
Cognitive Models and the Wisdom of Crowds:
A Case Study Using the Bandit Problem

Shunan Zhang (szhang@uci.edu)
Michael D. Lee (mdlee@uci.edu)

Department of Cognitive Sciences, 3151 Social Sciences Plaza A
University of California, Irvine, CA 92697-5100 USA

Abstract

The “wisdom of the crowds” refers to the idea that
the aggregated performance of a group of people on a
challenging task may be superior to the performance of
any of the individuals. For some tasks, like estimating
a single quantity, it is straightforward to aggregate indi-
vidual behavior. For more complicated multidimensional
or sequential tasks, however, it is not so straightforward.
Cognitive models of behavior are needed, to infer what
people know from how they behave, and allow aggrega-
tion to be done on the inferred knowledge. We provide
a case study of this role for cognitive modeling in the
wisdom of crowds, using a multidimensional sequential
optimization problem, known as the bandit problem, for
which there are large differences in individual ability. We
show that, using some established cognitive models of
people’s decision-making on these problems, aggregate
performance approaches optimality, and exceeds the
performance of the vast majority of individuals.

Keywords: Wisdom of crowds, Cognitive models,
Bandit problem, Hierarchical Bayesian modeling

Introduction
An enticing idea in the study of individual and group
decision-making is the phenomenon known as the “wis-
dom of crowds”. The idea is that, by aggregating
the behavior of a group of people doing a challeng-
ing task, it is possible for group performance to match
or exceed the performance of any of the individuals.
Surowiecki (2004) provides an extensive survey of wis-
dom of crowds results over a diverse set of human en-
deavors and decision-making situations, ranging from
guessing the weight of an ox at a county fair, to infer-
ring the location of a missing submarine, to predicting
the outcome of sporting events. Recent research in cog-
nitive science has looked at issues including whether it
is possible to have a “crowd within”, such that multiple
estimates from the same person can be combined to im-
prove their performance (Vul & Pashler, 2008).

While the exact conditions needed for group perfor-
mance to exceed individual performance are not com-
pletely understood, it seems clear that crowds can be
wise in any situation where people have some partial
knowledge, and the gaps in their knowledge are subject
to individualdifferences. Under these circumstances, ag-
gregation of individualdecisions can serve to amplify the

common signal and reduce the idiosyncratic noise, lead-
ing to superior group performance.

One challenge in producing wisdom of crowds effects
arises when tasks are more complicated than estimating
a single quantity, or predicting a simple outcome. Many
interesting and real-world decision-making situations are
inherently multidimensional or sequential. In these situ-
ations, it is often not possible to combine the raw be-
haviors of people, because they are not commensurate.
For example, imagine trying to combine the expertise of
basketball fans trying to predict the result of an eight-
team single elimination tournament, with quarter-finals,
semi-finals and a final. Based on their decisions about
the quarter-finals, these people may be making decisions
about different teams in the semi-finals and final. This
makes simple aggregation based on their raw decisions
impossible for the later rounds.

For more difficult decision problems like these, we be-
lieve cognitive science has a key role to play in wisdom
of the crowd research. Rather than aggregating people’s
behaviors, it is necessary to aggregate their knowledge,
as inferred from their behavior. This inference needs
models of cognition, accounting for how latent knowl-
edge manifests itself as observed behavior within the
constraints of a complicated task. Steyvers, Lee, Miller,
and Hemmer (in press) present an example of this ap-
proach, using Thurstonian models of judgment to com-
bine people’s ranking decisions for a variety of general-
knowledge questions, such as the chronology of the US
Presidents.

In this paper, we present a case study of the application
of cognitive models for a sequential task known as the
bandit problem. By applying a series of existing mod-
els of human decision-making on the task to a variety of
data sets, we show that it is sometimes possible to pro-
duce aggregate performance that is near optimal, and far
exceeds the performance of most of the individuals. We
discuss what sort of properties cognitive models might
need to achieve this sort of useful aggregation of individ-
ual knowledge.

Bandit Problems

Bandit problems are a type of sequential decision-
making problem widely studied in statistics and machine
learning (Gittins, 1979; Kaebling, Littman, & Moore,
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Figure 1: An experimental interface, giving an example
of a Bandit problem.

1996; Sutton & Barto, 1998), as well as in cognitive sci-
ence (Cohen, McClure, & Yu, 2007; Daw, O’Doherty,
Dayan, Seymour, & Dolan, 2006; Steyvers, Lee, & Wa-
genmakers, 2009). In Bandit problems, a decision maker
chooses from a set of alternatives with fixed but un-
known reward rates, which are drawn from a fixed but
unknown environment, with the goals of maximizing the
total number of rewards after a fixed number of trials.

