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We develop a model for finding the features that represent a set of stimuli, and apply it to the Leuven
Concept Database. The model combines the feature generation and similarity judgment task data, infer-
ring whether each of the generated features is important for explaining the patterns of similarity between
stimuli. Across four datasets, we show that features range from being very important to very unimpor-
tant, and that a small subset of important features is adequate to describe the similarities. We also show
that the features inferred to be more important are intuitively reasonable, and present analyses showing
that important features tend to focus on narrow sets of stimuli, providing information about the category
structures that organize the stimuli into groups.
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1. Introduction

A common assumption in cognitive psychology is that stimuli
can be represented in terms of the presence or absence of a set
of features. This assumption provides a representational founda-
tion for many models of higher-level cognitive processes, including
models of memory (e.g., Dennis & Humphreys, 2001; Hintzman,
1984; Raaijmakers & Shiffrin, 1981; Shiffrin & Steyvers, 1997), cat-
egory learning (e.g., Lee & Navarro, 2002; Love, Medin, & Gureckis,
2004; Medin & Schaffer, 1978), and decision-making (e.g., Gigeren-
zer & Goldstein, 1996; Payne, Bettman, & Johnson, 1990). It also
serves as a useful basis for understanding mental representations
themselves, since it makes possible formal analyses. Having as-
sumed that stimuli are represented by features, it is possible to de-
velop quantitative measures of how features relate to each other,
how features distribute themselves across categories, and so on.

In this paper, we investigate both of these aspects of feature
representation, and so pursue related methodological and theoret-
ical goals. Methodologically, we develop a model for finding fea-
ture representations, and apply it to the Leuven Concept Dataset
(De Deyne et al., 2008). Theoretically, we explore what the features
found by our model can tell us about the nature of mental repre-
sentation. We show the representations found by our model are
reasonable and the included features are likely to be important
to participants judgments of similarity. Moreover, we explore
whether the features people use tend to belong to many stimuli
or few, how they relate to category structures over stimuli, and
which sorts of features are the most salient ones.
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The outline of the paper is as follows. First, we provide the intu-
ition behind and formal characterization of the model for finding
feature representations. Second, we demonstrate the model on a
toy problem. Third, we apply the model to the Leuven Concept
Database, describing the feature representations it finds, and their
ability to account for the available empirical data. Finally, we ana-
lyze the properties of the feature representations found for the
Leuven data, and discuss their implications for what makes a fea-
ture useful.

2. A model for finding feature representations

The model we develop is an extension of one originally pro-
posed by Zeigenfuse and Lee (2008). Their approach involved com-
bining two existing methods for finding feature representations,
aiming to maintain the best aspects of both, and overcoming the
weaknesses in each. The first existing method is the feature gener-
ation task, in which participants generate a set of candidate repre-
sentational features, and then judge whether or not each stimulus
has each of the features. The second existing method is the similar-
ity judgment task, in which participants assess—via rating scales
for the Leuven data, although other methods are possible—the psy-
chological similarity between each pair of stimuli. These similari-
ties can then be used by models like additive clustering (Shepard
& Arabie, 1979), or its various extensions (e.g., Navarro & Lee,
2004) to infer a feature set, and the assignments of each feature
to each stimulus.

As noted by Zeigenfuse and Lee (2008), both these tasks have
strengths and weaknesses as methods for finding the features that
represent stimuli. Feature generation immediately provides stimu-
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lus representations, but relies on the ability of participants to gen-
erate and assign the features. The free-form nature of the genera-
tion task is especially problematic, because it is not clear how
people generate the features, nor how they decide to stop listing
candidate features. Making inferences from similarity judgments
has a sounder theoretical basis, but is more computationally chal-
lenging (see Navarro and Griffiths (2004), for the state of the art).
Perhaps most fundamentally, additive clustering models do not
provide any semantic interpretation of the features they derive.

The key insight underlying the new method proposed by
Zeigenfuse and Lee (2008) was that the observed data in feature
generation and similarity judgments tasks can be related to each
other, because both types of data are based on the same underlying
representation. When people do feature generation, they rely (in
part) on the same features they use to make similarity judgments.
Through this relationship, similarity judgments provide informa-
tion to decide which features, from a large generated set, are the
important ones for representing stimuli. In other words, the fea-
tures from a generation task that are worth keeping to represent
stimuli are those features needed to explain the similarities be-
tween the stimuli. This combined approach has the dual advanta-
ges of finding just those features that are important for
representing stimuli, and providing a meaningful semantic label
for these features.

