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Abstract

Data from psychological experiments are rife with ‘contaminants’,
which can generally be defined as data generated by psychological pro-
cesses different from those intended as the object of study. Contam-
inant data can interfere with the testing of substantive psychological
models and their parameters, so it is important to have methods for
their identification and removal. After noting that current practices in
cognitive modeling for dealing with contaminants are not completely
satisfactory, we argue for a general latent mixture approach to the prob-
lem. We demonstrate the tractability and effectiveness of the approach
concretely, through a series of four applications. These applications
involve a simple choice problem, a diffusion model of a response time
and accuracy in decision-making, a hierarchical signal detection model
of recognition memory, and a reinforcement learning model of decision-
making on bandit problems. We conclude that developing models of
contaminant processes requires the same sort of creative effort that is
needed to model substantive psychological processes, but that it is a
necessary endevour that can be coherently and usefully pursued within
the latent mixture modeling approach.

Introduction

In most psychological experiments, at least some participants will complete the
task in a way that is inconsistent with the motivating theoretical and modeling goals
of the study. Diligent participants can fail to understand the task, and less diligent
participants can find quick and effortless ways to complete the task that do not involve
interesting cognitive processes. For these, and a host of other reasons, psychological
data are usually rife with ‘contaminants’, which can generally be defined as data
generated by psychological processes different from those intended as the object of
study. It is widely recognized in both the statistical and model-based analysis of



psychological data that contamination is an important practical issue. In particular,
it is understood that contaminant data can change or blur what is learned from the
remainder of a data set.

For such a basic and ubiquitous problem, however, the development and use of
theoretical methods for identifying and removing contaminants receives surprisingly
little direct attention. We think that current practices are both inconsistent and
ad hoc, and suspect that often contaminants are removed without explicit mention
in research paper. Looking at recent cognitive modeling research—where one might
expect some level of sophistication, given the impressive quantitative skills evident
in the research—it seems clear that, when contaminant removal methods are made
explicit, different authors adopt different methods, and sometimes the same authors
adopt different methods in different papers. Very often, the removal of contaminant
participants is based on simple statistical summaries of the observed data (e.g., Little
& Lewandowsky, 2009; Little, Lewandowsky, & Heit, 2006; Zeithamova & Maddox,
2006), pre-determined performance criteria (e.g., Goldstone, Lippa, & Shiffrin, 2001),
or behavior consistent with not understanding the task (e.g., Zacks, 2004). Some-
times these methods are presented with a disclaimer (e.g. Rouder, Sun, Speckman,
Lu, & Zhou, 2003) that a more sophisticated modeling approach would have been
theoretically preferable. We agree that, while none of these methods are unreason-
able, and most probably suffice for their practical goal of tidying the data, better and
more principled modeling approaches are possible and desirable.

This paper argues for a general latent assignment approach to dealing with
contaminants in psychological data. This is a well known and understood approach
in statistics (e.g., Tanner & Wong, 1987), and its straightfoward adaptation to the
problem of contaminants is also well documented (e.g., Jaynes, 2003, Ch. 21). The
framework operates by assuming that each observed datum was generated either
by a substantive model of the cognitive processes being studied, or by one or more
contaminant models. Treating these substantive versus contaminant assignments as
non-ignorable missing data gives a likelihood function that, when combined with ap-
propriate prior distributions over model parameters, allows inferences to be made
about both the substantive model parameters, and about which data are contami-
nants.

We demonstrate these general and useful features through a series of four cogni-
tive modeling application. The first involves a simple model of choice, and provides a
toy example to make the basic ideas concrete, including the ability of contaminants to
change inferences about psychological models. The second example involves Wiener
diffusion model of two-alternative forced-choice decision-making, and illustrates how
contaminants can change the estimation of key model parameters. The third example
involves a signal detection model of recognition memory, showing how the approach
extends to hierarchical models, and beginning to address the issue of how the identifi-
cation of contaminants depends on psychological theory. The fourth example expands
on this important issue, using heuristic models of decision-making on bandit problems



to show that the choice of contaminant model or models can significantly affect infer-
ence for parameters of the subsantive model of interest. We conclude by discussing
the challenge of developing contaminant models—which we regard as involving the
same difficult creative exercise as developing models of substantive psychological pro-
cesses themselves—while arguing that the latent mixture modeling approach provides
a general and coherent framework for their incorporation into modeling.

Currently Used Methods for Contaminants

Methodologies for dealing with contaminant data are not new (e.g., Barnett,
1978; Box, 1979; Rudas, Clogg, & Lindsay, 1994). The approach we advocate dove-
tails nicely with the two dominant approaches applied in psychological literature. The
simplest, and by far most prevalent, approach, is trimming (e.g. Kutner, Nachtsheim,
Neter, & Li, 2004). This approach rank orders the observed data and removes either
some percentage, typically 1 − 5%, of the most extreme points from consideration,
or those points exceeding some cut-off, such as three standard deviations from the
mean. This method can be thought of as providing a model-free point estimate of
the correct configuration in the space of all possible substantive versus contaminant
assignments.

While often appropriate with a large number of data, trimming is more prob-
lematic with only a few. Trimming corresponds to the ad hoc assumption that the
data to be trimmed are in the tails of the likelihood. This may often be reasonable
when we have a large number of observations, but it can be unreasonable for small
numbers of data, since the probability of seeing any data in the tails is low. And it
can also be inappropriate when likelihoods are highly non-normal, which can be the
case for complicated cognitive models. In general, of course, data are valuable and
we would like to throw away as few as possible.

In recognition of these problems, some cognitive modeling uses a more sophis-
ticated mixture approach (e.g., Ratcliff & Tuerlinckx, 2002). This approach assumes
each observed datum is generated by a process whose likelihood is a mixture of sub-
stantive and contaminant likelihoods. This approach rectifies the potential inconsis-
tency of trimming the raw data, and thus produces appropriate parameter estimates
for the substantive model.