A representative experimental interface of Bandit
problems is shown in Figure 1. The four large panels
contain information of choices and outcomes on four al-
ternatives. On each trial, an alternative is chosen, and
either succeeds in giving a reward (green, light) or fails
(red, dark). At the top of each panel, the ratio of suc-
cesses, defined as the ratio of successes to total choices,
is shown. The interface provides a count of the total
number of rewards obtained up to the current trial. The
current game and trial are also shown.

The bandit problem has a well-known optimal
decision-making process (e.g., Kaebling et al., 1996,
p. 244), calculated by dynamic programming. This al-
lows human decision-making, and plausible psycholog-
ical models of decision-making, to be assessed in terms
of their optimality. In particular, Bandit problems pro-
vide a natural task to study the inherent trade-off be-
tween exploration (seeking rewarding alternatives among
those relatively unexplored) and exploitation (staying
with alternatives known to be reasonably good) inher-
ent in many real-world sequential decision-making situ-
ations.

Human Data
We use data from three experiments. In the first ex-
periment, reported by Steyvers et al. (2009), a total of
451 participants completed a total of 20 bandit prob-
lems, each with 4 alternatives and 15 trials. Reward
rates were drawn for each alternative independently from

a Beta(2,2) distribution. The reward rates were drawn
only once, but the order of the games was randomized.

The second and third experiments involve new data. A
total of 47 and 31 participants, respectively, completed
100 bandit problems, all with 4 alternatives and 16 trials.
For the second experiment, the reward rates were drawn
independently for each game from Beta(8,4) (called a
“plentiful” environment, because reward rates tend to be
high). For the third experiment, reward rates came from
a Beta(4,8) (called a “scarce” environment, because re-
ward rates tend to be low)

Four Decision-Making Models
In this paper, we consider four well-established mod-
els of decision-making on bandit problems. These come
from the reinforcement- and machine-learning literatures
(see Sutton & Barto, 1998), and have previously been ex-
amined as models of human decision-making (e.g., Lee,
Zhang, Munro, & Steyvers, 2009).

Win-Stay Lose-Shift
Perhaps the simplest reasonable approach for making
bandit problem decisions is the Win-Stay Lose-Shift
(WSLS) heuristic. In its deterministic form, it assumes
that the decision-maker continues to choose an alterna-
tive following a reward, but shifts to the other alterna-
tive following a failure to reward. In the stochastic form
we use, the probability of staying after winning, and the
probability of shifting after losing, are both parameter-
ized by the same probabilityγ.

Extended Win-Stay Lose-Shift
A natural, and psychologically-motivated, extension to
the WSLS model is to have different rates for staying
after a reward (i.e., reinforcement) and shifting after a
lack of reward (i.e., negative reinforcement). Formally,
in our extended WSLS model, a decision-maker stays
with probability γw following a reward, but shifts with
probabilityγl following a failure to reward.

ε-Greedy
The ε-greedy model assumes that decision-making is
driven by a parameterε that controls the balance between
exploration and exploitation inherent in bandit problems.
On each trial, with probability 1− ε the decision-maker
chooses the alternative with the greatest estimated re-
ward rate (i.e., the greatest proportion of rewards ob-
tained for previous trials where the alternative was cho-
sen). This can be conceived as an ‘exploitation’ deci-
sion. With probabilityε, the decision-maker chooses ran-
domly. This can be conceived as an ‘exploration’ deci-
sion.

ε-Decreasing
Theε-decreasing model is a variant ofε-greedy, in which
the probability of an exploration move decreases as trials
progress. In its most common form, which we use, theε-
decreasing model starts with an exploration probabilityε′
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Figure 2: Bayesian graphical model for the extended
WSLS decision-making model.

on the first trial, and then uses an exploration probability
of ε′/i on theith trial.

Modeling Analysis

In this section, we implement the four decision-making
models in a way that allows for differences in individual
behavior to be aggregated, culminating in model-based
wisdom of crowds analyses of our experimental data sets.

Bayesian Graphical Model Implementation

We implemented all four decision-making models using
the formalism provided by Bayesian graphical models,
as widely used in statistics and computer science (e.g.,
Koller, Friedman, Getoor, & Taskar, 2007). A graphical
model is a graph with nodes that represents the proba-
bilistic process by which unobserved parameters gener-
ate observed data. Details and tutorials are aimed at cog-
nitive scientists are provided by Lee (2008) and Shiffrin,
Lee, Kim, and Wagenmakers (2008). The practical ad-
vantage of graphical models is that sophisticated and
relatively general-purpose Markov Chain Monte Carlo
(MCMC) algorithms exist that can sample from the full
joint posterior distribution of the parameters conditional
on the observed data. More specifically, for our purposes,
graphical models can be specified that naturally combine
information across multiple sources, and so can model
the individual differences at the heart of the wisdom of
crowds phenomenon.

