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Abstract

We develop and compare two non-parametric Bayesian ap-
proaches for modeling individual differences in cognitive pro-

cesses.
ences between groups of people to be modeled, without mak-
ing strong prior assumptions about how many groups are re-
quired. Instead, the number of groups can naturally grow as
more information about the behavior of people becomes avail-
able. One of our models extends previous work by allow-

ing continuous differences between people within the same

group to be modeled. We demonstrate both approaches in a

case study using a classic heuristic model of human decision-
making on bandit problems, applied to previously reported be-
havioral data from 451 participants. We conclude that the abil-
ity to model both discrete and continuous aspects of individual
differences in cognition is important, and that non-parametric
approaches are well suited to inferring these types of differ-
ences from empirical data.

Keywords: Individual differences, non-parametric Bayesian
modeling, bandit problems, win-stay lose-shift

Introduction

These approaches both allow major discrete differ-

bution of model parameters across patrticipants (e.g. Perug-
gia, Van Zandt, & Chen, 2002; Rouder, Sun, Speckman, Lu,
& Zhou, 2003; Shiffrin, Lee, Kim, & Wagenmakers, 2008).
The clustering approach focuses on discrete differences be-
tween people, capturing major or ‘qualitative’ differences be-
tween people, whereas the hierarchical approach focuses on
continuous or ‘quantitative’ differences. In this sense, these
two approaches are complementary, and could be combined
in a natural way to allow for distinct groups of people who
also show smaller individual variation within their groups.

One problematic property of these existing approaches,
however, is that they require relatively strong prior assump-
tions about how many groups are needed to model the in-
dividual differences in observed performance. In contrast,
such strong assumptions are not required by a newer ap-
proach to modeling individual differences—also borrowed
from statistics—involving ‘non-parametric’ (also known as
‘infinite dimensional’) Bayesian modeling (Navarro, Grif-
fiths, Steyvers, & Lee, 2008)In non-parametric approaches,

Individual differences in cognitive processes are basic, ubignow a model represents individual differences can change as
uitous, and important. Almost all aspects of cognition, rang-aqgitional information from additional peoples become avail-
ing from the simplest reaction time task, to the most involvedgp)e. Intuitively, one might believe it is quite likely the sec-
problem-solving task, reveal systematic and meaningful varipng participant tested on an experimental task will be dif-
ation in how different people perform. Entire fields are de-ferent from the first, but the likelihood the 41st participant
voted to studying individual differences: the measurementyj| pe different from all of the first 40 is far smaller. In
and understanding of individual variation is the basic goal for tjg way, we expect the detail needed to express individual
research in psychometrics, including particularly the assessjifferences will depend upon the empirical evidence that is

ment of how people co-vary in their cognitive abilities.

available, and grow with the number of participants. This

_There has, however, been less consideration of individuaheans the complexity needed to model individual differences
differences in experimental cognitive psychology, in the sensgs not fixed, but inherently flexible. Non-parametric methods
that it is rare to see theories of how people differ in a cogni-paturally have this flexibility, and so provide an intuitive and

tive process directly incorporated into formal models. Therejnteresting perspective for modeling individual differences in
is a general recognition that averaging across participants caghgnition.

be problematic when there are individual differences (e.g.,

In this paper, we develop two non-parametric approaches

Ashby, Maddox, & Lee, 1994; Estes, 1956), and often cognitor modeling individual differences, extending the previous
tive models of fit on an individual-participant basis, so that,grk of Navarro et al. (2006). In particular, we develop a
variations in model parameters can be observed and intefey non-parametric approach that can grow representations
preted. But accounts of this variation are rarely formalizedyf poth the discrete and individual aspects of individual dif-
within the modeling, and so theories of individual differences tgrences. We develop and evaluate both of the modeling ap-

are not yet fully incorporated in the modeling of cognition.

proaches in terms of a case study, involving human decision-

There are, nevertheless, a number of useful approachesmaking on bandit problems. This helps make our modeling

directly adapted from the statistics literature— that have beerypproaches concrete, subjects them to a first empirical test,

applied in the cognitive sciences to model individual differ-

ences. These include finding clusters of participants with dif- 1The name ‘non-parametric’ suggests there are no parameter in-

ferent model parameters (e.g. Lee & Webb, 2005; Steyveré’owed in modeling, which is not true. The name ‘infinite dimen-

T b W K ' & Bl 2003 ! d h" hi ional’” suggests that there are potentially infinitely many parame-
enenbaum, Yvagenmakers, um, 2003) and hierarchicaks “which is a much better conception. Nevertheless, the name

modeling approaches that make assumptions about the distriron-parametric’ is more widely used.