Despite these strengths, however, the mixture likelihood approach can be
thought of as being at “too high a level” for many psychological applications, be-
cause it fails to infer some key information. In particular, it does not identify explic-
itly which data are the contaminants. Ideally, we would like a model which combines
the parameter inference of mixture likelihoods with a more principled approach to
identifying the contaminant data than that provided by trimming.



The Latent Assignment Approach

Latent assignment provides such an approach by rejoining to the mixture likeli-
hood approach the ability to specify substantive and contaminant data. Formally, it
does that by expanding the mixture likelihood in terms of the latent specific versus
contaminant assignments. That is, in the latent assignment approach, each datum
is treated as intrinsically either substantive or contaminant. Theoretically, therefore,
latent assignment is naturally conceived as data augmentation, which is a familiar
approach from statistics, and can be traced back to the seminal paper by Dempster,
Laird, and Rubin (1977). In practice, the latent assignment approach to contaminant
modeling offers the best of both worlds: it offers the consistent parameter estimates
of mixture likelihoods and the contaminant identification provided by trimming.

For a particular experiment, suppose we observe N data points, designated
Y = (yi)i, such that each yi believed to have been generated by one of two stochastic
models, a substantive model pS parameterized by θS and a contaminant model pC

parameterized by θC. Furthermore, define missing data Z = (zi)i as follows: zi =
1 if ith data point was generated by the substantive model and zi = 0 if it was
generated by the contaminant model. Finally, introduce a parameter φ, which can
be thought of as the rate at which participants generate substantive data. We relate
these parameters via the model

yi
iid∼

{
pS(·|θS), if zi = 1
pC(·|θC), if zi = 0

zi
iid∼ Bernoulli(φ),

(1)

which has likelihood

L(θS, θC, φ|Y,Z) =
N∏

i=1

{
φzi(1 − φ)1−zi

[
zip

S(yi|θS) + (1 − zi)p
C (yi|θC)

]}
. (2)

It should furthermore be noted that given Y and Z, θS, θC, and φ are independent,
as their likelihood factors into

[
φ

∑
zi(1 − φ)N−

∑
zi

][∏
{i: zi=1}

pS
(
yi|θS

)][∏
{i: zi=0}

pC
(
yi|θC

)]
. (3)

If we observed a particular configuration Z, we could easily perform inference
via Bayes’ rule or maximum likelihood estimation using Equation (2); however, as
much as one may wish they would, participants rarely report whether or not they
employed the substantive mental processes in question on a given task, or trial within
a task. Thus, we can imagine the missing data problem as having been created by
a less-than-competent research assistant who forgot to transcribe some of the data
from our experiment.

Of the many possible methods for dealing with this problem, we are focusing
on mixture likelihoods and latent assignment. Mixture models get their name from
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Figure 1. Graphcial model illustrating missing data approach.

the fact that their likelihoods are weighted mixtures of other likelihoods. In the case
at hand, the mixture comes from marginalizing over the zi to form a new likelihood,

L(θS, θC, φ|Y) =
N∏

i=1

[
φpS(yi|θS) + (1 − φ)pC(yi|θC)

]
. (4)

Inference can be performed using maximum likelihood estimation, Bayesian updating,
or any other compatible scheme using this missing data-free likelihood.

Marginalizing, however, is not the only way to deal with the missing data;
one could forgo forming the mixture likelihood by assigning prior distributions over
the parameters and performing inference via Bayesian updating. The structure of
resulting model is shown in the graphical model in Figure 1. Graphical models (for
statistical and psychological introductions see, respectively Jordan, 2004; Lee, 2008)
are a means for representing the conditional dependence structure of a given statistical
model using directed, acyclic graphs1.

Graphical models illustrate dependence genealogically, with arrows pointing
from parent to child: parents are dependent only through their children. Hence,
upon conditioning on these parents, they become independent. For our basic model
in Equation (1), the graphical model shows that θS, θC, and missing data are random
variables, the former two continuous (denoted by circular nodes), the latter discrete
(denoted by square), which are independent given the observed (denoted by shaded)
data, and moreover that, upon observing the missing data, φ and θS and θC also
become independent.

1Directed, acyclic graphs are not the only type of graphical model. Inference methods have also
been developed for undirected, or associative, graphs (see Pearl, 2000, for details).



Example 1: A Simple Choice Problem

The goal of our first example is to present a very simple modeling problem
that makes clear the general problem potentially posed by contaminants, and shows
how the latent assignment approach can remedy these problems. In particular, this
example emphasizes the point that contaminants can lead to the wrong generating
model for data being inferred.

Background

Consider a simple two-alternative choice experiment, in which the research ques-
tion is whether people prefer one alternative to the other. One way to test this
hypothesis uses a parameter-free model positing that the observed data k follow un-
biased choosing, and so are independent and binomially distributed with the common
rate θ = 1/2. Suppose the experiment consists of m = 100 trials, and the observed
data are k = (50, 50, 55, 45, 50, 55, 45, 50, 55, 45, 50, 55, 50, 52, 55, 99)T for N = 16 par-
ticipants. With the exception of the last participant, these data are consistent with
the unbiased model. When, however, we compare this model H0 : θ = 1/2, to a
more complex, parameterized model with a single free parameter, representing the
bias with which participants choose the first alternative, H1 : 0 < θ < 1, the Bayes
factor,

BF =
p (D | H1)

p (D | H0)
,

comes out to be approximately 3.3, in favor of the more complicated model showing
bias in choice.

This simple example illustrates the danger of performing inference without tak-
ing contaminant data into account. Indeed, the data observed for the last participant
could very plausibly been generated by a very common type of contaminant, a par-
ticipant giving the same response on almost every trial without even attempting to
do the task. Though, for this example, trimming gives the same result as the more
complicated latent assignment approach, we use it throughout in order to illustrate
how the formal latent assignment framework can be applied to particular problems.