As a concrete example, Figure 2 shows the graphi-
cal model implementation of the extended WSLS model.
The two model parameters, the probability of win-stay
γw and lose-shiftγl , are shown as unshaded (i.e., unob-
served) and circular (i.e., continuous) variables. These
determine the probability of theath alternative being
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Figure 3: Bayesian graphical model for a hierarchical
version of the extended WSLS decision-making model,
which allows for individual-level parameter variation.

chosen on theith trials of the j th game, as

θa
i j =





γw if succeeded ona last trial
1−γl if failed on a last trial
(1−γw)/3 if succeeded on ¯a last trial
γl/3 if failed on ā last trial,

whereā refers to not choosing theath alternative. Since
θi j is a deterministic function ofγw andγl , it is shown as
a double-bordered node. Given the choice probabilities
in θa

i j , the actual decision made by theith trial of the
j th problem— which is represented by a shaded square
nodedi j , since it is observed, and discrete—is modeled
asdi j ∼ Discrete(θ1

i j . . .,θ4
i j).

Parameter Differences
One obvious possibility for individual differences is that
two people—even if they are both using, for example,
extended WSLS—might not have the same probabilities
of wining and staying or losing and shifting. To accom-
modate variation in these parameters on an individual-
by-individual uses, we use ahierarchical or multi-level
approach. The updated graphical model is shown in Fig-
ure 3. In this model, the parameters for individual peo-
ple are drawn from over-arching Gaussian distributions,
so that, for thekth person,γw

k ∼ Gaussian(µw,σw), and
γl
n ∼ Gaussian(µl ,σl). This allows different people to

have different parameter values, while still estimating the
mean parameter value of the group as a whole.

We implemented the graphical model in Figure 3, as
well as analogous graphical models for the three other
decision-making models, in WinBUGS (Spiegelhalter,
Thomas, & Best, 2004). This software uses a range
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Figure 4: Graphical model using a hierarchical mixture of all four hierarchical decision-making models.

Table 1: Means, and standard deviations in brackets, of
the group distributions for each parameter in the four
decision-making models.

Parameter Exp. 1 Exp. 2 Exp. 3
γ 0.71 (.10) 0.70 (0.10) 0.52 (0.10)

γw 0.99 (0.27) 0.97 (0.19) 0.81 (0.18)
γl 0.59 (0.25) 0.28 (0.23) 0.37 (0.23)
ε 0.24 (0.10) 0.18 (0.11) 0.42 (0.12)
ε′ 0.61 (0.11) 0.61 (0.11) 0.90 (0.14)

of MCMC computational methods, including adaptive
rejection sampling, splice sampling, and Metropolis-
Hastings to perform posterior sampling (e.g., MacKay,
2003). For all four decision-making models, we made
inferences about individual- and group-level parameters
for all three data sets, using all of the participants. In
each analysis, we collected 1,000 samples from 2 chains,
collected after a burn-in period of 1,000 samples, and us-
ing standard checks for convergence.

Table 1 summarizes individual differences in parame-
ters for each decision-making model, giving the means
and standard deviations for each parameter in the hier-
archical analysis. Remembering that experiments 1, 2,
and 3 correspond to neutral, plentiful and scarce envi-
ronments, the aggregated group parameters make sense.
For example, there is more winning and staying (e.g.,
in the γ andγw parameters) in environments that deliver
rewards, and there is more random exploration (e.g., in
the ε andε′) in scarce environments that are not deliv-

ering rewards. The reasonably large standard deviations
for most group distributions also indicate that there are
significant individual differences.

Model Differences
An even more fundamental source of individual differ-
ences arises when different people use different decision
processes. Rather than just varying the parameters of a
model, people may differ in terms of which decision-
making model they use. We accommodate this type of
individual differences using amixture or latent assign-
mentmodel where people are categorized into different
model-users.

The graphical model for achieving this mixture of de-
cision models, while retaining the possibility of parame-
ter variation within each model, is shown in Figure 4. Hi-
erarchical versions of all four decision-making models—
those used individual to assess parameter variation in the
previous section—are all shown.

The key addition, in terms of individual differences,
involves the model indicator variablezk, which indexes
which of the four models thekth participant uses. That
is, depending on whetherzk is 1, 2, 3 or 4, thekth par-
ticipant uses WSLS, the extended WSLS,ε-greedy orε-
decreasing to make their bandit problem decisions. The
latent indicator variable has priorzk ∼ Categorical(φ),
whereφ is a latent base-rate, measuring the proportion
of people who follow each model. We use the prior
φ∼Dirichlet(1/4, . . .,1/4), so that there is no initial bias
towards one decision model over another.

