate additive clustering models, and has typically been tackled through
the general strategy of attempting to use a minimal number of clusters to pro-
vide a maximal level of goodness-of-fit. Some techniques (e.g., Tenenbaum
1996) accomplish this task by setting the number of clusters to be derived at
a fixed value, and then seeking the best goodness-of-fit possible, while other
techniques (e.g., Lee 1999a) set a target goodness-of-fit level, and then seek
a minimal number of clusters that achieve this fit. Only one technique (Lee,
in press) explicitly quantifies the trade-off between accuracy and complexity
during the process of model generation. This technique uses a formulation of
the Bayesian Information Criterion (BIC: Schwarz 1978, see Kass and Raftery
1995; Myung and Pitt 1997 for overviews) developed by Lee (2001b).

A weakness of this approach, however, is that the BIC, like Akaike’s
(1974) Information Criterion (AIC), is sensitive only to the parametric com-
plexity of additive clustering models, which corresponds simply to the num-
ber of clusters they use. As argued by Lee (2001b), additive clustering model
complexity is also influenced by the patterns of cluster encompassment, cluster
overlap, and general cluster structure of a model, and not simply the number of
clusters. Lee (2001b) proceeds to derive a measure of additive clustering model
complexity, based on the so-called Laplacian approximation to a marginal prob-
ability density (see Kass and Raftery 1995, p. 777), that is sensitive to variations
in cluster structure.

As it turns out, much of the analysis presented in Lee (2001b) may be
used to derive a measure of the ‘stochastic complexity’ of additive clustering
models, as defined by Rissanen (1996). The stochastic complexity measure has
the advantage of combining goodness-of-fit, the number of clusters, and the
structural complexity of an additive clustering model. This paper presents a
new algorithm for fitting additive clustering models to similarity data, using the
stochastic complexity measure to constrain the derived representation so that it
balances the competing demands of goodness-of-fit and model complexity.

2. Stochastic Complexity

Rissanen (19906) presents a reparameterization-invariant form of the Stochas-
tic Complexity Criterion (SCC), as:
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SCC=—-lnp(D|p")+ éln( )—f—ln/s/detl ).dp, (2)

where D is a data sample of size NV that constrains the model, p is a vector
containing P model parameters, p (D | p*) is the maximum probability density
of the model, found by evaluating at the best-fitting parameter values p*, and
I (p) is the Fisher information matrix, defined using the expectation:

9%1n p (D |p)
apa?apy .

The first term in the stochastic complexity criterion may be regarded as a ‘maxi-
mum-likelihood’ term, measuring the goodness-of-fit of the model under the
best-fitting parameterization. The remaining terms may be regarded as ‘com-
plexity’ terms, relevant to the complexity effects of including extra parameters
in a model, and the ‘functional form’ complexities (Myung and Piit 1997) as-
sociated with the degree to which values of parameters constrain each other.

In the context of measuring the complexity of a given additive clustering
model, Lee (2001b) argues that it is reasonable to treat the cluster structure de-
fined by the membership variables in the matrix F as the model per se, and the
weights in the vector w as parameters of the model. In addition, Lee (2001b)
follows Tenenbaum (1996), in using a probabilistic formulation that character-
izes each of the similarities as a Gaussian distribution with common variance.
This approach means that the probability of a similarity matrix S arising under
a particular additive clustering structure F', using a particular weight parame-
terization w, is given by

I.’L‘y (p) = *Ep { 3)

1 : (Si]‘ - éij)2>
SIF,w) = [[ ——exp|—u—Cul
p(S|F,w) oy (J 27r) EXP( 202
1
= — exp 51 3 (4)
(o'\/—_)” 1)/2 < 2022 g )

where o2 is the common variance. As argued by Lee (2001a; see also Lee
submitted, 1999b), this variance quantifies the inherent precision of the data
and can be estimated based on an understanding of the process by which the
data was generated.