Model

The latent assignment approach to contaminants uses two models for data gener-
ation: a substantive model, modeling the cognitive processes we believe generated the
observed data, and a contaminant model, modeling how contaminants are generated.
In this case our substantive model specifies that the observed data were generated by
a binomial likelihood with rate parameter θ = 1/2. For the contaminant model, this
simple example does not allow psychological theory to define the contaminant model.
Instead, we rely on simple statistical considerations. If we know that both choices
are possible in the task, but know nothing more about contamination, then there is a
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Figure 2. Graphical model for the rate problem.

compelling argument, based on invariance properties from objective Bayesian analy-
sis, that the uniform prior θ ∼ Uniform (0, 1) is the unique correct prior distribution
(see Jaynes, 2003, pp. 382–385).

Placing these substanative and contaminant models into Equation (1), gives the
latent assignment model

ki|zi ∼
{

Binomial(m, 1
2
), if zi = 1

Binomial(m, θ), if zi = 0

zi|φ
iid∼ Bernoulli(φ)

φ ∼ Uniform(0, 1).

where we have used the same result regarding uniform priors on rates to justify the
prior on the contaminant rate φ.

The corresponding graphical model is shown in Figure 2. This figure shows the
conditional dependencies between k, z, φ and θ. The arrows pointing from zi and θ
to ki illustrate that the ki are independent having conditioned on zi and θ, since m
is fixed. The arrow from φ to zi illustrates that the zi are conditionally independent
given φ.

Analysis

The graphical model in Figure 2 was implemented in WinBUGS (Lunn, Thomas,
Best, & Spiegelhalter, 2000; Lunn, Spiegelhalter, Thomas, & Best, in press), which
uses Markov Chain Monte Carlo (MCMC) to draw samples from the joint posterior
distributions of θ, φ, and z (e.g., Gilks, Richardson, & Spiegelhalter, 1996). The
inferences reported here are based on four chains, seeded with random initial values,
collected 60, 000 samples are a burn-in of 10, 000 discarded samples. We used the
standard R̂ statistic, comparing within-chain variance and between-chain variance
(Gelman, Carlin, Stern, & Rubin, 2004), as a diagnostic measure to assess and ensure
convergence.



0.5 0.75 1
0.5

0.75

1

φ
θ

Figure 3. Joint posterior over φ, the contaminant rate, and θ, the biased choice rate
parameter. Histograms of samples from marginal posterior distributions over each variable
lie along their respective axes. A scatterplot these pairs is shown in the center plot.

The advantage of latent assignment over expected likelihood models is the abil-
ity to infer a probability distribution over potential configurations of the data. For
our choice problem, this space has 216 elements, which is a small space of potential
configurations in the context of a typical psychological experiment. By construction,
the mixture modeling is unable to update this probability given data, but the latent
assignment model can. In this example, all of the posterior mass is given to one
assignment, z1, . . . , z15 = 1 and z16 = 0, which we label ẑ.

The posterior joint probability distribution over φ and θ for the latent assign-
ment model is shown in Figure 3. Inspection suggests the two variables are inde-
pendent, a fact necessitated by the point mass distribution on Z. To see why note
that, for our purposes, sampling a point mass distribution located at ẑ is analogous
to observing ẑ, allowing us to condition on it. Factoring our likelihood according to
Equation (3) given our flat prior distributions over θ and φ we get

p(θ, φ | k,Z = ẑ) ∝
[
φ

∑
ẑi(1 − φ)N−

∑
ẑi

][
θki(1 − θ)m−ki

]
.

This fortuitously observed point mass distribution on z allows us to derive
analytic marginal posterior distributions on θ and φ. Integrating each parameter
over its support yields

p(θ | k,Z = ẑ) = Beta
(∑

[(1− ẑi)ki],
∑

[(1 − ẑi)(m − ki)]
)

= Beta
(
k16,m− k16

) (5)
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Figure 4. Posterior predictive and data for the number of times the first alternative is
chosen.

for θ, and

p(φ | k,Z = ẑ) = Beta
(∑

ẑi, N −
∑

ẑi

)
(6)

for φ. These distributions emphasize important aspects of the nature of contami-
nant inference. The form of the marginal posterior over θ underscores that inference
updates the distribution over contaminant model parameters based solely on the
data inferred to be contaminant. Had the substantive distribution parameters, Equa-
tion (5) would extend analogously to the substantive case with 1 − ẑi being replaced
with ẑi inside the summations. With respect to the rate at which substantive data is
generated by participants, we see φ is updated as a simple beta-binomial model after
observing ẑ.

In general cognitive modeling contexts, we will not observe data so strongly
identifying our missing data. However, the previous discussion is useful for illustrat-
ing a generally applicable method of thinking about inference. Suppose inference
yields posterior distribution p(Z|k) over the missing data. For each z in the support
of p(Z|k) on {0, 1}N we can update the substantive and contaminant parameters by
updating given the data the configuration z determines to be substantive and con-
taminant, respectively. Simultaneously, we can update φ via the beta-binomial model
in Equation (6) for the same configuration. Finally, we can compute the marginal
posterior over θ and φ by summing over these conditional posteriors weighted by the
marginal posterior mass of their corresponding configuration. This illustrates the
function of the missing contaminant data: to ‘smear’ inference on the parameters,
hedging our bets on parameter values by our uncertainty over the correct contami-
nant configuration.

The posterior predictive distribution, together with the observed data, for the
number of first alternative choices is shown in Figure 4. We interpret this distribution
for a new participant whose data we have yet to observe, enumerating the predicted



probabilities of observing each possible number of times they might chose the first
alternative. In this case, we see that much of the predictive mass is centered around
k = 50, the prediction of our parameter-free substantive model of unbiased choos-
ing, but also that there exists a non-negligible mass for values between 90 and 100,
the posterior prediction of our contaminant model. In this way, posterior predictive
distributions over data provide a powerful of method for validating a model, since pre-
dicted fit to the observed data increases as models become more correctly specified.
In addition, the posterior predictive in Figure 4 also illustrates when predictive dis-
tributions over observed data may be inappropriate in contaminant modeling. Often
in this type of modeling, the two models, substantive and contaminant, are of differ-
ential psychological value, the contaminant model possessing no psychological value
in and of itself, only in its ability to filter contaminant points out of our inferences
about the substantive model.