2.1. Formalization of the model

The model developed by Zeigenfuse and Lee (2008) formalized
the idea of combining tasks by making specific assumptions about
how the generation and similarity tasks work. In this paper, we
rely on basically the same ideas, although we make a few natural
improvements, which we will highlight in the formal description
of the model. In essence, for feature generation, we assume that
when people produce feature lists, they provide all of the impor-
tant features in their mental representations of the stimuli, but
augment these with additional peripheral features. For similarity
judgment, we assume people use common features, in the way for-
malized by additive clustering models (Shepard & Arabie, 1979).

The common-features model is far from the only possible choice
for a model of similarity judgments. For example, rather than as-
sume people start with stimuli being completely dissimilar and
accumulate similarity with common features, we could assume
people start with stimuli being completely similar and decrease
similarity with each distinctive feature (e.g., Medin & Schaffer,
1978; Restle, 1959). Alternatively, we could assume people use
some combination of common and distinctive features, such as a
Contrast model (Tversky, 1977) or ratio model (Bush & Mosteller,
1951; Eisler & Ekman, 1959; Gregson, 1975; Tenenbaum &
Griffiths, 2001). Our decision to use a common-features model here
is based on its simplicity and empirical success in previous model-
ing of similarity data.

We denote a feature representation of n stimuli using m fea-
tures by a matrix F = [f;], where f = 1 if the ith stimulus has the
kth feature, and fy = 0 if it does not. Using this notation, our ac-
count of feature generation is that a n x (m + m*) matrix F" is gen-
erated, containing the m true features, and an additional m*
peripheral features.

We denote the pairwise similarities between n stimuli, as pro-
vided by the pth participant, by a matrix S, = [s;p], where s, is
the similarity between the ith and jth stimuli given by the pth par-
ticipant. We denote the weight of the kth feature as wy, and the
constant baseline level of similarity shared by all stimuli as c.

Finally, we introduce a set of latent indicator variables, one for
each feature, whose role it is to indicate whether each feature is a
true feature or an additional feature. We denote the latent indica-
tor for the kth feature by z,, with z, = 1 if the kth feature is part of

the underlying representation, but z, =0 if the kth feature is an
additional feature produced during the generation task. This means
that the model estimates the similarity between the ith and jth
stimuli as

(m+m™)
Sij = Z ZewWififik + ¢ (1)
k=1

This equation is easy to interpret. It assumes a common-fea-
tures model of similarity, with the weights of shared features add-
ing to give the similarity between any pair of stimuli. Critically,
though, only those features indicated to belong to the true under-
lying representation are involved in this similarity process. The kth
feature only influences the similarity between stimuli if z,=1.
Intuitively, this means that the inferences the model makes about
the z, indicator variables correspond to ‘pruning’, ‘paring back’, or
‘regularizing’ the whole list of generated features to a smaller set of
true, useful or important features, based on the information latent
in the measures of stimulus similarity.

2.2. Bayesian inference for the model

To make inferences using our model, we implemented it as a
probabilistic graphical model (see Jordan (2004) and Lee (2008),
for statistical and psychological introductions, respectively) in
WinBUGS (Lunn, Thomas, Best, & Spiegelhalter, 2000). Graphical
models provide a framework for formally expressing dependencies
among parameters of a model. When coupled with a set of condi-
tional distributions they unambiguously specify the likelihood of
the observed data and the prior distribution over model parame-
ters. Given data, they then specify a posterior distribution over
the model parameters via Bayes rule which can be sampled using
Markov Chain Monte Carlo (MCMC) methods. WinBUGS (Lunn
et al., 2000) is software that generically implements MCMC sam-
pling for graphical models.

Fig. 1 shows the graphical model, using the same notation as
Lee (2008). Nodes in the graph correspond to variables, and edges
indicate dependencies, with children depending on their parents.
Shaded and unshaded nodes correspond to observed and unob-
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Fig. 1. Graphical representation of our model.
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served variables. Circular and square nodes correspond to continu-
ous and discrete variables. Double bordered nodes are determinis-
tic, and are just included to aid interpretation of the model. Finally,
encompassing plates are used to show independent replications of
the graph structure within the model.