Given a sample estimate s of o, the first ‘maximum likelihood’ term of
the stochastic complexity criterion may be given the following additive cluster-
ing formulation:



Additive Clustering Complexity 73

~lnp(D|p*) = —-Inp(S|F,w)
1 N2 nn-—1 - -
52 Z (,s‘u — '“U) + AVT*) In <.3\/ 27T> . (5
1<J

A symmetric similarity matrix for n objects, where self-similarity often remains
undefined, contains n (n — 1) /2 similarity measures. Accordingly, for additive
clustering models, the first of the ‘complexity’ terms in the stochastic complex-
ity criterion is given by

P N  (n—1
— In < > L In <M—J> . (6)
2 21 2 47

The additive clustering formulation of the second ‘complexity’ term is more
involved, and relies on the derivation given in Lee (2001b), whereby

I p(S|F,w) % : > 5 )2]
_ , N A Sh Sy
Ow,Ow, Ow, 0wy 252 — j g J
# |1 )
= e |3 2\ 2 kS
/X / ;_Hl 1< k
9 [ 1 .
= Z)'v ——5 Z (”’1‘/ — Z 'U’;\»‘f,};f‘,‘k> fz;z:f]:r
u Yy L & 1<J \ k
1 .
= ;7 Z fz«rfjl‘flyj./!/'
Sy

This result allows the required Fisher information matrix to be written as

0?In p(S|F,w)
Owz 0wy

Iy, (w) = AEW{

= =G, (7N

where
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G =
| Sigfafin Sigfafifelps o S fafpfmfm |
Licj fafpfafn > i<y finfso o Licg fiefiafimfim
L Zi<]’ fimfjmfilfjl Zz’<_j fz'mfjmfi?fj? e Zi<]’ fimfjm

As noted in Lee (2001b, p.142), the interpretation of the elements of G
using the cluster variables f; is relatively straightforward. The kth diagonal
element, 3, ; fir fjk, constitutes a count of the number of pairs of domain ob-
jects lying in the kth cluster, whereas each off-diagonal element, of the form
> i<j fizfjxfiyfjy, counts the number of pairs of objects lying in both the zth
and yth clusters. Accordingly, the diagonal elements give an indication of clus-
ter size within a model, while the off-diagonal elements relate to the patterns of
cluster overlap.

For normalized similarity data, where a linear rescaling has been used to
limit the similarity data to the interval [0, 1], it is reasonable to restrict each of
the weight parameters to the same interval. Accordingly, the second complexity
term may finally be given as

1,1 1
ln/\/detI(w).dw = 111/ / / /det I (w).dwy.dws.dw,,
0 Jo 0

1 r1 1 1
= ln/ / / det (—2G>.dw1.dwg.dwm
0o Jo o S

= In4/det (%G)

5
= InvVdetG —Ins. (8)

Combining these three terms gives a measure of the stochastic complex-
ity of an additive clustering model, as follows:

SCCadcluS = 5:19’5 Z (Sij - <§;j>2 + M In (3\/%)

1<g 2
2 4
1 N2 m n{n-—1)

+ InVdet G + constant. (9)

+ M <”(”—_13) +1nVdet G —Ins
mw
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3. A Concrete Example

As a concrete example of the benefits of using the stochastic complexity
criterion to constrain additive clustering models, consider a four-object domain
with the normalized symmetric similarity matrix

r o

1.0000  0.4981 0.4700 0.5402
0.4981 1.0000 0.4325 0.4044

w

0.4700 0.4325 1.0000 0.9789

0.5402  0.4044 0.9789 1.0000

L .

These similarity values were chosen because, for the case of a two-cluster
model, there are two different cluster structures that provide the same maximal
goodness-of-fit. These two models are shown in Figure 1. The model on the left
includes a universal cluster with weight 0.4618, a cluster containing the first and
second objects with weight 0.0363, and a cluster containing the third and fourth
objects with weight 0.5171. The model on the right includes a universal cluster
with weight 0.4512, a cluster containing the first, second, and fourth objects
with weight 0.0296, and a cluster containing the third and fourth objects with
weight 0.5277.

Both these models explain 92.92% of the variance in the similarity data,
using the same number of clusters. Because their goodness-of-fit and para-
metric complexity are the same, these models would be equivalent under a
complexity measure such as the AIC or BIC. The SCC, however, through its
sensitivity to functional form complexity. is able to distinguish the models. The
second complexity term in the SCC for the model on the left is

1 0 1
Injdet| 0 1 1 = In2,
1 1 6

whereas for the model on the right it is

3 0 3
Infdet | 0 1 1 = In V6,
316

which means that the model on the left is to be preferred. This result accords
with intuition, since it prefers an account of the data that is a straightforward
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0.4618 0.4512
0.0363 0.0296
® 1 ®2 @1 ® 2
0.5171 0.5277
® 3 ® 4 @3 ® 4
|

Figure 1: Two additive clustering models that provide equally good goodness-of-fit using the
same number of clusters, but have different stochastic complexity. The stochastic complexity
criterion measures the model on the left as being simpler than the one on the right.

hierarchical decomposition, rather than a less easily interpreted overlapping
cluster structure. A more detailed analysis of the nature of the matrix G, and
its implications for cluster structure complexity, may be found in Lee (2001b).