In this case, using a contaminant model keeps the data that intuitively seemed
to characterize participants’ choices, corresponding to those consistent with unbiased
choice. Maintaining these data, and removing the single contaminant participant
identified by the latent assignment method, the model comparison between the unbi-
ased and biased hypotheses is now 25.5 in favor of the unbiased account.

Example 2: A Diffusion Model of Decision-Making

Our second example deals with a more complicated psychological model, involv-
ing a sequential-sampling model of accuracy and response time in decision-making.
The main point demonstrated by this example is that contaminant data—indeed, a
single contaminant datum—can significantly affect inferences about key psychological
parameters for an otherwise excellent model of the data.2

Background

Sequential sampling models, in their various forms, represent a widely-used and
successful approach to modeling accuracy and the distribution of response times in
human decision-making (e.g. Busemeyer & Townsend, 1993; Link & Heath, 1975;
Nosofsky & Palmeri, 1997; Ratcliff & McKoon, 2008; Smith, 2000; Vickers, 1979).
These models assume that people sample evidence from a noisy signal generated by
the stimuli and make a decision once sufficient evidence has been gathered to favor one
or another alternative. When the sampling rate is assumed to be sufficiently high,
sequential sampling processes can be approximated by continuous-time, stochastic
diffusion processes. If it is further assumed that the evidence is sampled from a
stationary Gaussian distribution, this diffusion is known as a Wiener process.

2Since the research for this example was completed, a much more complete and impressive use of
latent assignment mixture modeling, combining the full Ratcliff diffusion model (Ratcliff & McKoon,
2008) with two contaminant distributions, has been reported by Vandekerckhove, Tuerlinckx, and Lee
(2008). We maintain this example, however, because it makes the point about parameter estimates
being affected by contaminants in a simpler but still interesting cognitive modeling context.



In its simplest form, a Wiener diffusion model of a two-alternative forced-choice
task has four parameters: the drift rate v, which measures measure of the evidence
provided by the stimulus; the boundary separation a, which measures the level of
evidence needed to make a decision; the starting point ξ, which measures the bias in
favor of one or the another decision; and the non-decision time T er, which measures the
time necessary for tasks such as encoding and responding. We denote the likelihood
of a Wiener diffusion model having these parameters as Wiener(v, a, ξ, T er)3.

As pointed out by Ratcliff and Tuerlinckx (2002), contaminants can severely
impact diffusion parameter estimation. Examples of contaminants include a partici-
pant not encoding the evidence offered by a stimulus and responding randomly or on
the basis of their bias, and a participant not paying attention and encoding evidence
slowly, resulting in a large response time. In the first case, since decision time must
be greater than T er, this fast response will produce inferences about T er which are
underestimates, leaving v, ξ, and a to compensate. Long response times, on the other
hand, will produce underestimates of v and overestimates of a.

Were these contaminants confined to a small subset of high leverage points,
determining contaminants would be clear cut and a suitable trimming method could
be found. Such straightforward situations are, however, not the norm. To deal with
difficulty, Ratcliff and Tuerlinckx (2002) developed a mixture model consisting of
diffusion and uniform likelihoods. In our missing data formulation, this corresponds
to forming the mixture likelihood in Equation (4) with the substantive model being
the diffusion model and the contaminant model being the uniform. We develop here
the extended approach using latent assignment with the Wiener diffusion model4 and
use this model to analyze part of the seminal data reported by Ratcliff and Rouder
(2000).

Model

Let di be the the ith decision made by a participant and ti be the response
time for that decision. For a substantive trial, we consider the accuracy and response
time data to be generated by a symmetric Wiener distribution whose starting point
is equidistant from either boundary (i.e., ξ = a/2). On contaminant trials, we con-
sider the accuracy to be generated by a Bernoulli distribution with rate 1/2, and the
response times to be drawn from a uniform distribution on (0, λ), where λ is a param-
eter to be inferred (though it is constrained to be greater than the largest observed
response time). As in the choice problem, we define Z = (zi) to be an indicator vari-
able whose value is 0 if the ith trial is a contaminant and 1 if it is not. The base-rate
variable φ continues to represent the proportion of non-contaminants in the observed
data.

3We omit functional form because it does not impact our discussion. The interested reader can
refer to Vandekerckhove et al. (2008).

4Actually, Ratcliff and Tuerlinckx (2002) use the full Ratcliff diffusion model, not the simpler
Wiener model, but the contaminant modeling principles applied are the same in either case.
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Figure 5. Graphical model for the Wiener diffusion analysis using the latent assignment
contaminant framework.

These definitions yield the graphical model shown in Figure 5. We derive the
formal model in Equation by placing prior distributions over the remaining model
parameters. A standard normal distribution is placed on v. Since we believe a priori
that a is both positive and contained in a somewhat small neighborhood about 1,
we use a Gamma(1, 1) distribution. For convenience we define T er to be uniform on
(0, 2). However, as shown in the parameter estimates below, this interval is wide
enough not to effect significantly inferences about the Wiener parameters. Since we
want non-zero probability that a given observed response time is contaminant, but
at the same time want the data to determine the appropriate width of the response
time contaminant distribution, we define λ to be Gamma(ε, ε) on λ ∈ (maxi(ti),∞)
and 0 otherwise. As in the rate problem, we define φ to be uniformly distributed on
(0, 1). Thus, the generative model for the data is

di, ti | zi, v, a, T er, λ ∼
{

Bernoulli (0.5) ,Uniform (0, λ) , if zi = 0
Wiener (v, a, a/2, T er) , if zi = 1

zi | φ ∼ Bernoulli(φ)

a ∼ Gamma(1, 1)

T er ∼ Uniform(0, 2)

v ∼ Gaussian(0, 1)

λ ∼ Gamma(ε, ε)× I{λ∈R: λ>maxt(t)}

φ ∼ Uniform(0, 1).