The two observed variables in the graphical model are the fea-
tures fj, from the generation task, and the similarities s, from the
similarity task. For each pair of stimuli, the known features com-
bine with the unknown latent indicators z, and weights wy, to give
their modeled similarity §; according to Eq. (1).

We then make the standard assumption (e.g., Lee, 2002; Tenen-
baum, 1996) that the individual participant observed similarity
data are noisy, according to a Gaussian error model with common
variance, so that

$jp ~ Gaussian (s, 0?) @

To specify prior distributions, we follow the advice of Gelman
(2006) and place a uniform prior on the variance:

¢ ~ Uniform (0, 10) 3)

This allows the noisiness of the similarity judgments to be in-
ferred from the repeated-measures provided across participants.
We also place uniform priors on the feature weights.

Wy, ¢ ~ Uniform (0,1) (4)

Finally, we place an unknown rate on the latent indicators, con-
sistent with the idea that there is an unknown base-rate with
which stimuli have features.

zx ~ Bernoulli (¢) (5)
with a uniform prior on the rate itself, so that
¢ ~ Uniform (0, 1) (6)

This graphical model extends that used by Zeigenfuse and Lee
(2008) in two ways. First, using individual participant data to infer
the common variance extends the original approach of using aver-
aged similarity data and making a fixed assumption about the var-
iance. Second, introducing the base-rate parameter ¢ extends the
original approach of fixing the base-rate at 0.5.

3. A demonstration of the model

In this section we provide an illustrative application of the model.
We created a ‘toy’ domain with a few stimuli and features, and con-
structed similarity data using the known features and weights. We
then test the ability of the model to recover the known true features
and their weights. This is essentially the same demonstration pre-
sented in Zeigenfuse and Lee (2008), but it worth revisiting, because
of the extensions to the model we have introduced, and to provide
an easily understood example of the application of the model.

3.1. Features and similarities

Table 1 gives a feature representation for four animals—a dog,
cat, elephant, and monkey—in terms of seven features. Three of
these features, “kept as a pet”, “is hunted”, and “can be dangerous”,
are given non-zero weights in the representation, and so corre-
spond to true features that are an integral part of the representa-
tion of the animals. Three other features, “has a prime number of
letters”, “is a US political mascot”, and “does not end in the letter
t” are given zero weights, to indicate that they are additional fea-
tures. These additional features might be able to be produced in
a generation task, but are not an important part of how animals
are represented. The final feature is the constant, with a weight

that gives the level of similarity all animals share.

Table 1
A feature representation of four animals using three ‘true’ features, three ‘additional’
features, and a similarity constant.

Feature Weight Dog Cat Elephant Donkey
Kept as pet 0.5 . . .

Is hunted 0.2 . .

Can be dangerous 0.1 . . .
Prime number of letters - . .

US political mascot - . .

Does not end in “t” - . .
Constant 0.05 . . . .

Using the representation in Table 1, we generated true underly-
ing pairwise similarities, using the common-features approach to
similarity. That is, we added the weights of the common features
for each pair of animals, to produce the similarity matrix.
— 055 0.05 055

- 035 0.65
- 0.15

v
Il

)

We then generated artificial observed similarity matrices S for 9
simulated participants, by adding Gaussian noise with mean 0 and
variance 0.052 independently to each cell in S for each participant.

3.2. Modeling results

We applied our model to these individual participant similarity
matrices, and the feature matrix F* given by Table 1. As with all of
our analyses in this paper, the results are based on four chains each
with 4000 recorded samples. The recorded samples are treated as
draws from the full joint posterior distribution of the weights
w=(Wy, .., W C), indicator variables z=(z;, ..,z), the noise
parameter ¢ and the base-rate parameter ¢.

The key analysis of the model’s inferences involves the joint pos-
terior over the indicator variables. Of the 2° possible combinations
that could be sampled (i.e., all possible patterns of features being
true versus additional features), only four were ever sampled with
non-negligible probability (i.e., with a proportion of at least 0.01).
These four patterns are shown in Table 2, together with their pro-
portion in the sample, which approximates their posterior mass.
Each pattern corresponds to a different inference about which fea-
tures are true and which are additional, and the mass measures
the certainty with which each combination is the correct pattern.

The MAP assignments (i.e., the assignments with the most pos-
terior mass) given by pattern 1 dominate the posterior, and have
the right structure. In particular, the first three features—pet,
hunted and dangerous—are assigned as true features, while the
others are assigned as additional features, following the design
we used to generate the data.