and also makes a contribution to understanding how peopl®ID model, which is that the number of groups is a fixed
vary on an interesting and well-studied decision-making taskrather than function of available information. Fortunately,
The structure of this paper is as follows: First, we develop,however, it can be rectified in the same way. Suppose in the
in a general way, the infinite discrete and discrete and continD&CID model we assume thafl = o for the entire popu-
uous approaches to modeling individual differences. We thettation, but that in a given experiment, oniy < e of these
apply these approaches to the specific case of modeling vargroups will be observed. Then, as in that model, the cogni-
ation in a model of human decision-making on bandit prob-tive model parameter for a particular participant is distributed
lems. Using previously reported data from 451 participantsas the group level distribution of the group to they belong.
on bandit problems, we evaluate both of the approaches. Wé/e term this thdnfinite discrete and continuous individual
conclude that it is important to be able to capture both dis-differencegiD&CID) model.
crete and continuous individual differences, and discuss the

merits of our non-parametric models in this light. Application to Bandit Problems
o o ] In this section we apply the general iDID and iD&CID
Infinite Individual Differences Models approaches to the specific problem of modeling human

Model-based approaches to individual differences make exdecision-making on bandit problems. First we describe ban-
p||C|t assumptions about the ways peop|e can vary and Codlt prOblemS themselves, and the basic COgnltlve model we
vary. As described in the Introduction, the literature on willuse, and then we describe the individual differences mod-
model-based individual differences is dominated by two dis-€ls in detail.

joint, put quite co_mpatibl_e, !o(_)ints-of-view, which we now Bandit Problem Decision-Making

formalize. The discrete individual differences (DID) mod
eling approach holds that there aké < oo distinct groups

of individuals, whereM is fixed, each possessing a unique

" Since their original mathematical formulation (Robbins,
1952), bandit problems have been studied extensively in the

value 8, of the parameter of the cognitive model. If we let machi_ne Iea_rning and s_tatistics literatures (e.g. Berry, 1972;
8; denote the cognitive model parameter of particigatiten Brezzi & Lai, 2002; Gittens, 1989; Macready & Walpert,
6; — 6, for each participant in groug. Thus, we can think _1998), as a classic example_ pf reinforcement learning, and
of DID models as picking out which individuals are alike and " PSychology as a task requiring people to balance the com-
aggregating across only these individuals peting demands of exploration and exploitation (e.g. Banks,
The continuous individual differences (CID) modeling ap- Olson, & Porter, 1997; Cohen, McClure, & Yu, 2007; Daw,

proach holds that individuals are related through a Continu-O,DOherty’ Dayan, Seymour, & Dolan, 2006; Meyer & Shi,

ous, typically uni-modal probability density, specifying the 1995; Steyvers, Lee, & Wagenmakers, in press).

relative probabilities of values of the parameters in a cogni- | In aK-aane?I bﬁ_ng't probtl_e_m, tf:err? Isa seqléenchl ugl'
tive model. If we again defing; to be the cognitive model als, on each of which a participant chooses onlé gbssible

parameter of participart CID models of individual differ- al_ternatlves_. _Each ar!m S. K _offers the part!mpant a reward
ences assume that~ P. with probability ¢, whl_ch is fixed over the trial sequence, bqt
Navarro et al. (2006) developed what we call thénite not known by the participant. The goal for the participant is
discrete individL.JaI difference§iDID) modeP. This model to make choices that maximize the total number of rewards
S : .. __.attained over thé\ trials.
assumes there are an infinite number of groups to which indi- The Win-Stay L Shift (WSLS) heuristic i lassi
viduals can be potentially belong, but that only a finite num- € i Irf]-d ay Lose- k'l ( b )d_teurlsbllc IS aRc SZ.S'C
ber of these will be manifest in finite data. In other words, account ot decision-making on bandit problems (Robbins,
M = oo for the population at large, but in a given experiment 1952), and can be used as a basic cognitive model to under-
we will only observem < o of thése groups. Just as in the’ Stf’md _human behavior (Steyvers etal., in press). In its deter-
finite DID model, within any one of these groups, the param-mInIStIC form,_|t says pepple choose a bandit drso _Iong as
eter value for each individual is the group value. that arm <_:ont|nues to give them a reward. Thus_, if a p_artm-
To extend this approach to allow for individual differences, pant received a reW?r‘?' choos_lng aknon the_prewous tngl,
WSLS says the participant will choodeagain. If they did

we take th_e f_o_llowmg approach: Suppose we hade< e ._.notreceive a reward, WSLS says they will move from &m
groups of individuals. To each of these groups we assomat% armk’ £ k