Analysis

We applied this latent assignment model to analyze participant KR out of the
three participants reported by Ratcliff and Rouder (2000). The posterior distribution
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Figure 6. Posterior predictive Wiener distribution with uniform contaminant distribution.
The solid line corresponds to posterior predictive Wiener distribution, the dashed to the
uniform. ET er stands for E[T er | d, t and Ea for E[a | dt]. The observed data are shown
between curves with hash marks. Hash marks without circles have E[zi | d, t] > 0.5, hash
marks with open circles have 0.1 < E[zi | d, t] < 0.5, and hash marks with closed circles
have E[zi | d, t] < 0.1

was again sampled numerically using MCMC, using four chains with random initial
values, and 5, 000 collected samples after a burn-in of 100, 000 samples.

Posterior over Assignments. The results of this analysis are presented in Fig-
ure 6, which shows the posterior predictive distributions over response times for both
the substantive and contaminant models, plotted alongside the observed data. Points
and curves above 1

2
E[a | d, t] correspond respectively to the observed response times

and posterior predictive densities for correct responses, while those below correspond
to the same quantities for error responses. For the ith datum, the proportion of
posterior samples in which zi = 1 approximates computationally E[zi | d, t], which
is the inferred posterior probability that the decision was substantive. In Figure 6,
observed decisions are represented by hash marks, those marks without circles have
E[zi | d, t] > 0.5, those with open circles have 0.1 < E[zi | d, t] < 0.5, and those with
closed circles have E[zi | d, t] < 0.1.

Figure 6 makes clear that the posterior Wiener density of an observed decision
relates to the probability the point is substantive. It shows points in regions of
high density for correct and error response time distributions are assigned to Wiener
over 50% of posterior samples, points in regions of small, but non-negligible Wiener
density are assigned to Wiener in between 10 and 50% of samples, and points with



negligible Wiener mass are assigned to the contaminant distribution in over 90% of
samples. This illustrates both the ability of the latent assignment to capture the
degree to which each data point is fit by each model and the high degree with which
the Wiener model captures the distribution of the observed data.

Effect of φ on Assignments. On closer inspection, the intuitive substantive as-
signment probability estimates reveal an interesting aspect of latent assignment mod-
eling. In the error distribution, even though the points assigned lie in the higher
probability region of the error response time distribution, the contaminant distribu-
tion has more mass. Intuitively, this occurs because the Wiener model is able to fit
the correct response times so well, causing a large number of points to be inferred to
the substantive distribution, which in turn lead the model to sample only large values
of φ, as shown in the top panel of Figure 7.

Intuitively, the zi are dependent in a manner analogous to the way in which flips
of a coin are dependent if we do not know whether it is biased. Suppose we have seen
100 flips of a coin and are asked to predict the 101st. If we have seen 50 heads and
50 tails in the first 100 we may justifiably have no preference toward one or the other
alternative, whereas if we have seen 100 heads and no tails we would be unwise to
choose tails. In the current situation, latent assignment does much the same: clearly
substantive points are assigned to the substantive model with high probability; clearly
contaminant points are assigned to the contaminant model; and the remaining points
are inferred with bias toward the substantive model commensurate with the marginal
posterior shown in the top panel of Figure 7.

We can make this more formal by turning once again to the factored likelihood
in Equation (3). Fix θS, θC, and φ and let z be a particular contaminant configuration.
Suppose we move the configuration z to a new configuration z′ by flipping zi to 1− zi

for a single i and holding zj fixed for all j 6= i. Further assume without loss of
generality that zi = 0 and z′

i = 1. Consider the ratio between the likelihoods of the
two points

L(z | θS, θC, φ,Y)

L(z′ | θS, θC, φ,Y)
=

(1 − φ) pC(yi|θC)

φ pS(yi|θS)
.

Then, L(z|θS, θC, φ,Y) > L(z′ | θS, θC, φ,Y), i.e. the likelihood the ith data point is
contaminant is greater than the likelihood it is substantive, all else equal, implies

pC(yi | θC)

pS(yi | θS)
>

φ

1 − φ
. (7)

Thus, given a particular values of θS, θC, and φ and holding all other substantive
versus contaminant assignments constant, the posterior probability of that the ith
datum is contaminant is greater than the posterior probability it is substantive only
when Equation (7) holds.
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Figure 7. Posteriors over the non-contaminant rate φ, and the Wiener model boundary
separation a, non-decision time Ter and drift rate v parameters.

Parameter Inference. Posterior distributions over the three model parameters,
v, a, and T er are shown in the bottom panels of Figure 7. These distributions illustrate
the way in which the contaminant inference influences inference about parameter
values. As discussed in previous sections, for a given substantive versus contaminant
configuration inference on the parameters of the substantive model depends only
upon those points determined to be substantive. Thus, the influence of a given point
on parameter inference is commensurate with its marginal posterior mass. This is
most evident in the marginal posterior over T er, which gives non-neglible density only
to those points within roughly the open interval (0.2, 0.4). The smallest observed
response time, however, is 0.030s, which lies well outside this interval. Figure 6 shows
that the marginal posterior mass for this point is less than 0.1 (in fact, it is extremely
close to 0). Through this clear latent assignment as a contaminant response time, the
0.030 datum does not affect the estimation of the key T er parameter.

One point we want to emphasize is that the contaminant model, given equal
probability to both decisions, and putting a uniform distribution over response times,
has no strong motivation in psychological theory. It is consistent with assumptions
made by previous authors (e.g. Ratcliff & Tuerlinckx, 2002), and has some quali-



tatively desirable features, but there are many other forms for the prior that could
reasonably be assumed. This issue highlights a basic challenge in contaminant iden-
tification and removal, which is that the best models will be those that have good
justification for the contaminant data generating processes they assume. Accordingly,
in our remaining two examples, we give examples of how contaminant models might
be motivated by psychological theory, or come from previous modeling work.