Table 2 gives the posterior expectation of the base-rate
parameterφ, for all three experiments. This provides a
natural summary of what proportion of people were us-
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Figure 5: Distribution of rewards for individual participants, the group model, and the optimal decision-making pro-
cess, for each decision-making model and each experiment. See text for details..

Table 2: Proportion of people using each model, for the
three experiments, as measured by the posterior expecta-
tion of theφparameter.

Model Exp. 1 Exp. 2 Exp. 3
WSLS 0% 0% 0%

Extended WSLS 75% 81% 70%
ε-greedy 22% 16% 29%

ε-decreasing 3% 3% 1%

ing each of the four models, and so summarizes indi-
vidual differences results at this fundamental level. The
findings are consistent across all three experiments—
even though they have different distributions of reward
rates—with the clear majority of the participants inferred
to be using the extended WSLS model, and a minority
usingε-greedy. The proportion inferred to be using the
other two models is negligible.

Wisdom of Crowds Analysis

Our modeling of individual differences in models and
parameters immediately allows a range of wisdom of
the crowd analyses. The most basic analyses involve
taking each of our decision-making models, and using
the inferred group mean in the hierarchical analysis, as
shown in Table 1 as the aggregate of individual perfor-

mance.1 This approach solves the problem of aggregat-
ing the knowledge of different people solving different,
but related, bandit problems. Rather than aggregating
their behavioral choices, we are aggregating the psychol-
ogy parameter values that lead to those choices.

To complete the model-based wisdom of crowd anal-
yses, we used the group mean parameter values to define
a “group model” that used the same decision-process,
and completed the same problems given to participants in
each of the three experiments. Because the number of re-
wards obtained is inherently stochastic, we repeated this
many times to approximate the distribution of rewards.
We also applied the optimal decision-making process to
each experiment, to approximate the best possible distri-
bution of rewards for each experiments

The results are shown in Figure 5. The columns corre-
spond to the three experiments. The rows correspond to
the WSLS, extended WSLS,ε-greedy andε-decreasing
decision models. Within each panel, the squares piled
into histograms show the distribution of performance
(i.e., how many rewards were obtained) for the individual
participants. The two curves then correspond to the dis-
tributionof performance for the group model (red, dotted
line) and the optimal decision process (green, solid line).

Figure 5 shows that some of our decision-making

1We tried more involved analyses, using the full mixture
model in Figure 4 to sample a model, and then parameters, to
define a group model. We never found a wisdom of crowd ef-
fect comparable to what was achieved with the basic analyses,
so we just report those.



models do produce a clear wisdom of the crowds ef-
fect, whereas others do not. The distributions of rewards
for the group model formed by the WSLS and extended
WSLS models does not improve on the distributionof in-
dividual performance, and are not close to optimal. For
the ε-greedy andε-decreasing group models, however,
there is significant improvement. In particular, theε-
decreasing group model has a distribution of rewards that
is extremely close to the optimal distribution for all three
experiments.

Discussion
There are some intriguing features of our wisdom of
crowd results presented in Figure 5. Most obviously, it
is very encouraging that it is possible to take a simple
decision-making model likeε-decreasing, take the win-
dow it provides onto human decision-making, and pro-
duce an aggregate decision-maker that performs near op-
timally. But, we note that this wisdom of crowd effect
is not achieved for all of the cognitive models we tried,
and, most particularly, was not achieved for the extended
WSLS that provided the best account of the vast majority
of individual behavior, as detailed in Table 2.

We think the explanation for this finding is that , theε-
greedy andε-decreasing models are able to match more
closely optimal behavior. Detailed analysis showing this
was presented by Lee et al. (2009) and makes intuitive
psychological sense. Neither WSLS model is sensitive
to which trial in the total sequence is being completed,
which is important information in managing the trade-
off between early exploration and late exploitation. As a
consequence of this sub-optimality, it is not surprising a
wisdom of crowd effect was not achieved for these sim-
ple models.

What is more surprising is that the effect could be
achieved for a decision-making model likeε-decreasing
that is not an especially good account of individual be-
havior. An important topic for future wisdom of crowds
research is to identify what properties of cognitive mod-
els are important in producing good aggregations of indi-
vidual knowledge. Being able to mimic optimal behavior
is a start, but it is not currently clear how effective models
must be able to account for what people do.

More generally, we think our case study with bandit
problems demonstrates a very general approach for ap-
plying cognitive models to study and use the wisdom of
crowds phenomenon. Using graphical models allows hi-
erarchies of parameters, and mixtures of decision pro-
cesses, to combine the individual differences in people,
at the level of their basic knowledge about a task. This
leads naturally to a principled sort of aggregation that is
applicable to complicated, multidimensionaland sequen-
tial tasks, which might be among those most needing the
pooling of individual capabilities to achieve good perfor-
mance.
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