The posterior distribution of the weights conditional on the
assignments given by pattern 1 also show the model is making
the right inferences. The marginal expected values for the weights
of the true features and constant were w;=0.49, w,=0.16,
ws =0.11, and c = 0.05, all of which are close to the original values
in Table 1. In addition the expected value of the noise parameter ¢
and base-rate parameter ¢ were 0.05 and 0.53, respectively, which
are consistent with the known way the data were generated.

This simple example illustrates how our model identifies just
those generated features that play a role in the judgment of stim-
ulus similarity. While it is possible to characterize animals, or any
other stimuli, in terms of an endless number of features, only some
features are important for representing and understanding. In this
example, features like “is hunted” were inferred to be important in
explaining similarity, while features like “has a prime number of
letters” were inferred to be unimportant.
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Table 2
The four patterns of indicator variable assignments with non-negligible mass found in the posterior samples, together with their proportion in the sample.
Pattern Proportion Pet Hunted Dangerous Prime Mascot Not end “t”
1 0.79 . . .
2 0.15 . . . .
3 0.03 . . . .
4 0.01 . . 0 .
Animals | Animals Il
1 1
0.9 0.9
0.8 0.8
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1
[0} 0 0
2 1 60 245 1 47 238
©
5 Artifacts | Artifacts I
Q 1 1
E 09 0.9
0.8 0.8
0.7 0.7
0.6 0.6
0.5 0.5
04 0.4
0.3 0.3
0.2 0.2
0.1 0.1
0 0

1 64 292

1

73 300

Feature Order

Fig. 2. The distribution of importance for the four datasets.

4. Model results for the Leuven Concept Datasets

We now turn to applying our model to the Leuven Concept
Datasets. This is straightforward, because the same information
used in the toy example—the feature matrix assigning features to
stimuli, and the individual participant similarities between pairs
of stimuli—are directly available.

Of the many available sets of stimuli for which similarity data
are available, we focused on the sets using stimuli that spanned
categories. That is, unlike Zeigenfuse and Lee (2008), we did not
use similarity data involving all the stimuli in a category (i.e., all
of the mammals), but rather on similarity data involving a selec-
tion of stimuli from each category (e.g., some mammals, some fish,
some insects, and so on). We focused on these datasets because
wanted to consider how important versus unimportant features re-
lated to category structures, and so needed stimuli that spanned a
range of different categories.

There are four Leuven datasets of this type: two from the animal
domain and two from the artifact domain. All of the datasets have
five randomly chosen stimuli from each category within the do-
main. This means there were 25 stimuli in both of the animal data-
sets, and 30 in the artifact ones. Because only a subset of all the
animal or artificial stimuli are involved in each individual dataset,
there are a number of features that are not distinguished. That is,
there are some features that have identical patterns of belonging
to the stimuli. These features were only included once in the ob-
served data for the modeling, and were given the label we thought
was most meaningful (e.g., we choose “has hoofs” rather than
“stands in the stable”). Note also that whether or not a feature is
distinguished depends on exactly which stimuli are involved, and

so there are some features that are indistinguishable in one data-
set, but not another. For example, the features “is a vehicle” and
“has seats” are indistinguishable in the first artifact dataset, but
not in the second, because of the presence of the stimulus “wheel-
barrow” in the second dataset.

4.1. Distribution of importance

A first basic question from our modeling is to ask whether there
is evidence that some features are more important than others. Our
model is premised on the idea that, in a feature generation task,
many more features are produced than are needed to represent
the stimuli in the basic cognitive context afforded by similarity
comparison.

We chose to measure the importance of a feature by how of-
ten it was included to represent the stimuli in a dataset, indepen-
dent of any other feature. Formally, this corresponds to the
marginal posterior mass of the z, indicator variable for the kth
feature, which is approximated by the mean of z, in the posterior
sample.!

1 Ideally, of course, we would be able to assess combinations of features (i.e.,
consider their dependencies, and not just consider them as independent) in the
posterior sample. However, our experience was that the very large space of
possibilities—the 2292 for the first animal dataset is about 8 x 10%7, for example—
does not have a concentrated region of posterior mass. Rather, it seems that large
regions, corresponding to combinatorial variations of the presence or absence of
individual features around a good subset of features, all have some posterior mass.
This sort of posterior structure seems best summarized by considering the mass of
each feature independently, and makes for a much more computationally (and
presentationally) tractable analysis.
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Fig. 2 shows the distribution of importance for all of the fea-
tures—ordered from most to least important—in all four datasets.
It is clear that, for all datasets, some features were always part of
the feature representation, while others rarely were, and so there
is considerable variation in the importance of features. In general,
the importance of features falls away fairly rapidly.