Example 3: A Signal Detection Model of Recognition

Our third example deals with a standard Signal Detection Theory (SDT) model
of recognition memory, embedded in a hierarchical model to account both individual
and group behavior. There are two key points made by this example. The first
is that the latent assignment approach to contaminant model applies in the same
way for more richly structured hierarchical models of cognition. The second is that
psychological theory can make a contribution to defining contaminant processes, by
suggesting meaningful hypotheses about how people might fail to perform a task.

Background

Recognition memory tasks are among the most basic and widely used in the
study of human memory. In these tasks, paticipants are presented a list of study
words, and then presented with list of test words—containing both ‘old’ (target,
signal) words from the study list and ‘new’ (distractor, lure, noise) words—and asked
to identify the old words. Performance on the task is conveniently represented in
terms of two counts: ‘hits’, corresponding to the number of recognized words in the
study list, and ‘false alarms’, corresponding to the number of recognized words not
in the study list.

A popular model of recognition memory uses equal-variance SDT (Green &
Swets, 1966; MacMillan & Creelman, 2004), and accounts for the hit and false alarm
counts using a combination of simple representation and decision-making assump-
tions. Representationally, it is assumed memory for each word can be summarized by
a single ‘recognition strength’ value, and that these recognition strengths for studied
and unstudied words are independent draws from Gaussian distributions with dif-
ferent means, but equal variances. The difference between the means is a measure
of memory discriminability, and is usually denoted d′. The decision-making assump-
tion of the model is that, if the recognition strength of a presented word exceeds
some criterion value k, the participant will responds ‘yes’, but otherwise they will
respond ‘no’. The difference between the criterion and ‘optimal’ unbiased threshold
d′/2 provides a measure of decision-making bias, and is usually denoted c.

Most often, this SDT model is applied to aggregated count data across experi-
mental groups, or to individual participants counts, to estimate the discriminability
and bias parameters (e.g., Miller & Lewis, 1977; Snodgrass & Corwin, 1988; Yoneli-
nas, Dobbins, Szymanski, Dhaliwal, & King, 1996). More recently, however, the
model has been applied hierarchically, so that both individual and group parameters
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Figure 8. Graphical model for hierarchical signal detection analysis of recognition memory.

can be inferred (e.g., Dennis, Lee, & Kinnell, 2008; Rouder & Lu, 2005). Our exam-
ple uses this extended hieararchical version, to demonstrate that latent assignment
contaminant modeling applies in the same way to richly structured cognitive models.

Model

The standard equal-variance SDT model defines the number of hits for the
ith subject, Hi as being binomially distributed from S target words with rate hi =
Φ(1

2
d′

i−ci), and the number of false alarms, Fi as binomially distributed from N noise
words with rate fi = Φ(−1

2
d′

i − ci). We assume, following Rouder et al. (2003), that
within the discriminability and bias for each participant are Gaussian draws from an
appropriate group distribution. To allow for contaminants, we define two of these
groups, with means and standard deviations (µc

S , σc
S) and (µd

S , σd
S), respectively, for

the substantive group and (µc
C , σc

C) and (µd
C , σd

C) for the contaminant group.
We place assumptions about substantive and contaminant participants at the

group level. Just as we considered “substantive” and “contaminant” to be individual
designations in previous sections, we can likewise consider the collections of substan-
tive and contaminant individuals, termed the substantive and contaminant groups.
The psychological theory behind the SDT model parameters suggests one reasonable
contaminant model would simply assume a discriminability value near zero. This cor-
responds to participants who are not engaged in the task, have not remembering the
study words, and so are unable to separate their representation from the test words.
Thus, for the contaminant group, we set µd

C = 0. We define the Z and φ parameters
controlling the identification of contaminant individuals as in previous examples.

It remains to define appropriate prior distributions over the parameters for the



four group level distributions. In all cases, we use flat priors over model parameters.
For the groups means, this is realized by a zero mean Gaussian whose standard
deviation, ζ, we allow to go to ∞. For the standard deviations, this is achieved by a
gamma distribution whose two parameters are equal and themselves equal to ε and
then allowing ε to go to zero. This results in the following model.

Hi | hi, S ∼ Binomial
(
S, hi

)

Fi | fi, N ∼ Binomial
(
N, fi

)

ci | (µc
S , σc

S), (µc
C, σc

C), zi ∼
{

Gaussian(µc
C , σc

C), if zi = 0
Gaussian(µc

S , σc
S), if zi = 1

d′
i | (µd

S, σd
S), σd

C, zi ∼
{

Gaussian(0, σd
C), if zi = 0

Gaussian(µd
S , σd

S), if zi = 1

zi | φ ∼ Bernoulli(φ)

µc
S , µc

C, µd
S ∼ Gaussian(0, ζ)

σc
S, σc

C, σd
S, σd

C ∼ Gamma(ε, ε)

,

for the ith participant, with the constants ζ → ∞ and ε → 0. The graphical model is
shown in Figure 8, and shows that the individual participant bias and discriminability
parameters are conditionally independent given the group means and the substantive
versus contaminant group assignment for each participant.

Analysis

We applied the model to unpublished data provided by Simon Dennis, in which
60 participants each completed 20 signal trials and 20 noise trials at test. The poste-
rior distribution was sampled numerically using MCMC. For the simulations ζ was set
to 0.001 and ε was set to 0.01. As with previous examples, four chains with random
initial values were used, and the R̂ measure was used to check convergence. A burn-in
of 100, 000 samples was used, after which 5000 samples were drawn.

Figure 9 illustrates that two groups are present in the data, one with mean
discriminability near 0, the other with mean discriminability near 3. This figure shows
the posterior means of ci and d′

i for each subject superimposed over a scatterplot of the
joint posterior predictive distribution over new (ci, d

′
i) pairs for the latent assignment

model. The posterior mode over the space of potential substantive versus contaminant
assignments, ẑ, is also shown. Means marked with triangles are assigned to the
substantive model, whiel marked with diamonds are assigned to the contaminant.