a continuous, unimodal distributid?, specifying how proba- We employ a probabilistic generalization of the WSLS

ble values of the parameter are m_g_r(m;thln groupz we euristic. Instead of always staying with atafter receiving
take the parameters of each participant to be given by a ClI e .
A a reward, and always switching kbafter not receiving one,
model. In other words, for participamtin groupz, 6; ~ P,. : : : =
. . : D .. we assume people will stay on akmvith (high) probability®
We refer to this as the discrete and continuous individual dif- L . . .
after receiving a reward, and switch with the same probability
ferences (D&CID) model. - )
. 0 after not receiving one. In this way, the parameéiean be
Unfortunately, this model suffers the same drawback as the . . -
conceived as an ‘accuracy of execution’ parameter that mea-
2| their paper, Navarro et al. (2006) refer to this asitifenite ~ Sures how faithfully the basic deterministic WSLS heuristic

groups model is applied in practice.



Non-parametric Models It remains to specify a prior distribution on the p&a;, b;).

In this section we develop iDID and iD&CID models of in- In this we follow Gelman, Carlin, Stern, and Rubin (2003)
dividual differences in human bandit problem behavior usingand Steyvers et al. (in press), defining flat prior distributions
the WSLS heuristic. The two models share the same cog@ver the meanaz/(a; +bz), and the square root of the in-
nitive model, WSLS, but differ in how they model the varia- Verse ‘sample size'(a; + b;) /2, of the Beta distribution.
tion between individuals in the parameter of that model. BothConverting to a joint distribution ovefaz, b;), we get
models assume there are an infinite number of groups; how- -5/2
ever, the iDID model assumes that within one t?‘lesepgroups P(az, bz) D (az+ bz) ' @)
individuals do not vary whereas the iD&CID model assumesAssignments Finally, we specify how groups assignments
that, within a group, individuals vary continuously with re- are generated. Both the iDID and iD&CID modeling ap-
spect to a unimodal distribution. proaches rest on the assumption that there are an infinite num-
In order to understand better the two models and their reber of ways in which individuals can potentially vary, only a
lation to each other, it is helpful describe how each generfinite number of which will ever manifest in finite data. The
ates data. Both can be thought of as probabilistic genera€hinese restaurant procegéldous, 1985; see Navarro et al.,
tive models of human decision-making on the bandit problem2006, for an introduction aimed at cognitive scientists) is a
task, operating in three stages. First, an assignment of particprior distribution which implements this idea in a probabilis-
pants to groups is sampled. Then, each participant’s cognitiviic way.
model parameter is sampled given this assignment. Finally, The Chinese restaurant process operates as follows. Sup-
each participant’s observed data is sampled given their modglose we have a Chinese restaurant containing an infinite num-
parameter. The remainder of this section is devoted to dishber of tables each with an infinite capacity. These tables are
cussing each of these steps in greater detail. assumed to be distinguishable only by which customers are
" . ) seated at them. When the first customer walks in they are
Cognitive Mode_l On trialt = 2 ofa bandit problem (\_NSLS seated at the first table (we can of course pick a table arbi-
cannot be apP"ed on the_flrst t_”al' and t_hg model itself 3Srarily to be first since the tables are indistinguishable). For
sumes guessing on the first trla}l) a participant choo_ses the,ch subsequent customer one of two things happértéte(
same alternative as on the previous trial with probability  cstomer is seated at a previously seated tabldi)ahé cus-
given that a reward was received on that trial. If a reward waggmer is seated at a new table. For each previously seated
not received, _t_hey will switch to another alternative with the table, the new customer is seated at that table with probabil-
same probablllt)_/. . ity proportional to the number of customers already seated at
For e_ach part|C|pa_nt_, let the o_bserved dagape the_ NUM-"  that table. The new customer is seated at a new table with
ber of times that participant applied the WSLS heuristic. Th'sprobability proportional to a constart > 0. In this analogy,

means the data follow a binomial distribution, with the customers are the participants in our experiment, and the

x ~ Bin(N,8;). (1) tables represent groups with individual differences to which
_ they may belong.
Parameters Next we specify how thed; are generated.  QOne issue remains with regard to assignment. Clearly, the