Although there is no unambiguously clear ‘elbow’ in the distri-
butions, we chose the point of 0.7 importance as being a reason-
able cut-off point to give an operational definition to the idea of
‘important’ or ‘useful’ features. This cut-off point is shown by the
broken white lines for each dataset, and corresponds to the most
important 60, 47, 64 and 73 features our of 245, 238, 292 and
300 total features. In other words, about a quarter of all features
at most are included as part of stimulus representation more than
70% of the time. We use this arbitrary but reasonable cutoff in sev-
eral of our later analyses, to the illustrate the idea that just a subset
of the most important features can usefully form the representa-
tional basis for the stimulus sets.

4.2. Fitting similarity

Fig. 3 shows the fit of our model to the empirical similarity data
for all four datasets. Both the fit using all of the available features,
and the fit using just the important features identified in Fig. 2 are
shown. Formally, each of the model predictions is a fully Bayesian
posterior prediction. That is, it is the expected similarity of a pair of
stimuli averaged across the posterior distributions of the saliency
weight and additive constant parameters. For the full feature list
analyses, all of the indicator variables are fixed to include all fea-
tures; for the important feature analyses, just the first features
have their indicator variables set for inclusion.

The similarity fits in Fig. 3 support a number of conclusions. First,
the fits of the full feature set indicate that our model achieves a basic
level of descriptive adequacy. This is important, because it means
the inferences our model makes can be taken seriously. There is
no reason to trust estimates of model parameters unless the model
is able to fit the data on which these estimates are based.

The second observation is that using just the subset of impor-
tant features, totaling only about one-quarter of all available fea-
tures, still fits the similarity data well. This is particularly true
for the animal datasets.? What these analyses show, then, is that
using just the important features can provide a very good descriptive
account of the similarities between the stimuli, and so can provide a
suitable basis for their representation.

4.3. Interpreting feature importance

Tables 3-6 summarize the features found to be the most and
least important by our model for each of the four datasets. In each
table, the 20 features with the highest importance measures are
shown at the top, and the 20 features with the lowest importance
measures at the bottom. After each feature label, the importance
measure is shown, followed by the pattern of belonging to the
stimuli for that feature. Where a stimulus has a feature indicated
by a bullet point.

In general, the most and least important features found in Ta-
bles 3-6 are intuitively reasonable. The most important features
seem to express useful properties of animals or objects, while

2 The ability of the important feature model to fit the similarity data better than the
all features model may seem paradoxical, since the all features model includes the
important features model as a special case. It is the fully Bayesian nature of the
posterior prediction—based on averaging across posteriors, not maximizing with
parameter point estimates—that gives rise to this possibility. Although the all features
model could set the relevant weight parameters to zero to mimic the important
features model, finite empirical data does not provide the evidence to make this
inference, and the uniform priors on the weights continue to affect prediction.

Important All
L r=0.93 1 r=0.95
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Fig. 3. The fit of the model to the similarity data, for each dataset, and using the
most important or all features. Each panel shows the scatterplot relating the
modeled and empirical mean similarities between each stimulus pair, and the
correlation coefficient.

many of the least important ones do not. For example, Table 3 lists
“is a bird”, “is an insect”, “can fly”, “has bones”, “lives in water” and
so on as important features. Many of these features indicate cate-
gory membership, while others capture basic properties of the ani-
mals. Many of these important features re-appear in Table 4, in the
modified context of the animals considered in the second dataset.

The least important features in Table 3 suggest that there can be
a number of reasons for a feature not being useful to represent
stimuli. Some features, such as “neutral scent” and “appears in sto-
ries” seem peripheral or obscure. They are the sorts of features that
could be produced, as required in the generation task, but do not
seem central to understanding or representing animals. Other fea-
tures, such as “does not sting” relate to more important concepts,
but express the absence of an important property, contrary to com-
mon features assumptions about similarity (e.g., a monkey and a
rabbit are not psychologically much more similar because neither
of them sting). Table 3 includes “has a sting” among the important
features, expressing the same concept in terms of the presence of
the property. We acknowledge, however, that a few of the least
important features in Table 3, such as “strong animal” and “is big”,
seem useful. We believe their lack of importance stems from more
idiosyncratic reasons relating to the limited set of animal stimuli in
the particular dataset. That is, while these features are probably
important in general, they are not for the particular narrow context
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in which empirical data are available in the specific dataset. Some
evidence for this belief is provided by the lack of re-appearance of
features like “is big” in Table 4.