The joint posterior distribution over potential substantive versus contaminant
assignments Z is summarized in Figure 10. This figure truncates posterior distribution
over potential configurations by showing only those whose estimated posterior mass
is greater than 10−3. Thus, from a space of 260 candidate assignments, after inference
only nine assignments have posterior mass greater than 10−3. One of these nine
assignments, one assignment has mass greater than 0.93, the posterior mode ẑ, which
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Figure 9. Posterior predictive distribution over d′, the discriminability, and c, the criterion
value, for the hierarchical SDT models. Those points shown with triangles are assigned to
the substantive group in the posterior mode over assignments and those with diamonds to
the contaminant.

assigns participants 1, 7, 9, 20, 33, 36, 39, 45 and 57 to the contaminant group and all
others to the substantive group. The other eight assignments are simply variations
on the mode, changing ẑ by changing ẑi to 1 − ẑi for a single participant i. Each of
these configurations is labeled in Figure 10 by the participant that is changed. For
example, ‘-33’ moves participant 33 from the contaminant group to the substantive
and ‘+24’ moves participant 24 from the substantive group to the contaminant.

As these results show, the latent assignment approach has lowered the space of
potential assignments to handful with non-negligible mass and one highly probable
assignment. This assignment indicates those participants who completed the recog-
nition task with reasonable performance, and those whose performance is consistent
with having zero discriminability, and so can meaningfully be interpreted as contami-
nants. Having identified the contaminant participants, in turn, allows for meaningful
estimation of the substantive model parameters—discriminability and bias—for the
group of participants shown in Figure 9 who did produce behavior consistent with
motivated performance.

Example 4: Bandit Problem Decision-Making

Our fourth example involves a variety of heuristic models for understanding
human behavior on a type of sequential decision-making problem known as a bandit
problem (e.g., Sutton & Barto, 1998). For these problems, it is possible make different
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Figure 10. Probabilities of various group assignments. The standard, labeled ’0’, assigns
participants 1, 7, 9, 20, 33, 36, 39, 45 and 57 to the contaminant group and all others to the
substantive group. The other assignments are generated by adding ’+’ or subtracting ’-’
participants from the contaminant group, and placing them in the non-contaminant group.

reasonable assumptions about what constitutes the substantive model of interest, and
what models are used to detect contaminant behavior. The key contributions of the
example is to demonstrate that the details of the assumptions about contamination
affect the inferences made about the model being studied, and so finding a good set of
contaminant models can often be a necessary and significant research undertaking in
its own right.

Background

In bandit problems, a decision-maker chooses repeatedly between a set of alter-
natives. They get feedback after every decision, either recording a reward or a failure.
They also know that each alternative has some fixed, but unknown, probability of
providing a reward each time it is chosen. The goal of the decision-maker is to obtain
the maximum number of rewards over all the trials they complete. In one popular
version of the bandit problem, known as the finite horizon problem, the number of
trials is fixed, known, and usually small.

Studies of human decision-making on bandit problems have been approached
from a variety of theoretical perspectives, including operant conditioning (e.g., Brand,
Wood, & Sakoda, 1956; Brand, Sakoda, & Woods, 1957), rationality in economic
decision-making (e.g., Anderson, 2001; Banks, Olson, & Porter, 1997; Horowitz,
1973; Meyer & Shi, 1995), and, most recently, computational cognitive science (e.g.
Steyvers, Lee, & Wagenmakers, 2009) and cognitive neuroscience (e.g., Cohen, Mc-
Clure, & Yu, 2007; Daw, O’Doherty, Dayan, Seymour, & Dolan, 2006).



One interesting issue in studying human performance on bandit problems in-
volves the potential use of different decision-making strategies. There are many psy-
chologically plausible heuristic approaches coming from the game theory and rein-
forcement learning literatures (e.g. Sutton & Barto, 1998), as well as heuristics
developed in the cognitive sciences (e.g. Zhang, Lee, & Munro, 2009), and there
is some empirical evidence that different people use different heuristics in the same
experiment (Steyvers et al., 2009). Some of these heuristics are quite sophisticated,
and represent what might be viewed as intelligent or effective approaches. Others are
very simple, and clearly sub-optimal.

This contrast raises the issue of exactly what constitutes “contaminant” behav-
ior in a bandit problem experiment. If the focus is on understanding the relatively
sophisticated models by, for example, inferring model parameters from behavioral
data, then the simple heuristic approaches can be viewed as contaminating. In this
section, we present some analyses of bandit problem decision-making showing how
different assumptions about what qualifies as contaminant behavior influences what
is learned about the substantive model.

Model and Data

We choose a standard heuristic usually known as “Win-Stay Lose-Shift” (WSLS)
as our substantive model (Robbins, 1952). It assumes that if, after choosing an
alternative, the decision-maker is rewarded, they will choose the same alternative on
the next trial with some (high) probability γ. Alternatively, if the decision-maker is
not rewarded, WSLS assumes they will only choose the same alternative on the next
trial with some (small) probability 1 − γ.

While extremely simple, the WSLS often provides a reasonable account of peo-
ple’s decision-making. For example, Steyvers et al. (2009) collected data from 451
participants on a series of bandit problems, and presented a series of model com-
parisons showing that the majority of these participants decisions consistent with
WSLS. We use an abbreviated version of the same data set—using a subset of partic-
ipants chosen to make clear the contaminant modeling principles this example aims
to explain—including 47 participants. As with the full data set, all participants
completed a set of 20 bandit problems, each involving four alternatives and 15 trials.

This means that the substantive WSLS model assumes the choice of the kth
participants on the tth trial of the gth problem, dk,g,t, given the presence or absence
of reward on the preceeding trial, rk,g,t−1 is

Pr (dk,g,t = i | MWSLS) =





γ if dk,g,t−1 = i and rk,g,t−1 = 1
1 − γ if dk,g,t−1 = i and rk,g,t−1 = 0

1
3
(1 − γ) if dk,g,t−1 6= i and rk,g,t−1 = 1

1
3
γ if dk,g,t−1 6= i and rk,g,t−1 = 0.