4. Fitting Algorithm

The stochastic complexity measure provides an opportunity to generate
additive clustering models that consider both goodness-of-fit and complexity,
without requiring the number of clusters to be prespecified. The fitting algo-
rithm developed here ‘grows’ a series of additive clustering models by succes-
sively adding clusters, similarly to Mirkin (1987), and produces the model with
the minimal stochastic complexity. The algorithm may be described according
to the following five steps.

Step I The best-fitting ‘0O-cluster’ model is found and its stochastic com-
plexity calculated. The ‘O-cluster’ model is the degenerate additive clustering
model that uses only the constant arising from a universal cluster (cf. Equation
1). The stochastic complexity measure (Equation 9) may be simplified for this
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one-parameter model to

(10)

vhere

model

iep 2: A new cluster is created. and the objects it initially includes are
letermined by a ‘seeding’ heuristic. The heuristic is based on ideas used in the
[-S algorithm for additive clustering developed by Mirkin (1987). When
cluster is added, the similarity not already modeled by the preceding
‘lusters 1s calculated. For the ith and jth objects, this residual similarity is

\
r

Sij = max k\ 5= Z wi fir [, 0 - (1D
\ } //

I'he two objects with the greatest residual similarity are included in the new
cluster. The seeding heuristic then continues to add the object not in the new
cluster that has the greatest average residual similarity to those objects already
in the cluster, providing this average residual similarity measure is more than
half the average within-cluster residual similarity.

Step 3: The algorithm then attempts to optimize the seeded model, search-
ing for a cluster structure and set of weights that have minimal stochastic com-
plexity. The combinatorial part of this optimization, which involves adjusting
the patterns of discrete cluster assignment, is based on stochastic hill-climbing,
so that the algorithm starts by constructing a random ordering of all the binary
membership variables in the seeded representation. By following this ordering,
the membership variables are changed cither to remove an object from a clus-
ter, or to include an object in a cluster. For the new cluster structure, best-fitting
weights are found as the solution to a non-negative least-squares problem:

9

\ 2
W' = arg nmin 'y (.s[_, = ? Wy fok Fik ) subject tow > 0, (12)
W 1< \ k /

using the method described by Lawson and Hanson (1974, pp. 160-165). The
stochastic complexity of the new model is then calculated according to Equa-
tion 9. If the stochastic complexity decreases as a result of the change of cluster
membership, the change is accepted, and a new random ordering for all of the
binary membership variables is constructed. If the stochastic complexity does
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not decrease, however, the change is rejected, and the effects of changing the
next variable in the random sequence are considered. Step 3 continues itera-
tively until an entire random sequence of variable changes has been exhausted,
meaning that the model has (locally) minimal stochastic complexity, before pro-
ceeding to Step 4.

Step 4: 1f the stochastic complexity of the current model is within an evi-
dence parameter (Lee 2001b, pp. 137-138) of the lowest stochastic complexity
recorded for any model the algorithm returns to Step 2 to continue adding clus-
ters; otherwise the algorithm terminates by continuing to Step 5.

Step 5: The additive clustering model with the lowest stochastic com-
plexity is returned, using the matrix of cluster membership variables and a cor-
responding vector giving the best-fitting weights for this cluster structure.

5. Monte Carlo Evaluation

To evaluate the effectiveness of the proposed algorithm, Monte Carlo
simulations were undertaken examining its ability to recover known cluster
structures and weights in the presence of noise. Rather than generating ran-
dom cluster structures, a number of manually specified cluster structures were
used. This approach was taken partly because it is important that the recovery
properties of the algorithm are tested for cluster structures that simultaneously
involve partitioning, hierarchical and overlapping clusters, and this goal is most
easily achieved by specifying appropriately challenging structures. More fun-
damentally, it is possible for similarity data derived from randomly generated
additive clustering models to be equally well accommodated by different clus-
ters and weights, making problematic the assessment of whether an algorithm
recovers the ‘correct’ model.

An example of the cluster structures and weights used in the Monte Carlo
evaluation is shown in Figure 2, This four-cluster structure involves seven stim-
uli and incorporates partitioning, hierarchical, and overlapping clusters with
different weights. The similarity data generated from this model were corrupted
by the addition of zero-mean Gaussian noise with standard deviation of 0.10.