Broadly similar insights are suggested by the lists of most and
least important features for the artificial domain datasets in Tables
5 and 6. The most important features make intuitive sense, and of-
ten provide information about categories. Many of the least impor-
tant features seem unusual or peripheral, and there is more
consistency across the individual datasets for the concepts ex-
pressed by the more important features. All of these sorts of con-
clusions, however, are heavily subjective, and open to debate. In
addition, the decision to show only the 20 most and least impor-
tant features in the tables has no principled basis, and it is not clear
if the conclusions would be affected by considering all of the fea-
tures and their measures of importance. For these reasons, the re-
sults in Tables 3-6 are intended to suggest analyses, rather than
support firm conclusions. In fact, there are a number of obvious
and potentially important analyses suggested by the details in
the tables, which we pursue next. Visually, for example, it seems
that more important features seem to belong to fewer objects,
and more closely adhere to category boundaries. In the next sec-
tion, we report to results of a series of quantitative analyses, based
on the information represented by Tables 3-6, that attempts to test
these sorts of hypotheses more precisely.

5. Understanding feature importance

The information the model provides about which features are
likely to be important for representing stimuli allows us to con-
sider basic theoretical issues about what makes for a good feature.
The additional information in the Leuven Concept Dataset relating
each stimulus to a category means we can address this question in
the context of how more or less important features relate to cate-
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gory structures. In this section, we present some analyses tackling
these issues.

The relationship between stimulus similarity and category
structures and category learning has been extensively studied in
cognitive psychology (Ashby & Lee, 1991; Kruschke, 1992; Medin
& Schaffer, 1978; Nosofsky, 1984, 1986, 1989, 1991; Rips, 1989;
Sloutsky & Fisher, 2004; Smith & Sloman, 1994). Among the most
relevant theorizing and empirical findings for our study are mea-
sures of feature structure developed to explain basic level categori-
zation. Rosch, Mervis, Gray, Johnson, and Boyes-Braem (1976)
introduced the idea that people prefer to categorize objects at a
particular level in a hierarchy of categories, which they called the
basic level, and postulated this preference arises from natural pat-
terns of feature co-occurence in the world. Subsequently, a number
of measures of feature structure have been proposed to explain ba-
sic level categorization (e.g., Corter & Gluck, 1992; Gosselin &
Schyns, 2001; Jones, 1983; Kloos & Sloutsky, 2006; Mervis & Rosch,
1981). At their core, many of these measures share two comple-
mentary concepts: cue validity, the conditional probability of an
object belonging to a category c given it has a feature f, p(c|f), and
category validity, the conditional probability of an object possess-
ing feature f given that it belongs to category c, p(f|c). Neither mea-
sure is singly sufficient to predict basic level categorization (see
Medin (1983) and Murphy (1982), for arguments against cue valid-
ity and category validity, respectively), which has led to vigorous
debate over the appropriate way to combine the two (e.g., Corter
& Gluck, 1992; Jones, 1983; Medin, 1983; Mervis & Rosch, 1981).

Our analyses proceed from the working hypothesis that a fea-
tures importance is related to its role in forming categories among
the stimuli. The literature on basic level categorization then sug-
gests examining quantities related to cue and category validity.
We look at four such quantities: feature density, category likeli-
hood ratio, category density, and category span. Feature density
and category span measure different aspects of cue validity, since

Feature Ratio

1 100 200
Feature Order

300

Category Span

1 100 200 300

Feature Order

Fig. 4. The pattern of change in four measures—feature density, feature ratio, category density and category span—over features ordered from most to least important. In each
panel, the thicker lines correspond to the animal datasets, while the thinner lines correspond to the artifact objects datasets. Solid lines correspond to the first dataset in each

case, while broken lines correspond to the second dataset.
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features with high validity should both be fairly rare and particular
to a small number of categories. The category likelihood ratio is
closely related to category validity. Finally, we compute a measure
combining cue and category validity, category density (Kloos &
Sloutsky, 2006). Our first four results are summarized in Fig. 4.