For the bandit problem, it is easy to think of at least two plausible strategies a
non-motivated participant might use to complete the task. One, we call the ‘random’



strategy, in which they simply chose an alternative at random on every trial. Under
this model,

Pr (dk,g,t = i | MRAND) =
1

4

for all alternatives, on every trial of every game. A second non-motivated strategy
we call ‘same’, and involves the participant choosing the same alternative on almost
every trial, regardless of the observed pattern of reward. If the i∗th alternative is the
favored one, a simple formal implementation of this strategy is given by

Pr (dk,g,t = i | MSAME) =

{
0.95 if i = i∗

0.05 otherwise.

Results

We applied the three models—the substantive WSLS, and the contaminant
random and same heuristics—to the Steyvers et al. (2009) data in four separate
analyses. In the first, we simply applied the WSLS model. In the second analysis,
we applied WSLS, but also introduced the random model as a contaminant model,
using the latent assignment approach. In the third analysis we applied WSLS with
the same model as the contaminant model. In the fourth analysis, we used both the
random and same models as contaminants, allowing the behavior of each participant
to be explained by any one of these three accounts.

The graphical model for just the fourth analysis—which incorporates the new
development of allowing two possible contaminant models—is shown in Figure 11.
The probability the ith alternative is chosen on the tth trial of the gth game by the
kth participant is given by θi

k,g,t. Which of the three models is used to determine
this probability is decided by the three-valued latent assignment variable zk. This
variable is controlled by two latent base-rates, φ and η. The base-rateφ controls the
probability over all participants that the substantive WSLS model is used. The latent
base-rate η controls the probability, for those participants not using WSLS, that they
follow the random or same contaminant model.

This means that zk ∼ Categorical (φ, (1 − φ) η, (1 − φ) (1 − η)), so that

θi
k,g,t =





Pr (dk,g,t = i | MWSLS) if zk = 1
Pr (dk,g,t = i | MRAND) if zk = 2
Pr (dk,g,t = i | MSAME) if zk = 3.

When WSLS is used, the model uses the rate γ and whether or not a reward was
obtained for the ith alternative on the previous trial, ri

k,g,t−1. These dependencies are
also shown in the graphical model in Figure 11 We assumed uniform prior distributions
over the latent assignment rates φ and η, and also over the WSLS rate γ.

The left panel of Figure 12 shows how the participants were assigned to the
three models, according to the mode of the posterior for each zk. Each point corre-
sponds to a participant, and the type of marker indicates whether they were classified
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Figure 11. Graphical model for the analysis of bandit problem decision-making using
WSLS as a substantive model, and the random and same strategies as contaminant models.

as following the WSLS, random or same model. The axes in which the points are dis-
played correspond to two summary measures of their decision-making, chosen because
they capture much of the variance involved in partitioning the participants among
the models. The x-axis shows the proportion of trials following no reward that a
different alternative was chosen on the next trial. The y-axis shows the proportion of
trials following a reward the same alternative was chosen on the next trial.

WSLS performance corresponds to high values on both measures, and so these
participants are in the top-right corner. Random model performance corresponds
to the point (0.75, 0.25), since there are four alternatives. Same model performance
correspond to the top-left corner of the graph. The left panel of Figure 12 shows a
clear partitioning of participants into each of these regions, and that they are appro-
priately assigned by the model. In other words, there are clear individual differences
between participants in the decision strategy these use to solve bandit problems, and
they appear to be well described by the WSLS, random and same models for these
participants.

The inferences about the γ parameter of WSLS are shown, for all four analyses,
in the right panel of Figure 12. The key point is that the inferred rate of winning
and staying or losing and shifting changes significantly depending on the assumptions
made about contaminant behavior in the participant pool. When no contamination is
assumed, γ is around 0.75. When both the same and random forms of contamination
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Figure 12. Analysis of bandit problem behavior. The left panel shows the 47 participants,
and their assignment to the WSLS, random and same models. The right panel shows the
posterior distribution of the WSLS rate γ for four analyses, including no contaminant mod-
eling, the random contaminant model, the same contaminant model, or both contaminant
models.

are included in the analysis, the inferred γ increases to almost 0.9. Using just one
or other of the contaminant models gives different intermediate values. These results
make clear that what is learned by applying a substantive cognitive model to behav-
ioral data can depend critically on the nature of possible contamination processes
included in the analysis.

Conclusion

In our four worked examples, we have tried to argue for a latent assignment
approach to dealing with contaminants in psychological data. The basic assumption
of the approach is that a good cognitive model should aim to account for all of the
observed behavior, but recognize that not all experimental data will be generated
by the cognitive processes that are of theoretical interest. The latent assignment
approach allows one or more models of contaminant behavior to be mixed with the
substantive model of interest, within a coherent Bayesian framework for inference.

Our examples show that there is no single principled method that can define
appropriate contaminant models automatically. In fact, we believe that modeling
contaminant data involves the same creative exercise as modeling substantive psy-
chological processes. Just as we do not know how to automate the building of cogni-
tive models for memory, learning, decision-making, and other cognitive processes, we
do not know how to automate the non-compliant cognitive behaviors that generate
contaminants in experimental tasks. Rather, building contaminant models should be



treated as a core modeling problem, and pursued by attempting to find a statisti-
cal characterization or psychological model that provides a good account of the data
produced when people are not behaving as intended.

What our examples also show, however, is that the latent assignment approach
to mixture modeling provides a general and coherent framework for introducing pro-
posed contaminant models. Given a useful contaminant model, the framework allows
contaminant data to be identified, and removes their influence on parameter estima-
tion and model selection. It achieves this in a way that naturally incorporates the
base-rate of contaminants in a data set, and is applicable to contaminants existing
at the level of trials, participants, groups, or at any other level. In addition, the
latent assignment method applies in the same way to any formal probabilistic model
of cognition, including richly structured hierarchical models. We think the potential
problems posed by contaminant data, coupled with all of these attractive features
of the latent assignment approach, should encourage its widespread use in cognitive
modeling.
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