The proposed additive clustering algorithm was then applied to the data,
assuming the value s = 0.10, and using Akaike’s Information Criterion, the
Bayesian Information Criterion, and the Stochastic Complexity Criterion to
control the complexity of the derived cluster structures. The results of this anal-
ysis, across 50 runs of each algorithm, are summarized in Figure 3. The mean
pattern of change in the percentage of variance explained and various complex-
ity measures are shown as the number of clusters increases, together with best-
and worst-case performance bounds.

Figure 3 shows that the AIC tends to recover the wrong cluster structure,
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0.1

Figure 2: The 5-cluster structure, with partitioning, hierarchical and overlapping clusters used in
the reported Monte Carlo study.

with its mean value being minimized for a five-cluster structure, and the low-
est value found corresponding to a six-cluster structure. The BIC, in contrast,
has both its minimum mean value and minimum overall value for a four-cluster
structure, which visual inspection revealed to be the known generating struc-
ture shown in Figure 2. The best-and worst-case performance envelope sur-
rounding the BIC measure, however, indicates that there was some significant
variability across runs in finding this correct structure. The convergence of the
performance envelope evident in Figure 3(c) shows, however, that, when the
algorithm used the SCC, it found the correct four-cluster model on all of the 50
runs.

In the interests of brevity, the other cluster structures examined, and other
levels of noise considered (s = 0.05 and 5 = (0.15), are not presented in detail
here. The pattern of results shown in Figure 3 are, however, typical of those
obtained. Generally, the AIC over-estimated the number of clusters in the re-
covered model, while both the BIC and SCC consistently recovered the correct
models. One the basis of these results, it may well be the case that the BIC can
usefully be used with the proposed algorithm in many cases. This would have
some practical advantages in terms of computational efficiency, since the BIC is
easier to calculate than the SCC. The temptation to adopt this short-cut should,
however, be tempered with an understanding of the theoretical advantages of



80 M.D. Lee

100
90F {26
°
@ loag
E 80 )
2 28
2 7or =
L 200
@
g - i
8 gl °5
=
& 116 E
> sk ]
@ 14
g . .
- ©
£ ¥ 123
T
o comaneantt
10 PR 8
o : A . I PN
[ 1 2 3 4 5 6 7 8
Number of Clusters
1001
36
sof
° 34
g 4o 18
£ =
% 132§
x 7o 203
e =
& eor 4232
- [
g 504 -‘268
& £
= 401 242
g e
IS
g o 2§
7]
@ ]
% ol 20€
a 1g@
10
| )
| 16

(b)

20

70

Stochastic Complexity

Percentage Variance Explained
wm
(=]

0 1 2 3 4 5 6 7 8
Number of Ciusters

(©

Figure 3: Pattern of change in the percentage of variance explained (solid lines, left axis), and
complexity measure (broken lines, right axis), when applying the additive clustering algorithm to
the artificially generated similarity data, using (a) the AIC, (b) the BIC, and (c) the SCC. For both
the variance explained and complexity measures, the mean performance across 50 runs is shown
in bold, and the envelope of best- and worse-case performance is shown by the surrounding lines.
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Figure 4: Pattern of change in the percentage of variance explained (solid lines, left axis), and

stochastic complexity measure (broken lines, right axis). when applying the additive clustering
algorithm to the kinship data. For both measures, the mean performance across 50 runs is shown
in bold, and the envelope of best and worse case performance is shown by the surrounding lines

the SCC in terms of measuring functional form complexity, as demonstrated by
the concrete example presented earlier.

6. Ilustrative Application

As an illustrative application of the algorithm to real data, consider the

similarities collected by Rosenberg and Kim (1975), as published in Arabie,

Carroll and DeSarbo (}987 pp. 62-63) involving 15 common kinship terms,
such as ‘“father’, "cousin’, and ‘grandmother’. Thcsc data were collected using
a sorting procedure performed by six groups of 85 subjects, where each kinship
term was placed into one of a number of groups, under various conditions of
instructions to the subjects.

For similarity data obtained by averaging across a number of data sources
in this way, Lee (2001a) proposes a straightforward means of wtlmatmﬂ data
precision. In general, given a set of similarity matrices I = | ] provided by
k=12, K data sources, the precision of the averaged smnlanty matrix
S = /; > s“\ = [s;;] may be estimated as the average of the sample standard
deviations for each of the pooled cells in the final matrix, as follows:
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Table 1: The 12-cluster model of the kinship data, showing the kinship terms included in each of the
clusters, and the associated cluster weights