5.1. Feature density

The first measure we consider is feature density, which is sim-
ply the proportion of all possible stimuli that have a feature. This
measure can vary from low values near zero, for features that be-
long to very few stimuli, to large values near one, for features
belonging to almost every stimulus. The top-left panel in Fig. 4
shows the pattern of change in feature density, as the features pro-
gress from most to least important. Each line in the figure corre-
sponds to one of the four datasets, with the animals datasets
shown by the thicker lines. The curves have been smoothed for leg-
ibility, by averaging over a small window.

The clear result in Fig. 4 is that important features likely to be
used in representing stimuli tend to have low feature density,
and so belong to relatively few stimuli. The most important fea-
tures belong to about 10% of the possible stimuli, and so are rare
or sparse, whereas the least important features belong to 80% or
more of the stimuli, and so are very broad or common. This is
not a surprising result, especially given the assumption of a com-
mon-features model of similarity. Under this model, sparse fea-
tures are ideal for identifying narrow or niche aspects of small
sets of stimuli that provide an important contribution to their mu-
tual similarity. Broad features, in contrast, will increase the
similarity of most stimuli, which is a role already covered (approx-
imately) by the additive constant in the similarity model. The basic
message of the analysis of feature density is that important fea-
tures tend to belong to few stimuli.

5.2. Category likelihood ratio

The second measure we consider involves both feature and cat-
egory information, and is called the category likelihood ratio. The
basic idea is to measure whether a feature is more likely to belong
to stimuli if those stimuli are in the same category. Formally, the
likelihood ratio measure compares the probability that two stimuli
chosen at random from within a category will both have a feature,
to the probability that two stimuli chosen at random will both
have the feature. The results in the top-right panel of Fig. 4 show
that, for the most important features in the ordering, it is about
3-5 times more likely for the feature to be common within rather
than across categories. This likelihood decreases towards the
chance base-line of 1 as the features become less important.

It is interesting to note that the animal and artifact domain
datasets are different in their behavior on this measure, especially
in the sense that the limiting ratio of 1 is basically achieved for the
artifact domain, but not for the animal domain. This suggests that
people are able to generate more features that are sensitive to cat-
egory boundaries for animals than artifacts, or, equivalently, that
the category boundaries are sharper or more pronounced for the
animals. These details aside, however, the important characteristic
of the likelihood ratio measure is that it decreases as features be-
come less important. The basic message of the category likelihood
ratio analysis is that important features are more likely to co-occur
for stimuli that belong to the same category.

5.3. Category density
The third measure we consider is a natural variant of the cate-

gory density measure developed by Kloos and Sloutsky (2006),
who used it to explore developmental issues in the ease of learning

categories, and the use of similarity- versus rule-based category
learning systems. Category density is similar to the category likeli-
hood ratio, in the sense that it compares how features co-occur
within categories against their overall patterns of co-occurrence
across all categories. The difference is that, rather than relying on
likelihood ratios, the category density measure uses the notion of
entropy from information theory (Cover & Thomas, 2008) to assess
within versus between category feature structure. Formally, if the
kth feature belongs to stimuli in the mth category with probability
Prm» and to all stimuli with overall probability py, the category den-
sity measure we use is given by 1 — (3, Dim 108 Dim)/ (Pi 10g Dy)-
This is a variation on the measure used by Kloos and Sloutsky
(2006), who included both the presence and absence of features
in their calculations. We focus on only the presence of features in
determining entropy, consistent with our assumption of a com-
mon-features similarity model. In both variants of the measure,
however, larger values of category density correspond to features
that provide more information about how stimuli belong to
categories.

The bottom-left panel of Fig. 4 shows the pattern of change of
category density over the ordered features. It is clear that, for all
datasets, the category density is higher for more important fea-
tures at the beginning of the order. This indicates that important
features tend to contain information about the category structure
of a set of stimuli, identifying pairs of stimuli that belong to the
same category. Qualitatively, this is the same finding as we ob-
tained from the category likelihood ratio measure. It is interesting
to note, however, that the category density measure does not show
the separation between the animal and artifact datasets evident in
the likelihood ratio measure. Nevertheless, the basic message of
the category density measure is that features carrying information
about category structure are more likely to be used to represent
stimuli.

5.4. Category span

The final measure in Fig. 4 is the category span of the features.
This is simply the number of categories containing at least one
stimulus that had the feature. As can be seen in the bottom-right
panel of Fig. 4 this measure starts around 2 for the most important
features, but increases towards the maximum of 5 (for the animal
datasets) or 6 (for the artifact datasets) as features become less
important. In this way, the category span measure provides an-
other form of evidence for the conclusion that people are most
likely to use features that tell them about categories.

5.5. The size principle

Tenenbaum and Griffiths (2001) described an interesting and
insightful relationship between features and their salience that
they called the size principle, and is also considered by Navarro
and Perfors (2010) and Steyvers (2010). This principle follows from
their basic theorizing about how the core cognitive capability of
generalization operates over structured hypothesis spaces for rep-
resenting stimuli. The basic claim is that more specific features
belonging to fewer stimuli (i.e., low feature density in our termi-
nology) should be given greater salience. Tenenbaum and Griffiths
(2001) present a basic empirical confirmation of this idea by show-
ing that the feature weights found in additive clustering represen-
tations of similarity data decrease as the density of the features
increases.

Our modeling automatically permits the same empirical check,
which is presented in Fig. 5. Each panel shows the relationship be-
tween feature density and feature weight. The rows correspond to
the four datasets, while the columns correspond to the important
feature and all feature analyses. It is clear from Fig. 5 that a pattern
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Fig. 5. The relationship between feature density and feature weight for each
dataset, using all of the features, and just the subsets of important features.

highly consistent with the size principle is observed when all of the
features are considered. Features with low density (i.e., belonging
to few stimuli) tend to have high expected feature weights, but fea-
tures with high density tend to have much lower weights. It is
interesting to note, however, that the same basic relationship does
not hold when just the subsets of important features are consid-
ered. Rather, feature density is now positively correlated with fea-
ture weight, with the few high density features included among
the important features invariably having very high feature weights.

We do not necessarily interpret this as strong evidence against
the size principle. It seems likely people have access to most of the
features in the full list. Many of these will involve many stimuli,
and will not deserve large weight in the overall representation. Of-
ten, the features that will need high weights will involve just a few
stimuli, and allow fine-grained distinctions to be made. This com-
bination of low density but high feature weight is consistent with
the size principle.

But our current analyses also suggest that restricting the fea-
tures to just those needed to account for similarity comparisons se-
lects only a few of the most useful high density features. These
serve the purpose of establishing basic gross distinctions across
all of the stimuli (e.g., whether an animal is large or small), and
so also have high weight in assessing similarities. This combination
of high density and high feature weight is not consistent with the
size principle, and is a result of the focus of the model on finding a
small set of features for representation.

6. Conclusion

One of the most basic challenges in cognitive science is to
understand how people represent stimuli. One of the most useful
and most popular answers, especially when thinking about high-
er-order cognitive processes, is that stimuli are represented in
terms of the presence or absence of a set of meaningful features.
In this paper, we have developed a model for finding feature repre-
sentations based on feature generation and similarity judgment
tasks, and applied them to the Leuven Concept Database.

Methodologically, the model has a number of strengths, includ-
ing the ability to identify the importance of generated features for
the core cognitive capability of assessing similarities, and preserv-
ing the semantic labels associated with each feature to assist the
interpretation of a representation.

Theoretically, our modeling permitted a range of explorative
analyses aimed at understanding what makes a feature a useful
or important part of representation. Our results suggested that fea-
tures that belong to relatively few stimuli, identifying what makes
them similar, and especially identifying the categorical structures
within which stimuli are organized, tend to be the more important
ones.

There are a number of obvious and straightforward ways in
which our modeling approach can be generalized. Most fundamen-
tally, our current model relies on specific assumptions about how
the processes of feature generation and similarity judgment work.
Extending or changing these assumptions will lead to new and
potentially better models. For feature generation, it seems plausi-
ble that some key features might be omitted, and so it could be
useful to allow for the inference of latent features in addition to
those observed. For similarity judgments, there are a range of more
involved accounts than additive common features worth exploring
(e.g., Navarro & Lee, 2004). One particularly promising avenue in
this regard involves proposing a set of relational types describing
how features can interact to affect similarity, and so generalizing
existing common and distinctive features models.

All of these future possibilities could be implemented within
our basic graphical modeling framework, and the Leuven Concept
Database would continue to provide an ideal source of empirical
data. We are sure we have just scratched the surface of what the
Leuven data can tell us about the features people use, and why
they use them.
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