STiMuLl IN CLUSTER WEIGHT
brother sister 0.320
father mother 0.305
daughter son 0.304
aunt uncle 0.270
grandfather grandmother 0.269
nephew niece 0.266
granddaughter grandson 0.263
aunt cousin nephew niece uncle 0.225
aunt daughter granddaughter grandmother mother niece sister 0.225
brother father grandfather grandson nephew son uncle 0.224
granddaughter grandfather grandmother grandson 0.209
brother daughter father mother sister éon 0.168
additive constant 0.237
VARIANCE EXPLAINED 96.2%

1 ok (Sf'—si‘)Q
S:n(n—l)/2z K]—lj '

1<g

(13)

This approach was applied to the six data sources available for the kinship data
by arithmetically averaging the six individual similarity matrices to form a sin-
gle averaged matrix, and using the sample standard deviations of the averaged
cells to estimate the precision of this averaged matrix as s = 0.091.

Figure 4 summarizes the results of 50 independent applications the al-
gorithm to the kinship data, at this level of data precision, using an evidence
parameter value of 6. As before, the increase in the percentage of variance ac-
counted for by successive models as clusters are added is shown by the solid
lines, against the left axis. The pattern of change in the stochastic complexity
measure is also shown, using a broken line against the right axis. For both mea-



Additive Clustering Complexity 83

sures, the performance ‘envelope’ across the 50 runs is given by the surrounding
lines, which correspond to best and worse case performances.

Looking at the best-case performance in Figure 4, the stochastic com-
plexity measure is minimized for a 12-cluster model. This model is detailed
in Table 1. listing the kinship terms included in each cluster, the weights for
each of the clusters. and the value of the additive constant. Each of the clusters
1s amenable to substantive interpretation, capturing classes within the domain
such as ‘nuclear family’. ‘extended family’, ‘grandparents’, ‘siblings’, ‘par-
ents’, ‘females’ and ‘males’. This example also highlights the representational
flexibility of additive clustering models. The use of arbitrarily overlapping clus-
ters 1s necessary, for example, to place the kinship term ‘brother’ within the
clusters corresponding to the classes ‘siblings’, ‘nuclear family’ and ‘male’.
By avoiding the constraints of partitioning or hierarchical clustering models,
additive clustering allows several contrasting contexts (e.g., ‘generation’ and
‘gender’) to be captured simultaneously.

[t is interesting to compare this particular solution with that produced by
the SINDCLUS algorithm described by Chaturvedi and Carroll (1994), and the
SEFIT algorithm described by Mirkin (1996). Chaturvedi and Carroll (1994)
report the same five-cluster solution that was found on 41 out of the 50 runs
of the current algorithm. This earlier solution contains the following subset of
the clusters listed in Table I: {granddaughter, grandfather, grandmother, grand-
son}. {aunt, cousin, nephew. niece, uncle }, {brother, daughter, father, mother,
sister, son}, {aunt. daughter, granddaughter, grandmother, mother, niece, sis-
ter}, and {brother, father, grandfather, grandson, nephew, son, uncle}. These
are basically the five ‘large’ clusters that are subsequently decomposed by the
12-cluster model. The solution reported by Mirkin (1996, Table 4.9) also con-
tains these clusters, but appends the clusters {brother, sister}, {aunt, uncle},
and {nephew, niece}. The stochastic complexity measure on which the cur-
rent algorithm is based suggests that, at the estimated level of data precision,
the extra clusters present in the 12-cluster solution are warranted. The fact that
these clusters are readily amenable to substantive interpretation, capturing im-
portant concepts within the kinship domain such as ‘parent’ and ‘sibling’, is
encouraging.

7. Conclusion

A measure of the stochastic complexity of additive clustering models
has been developed. Unlike such measures as the AIC or BIC, this measure
takes Into account goodness-of-fit, the number of parameters, and the way in
which these parameters interact within the model. This measure is thus sensitive
not only to the number of parameters used by an additive clustering model to
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achieve a level of goodness-of-fit, but also to the patterns of cluster inclusion
and overlap that are used.

An algorithm for generating additive clustering models with minimal
stochastic complexity was also developed. This algorithm starts with a one-
cluster model, and successively ‘grows’ by adding new clusters, until the stochas-
tic complexity measure starts to increase. Monte Carlo simulations showed that
the algorithm is able to recover known cluster structures and weights in the pres-
ence of Gaussian noise. The algorithm was also applied to a standard similarity
data set involving kinship terms, where it was shown to generate a meaningful
domain representation that extends upon those achieved by other additive clus-
tering approaches. More generally, through its use of the stochastic complexity
measure, the algorithm has the ability to generate features from similarity data
that balance the competing demands of accuracy and simplicity.
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