In the iDID case, an participant's probability of following magnitude ofx affects the number of tables seated since in-
WSLS is simply the probability for the group of which they ¢reasing the magnitude afincreases the probability of seat-
are a member. Thus, if participants a member of group ing a new table. Hence, increasing the valu@dhcreases

z, 8 = 6, where®, is the probability of following WSLS  the number of tables we expect to sagtriori, which may in

in groupz. We take thed; to be independently uniformly dis-  trn affect the number of tables we se@osteriori To deal
tributed on the unitinterval. In other worda priori we know  \yith this, Antoniak (1974) suggests placing a prior distribu-
nothing about the value dJ, for each groupz except that it tjon ona. Following Escobar and West (1995) and Navarro

lies between 0 and 1. et al. (2006), we use an inverted Gamma distribution.
The iD&CID case is slightly more complicated. In this

case, each participant's WSLS probability is a random drawnference Methods

from some unimodal group distribution. If participanis a  Inference on the model was performed numerically using
member of grougz, 6; ~ P,, whereP, is the group distribu- Markov Chain Monte Carlo (MCMC) posterior sampling
tion for groupz, which we take to be a Beta distribution with methods in two stages. In the first, the posterior distribu-
shape parametees andb,. The Beta distribution is a com- tion over assignments was sampled using Gibbs sampling,
monly used density on the unit interval as it has a numberfor the iDID model, and a Gibbs sampling scheme with a
of desirable statistical properties. Moreover, in this case, théletropolis-Hastings step, for the iD&CID model. In the sec-
parameters have an intuitive interpretation. Suppose we raand, parameter values for the models were sampled given
some experiment before running the current one. Tda@an  particular assignments. For the iDID model, the posterior
be thought of as the number of times in this previous experwas sampled exactly using beta-binomial conjugacy. For the
iment participants from group used WSLS andb, can be iD&CID model, posterior sampling required another Gibbs
thought of the number of times they did not. sampler to integrate across the group level distributions.
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Figure 1: a) Posterior distributions over number of groups for iDID and iD&CID models. b) Posterior distributions over WSLS
probability for iDID and iD&CID models conditional upon their MAP group estimates of 3 and 1, respectively.

Results for Bandit Problem Data Figure 1a illustrates an important distinction between the

We applied the two models to data collected by Steyvers efv0 models, which is that the number of groups inferred
al. (in press). Their experiment consisted of 451 participant®y the iDID model is stochastically greater than that of the
who each completed 20 bandit problems with 15 trials and 4D&CID model. If ks andky are random variables denot-
alternatives. For each problem, both reward rates were chosdiid the number of groups present in an assignment under the
from a Beta distribution with mean /2 and sample size 4. iDID and iD&CID models respectivelyks is stochastically
This resulted in a 20 pairs of reward rates, used in a randomigreater thaiky meansp(ky > K) < p(ks > K) foranyK > 1.
permuted order for each of the 451 participants. hl_s occurs because th_e_ iD&CID model allows Wlthln_group
In their analysis, Steyvers et al. (in press) compared fouvariability in the probability of applying WSLS that the iDID
models of human bandit performance: a guessing model thdf'odel does not. Within group variability in this parameter
assumed people chose at random; WSLS, as we have dlg_ad§ togroup d|str|but_|0n5|nthe iD&CID model giving non-
scribed; a success ratio model that assumed people chose AR9ligible mass to a wider range of data values than the iDID
ternatives based on their ratios of successes to failures; afgodel, making distinct |nd_|V|duaIs more likely to belong to
the optimal decision process, which can be found by standarf1® Same group under the iD&CID model.
recursive programming methods (e.g., Kaebling, Littman, &
Moore, 1996). Steyvers et al. (in press) found using, Bayesparame'[er Inference
Factors, WSLS fit 47% of participants better than the otheMVe now focus our attention on inference about the distribu-
three models. This suggests that, despite its simplicity, WSL3ion of WSLS probabilities given a fixed number of groups.
is a good model of these participants on the task. For each model, we fix the number of groups to its modal
Our analysis proceeds in three stages. In the first, we peialue (3 for the iDID model, 1 for the iD&CID model, see
form inference on the number of groups using the iDID andFigure 1a) and determine the maximuposteriori(MAP)
iD&CID models. In the second, we fix the number of groups assignment of individuals to groups. Finally, we infer the
for each model, and perform inference over the most likelyconditional distributions over the probabilities of applying
assignment of people to groups and the probabilities of applyWSLS given this MAP assignment. Figure 1b shows the
ing WSLS given this assignment. Finally, we generate datdlistribution over the conditional probabilities of applying
given these distributions WSLS probabilities, and use thesdVSLS. In the figure, each mode corresponds to a single
predictive data to assess the fit of each model. group’; thus, the three groups of the iDID model have modes

Number of Groups 3Though similar, the densities shown in Figure 1b are not, in fact,
Th inal terior distributi th b fWith respect to the same quantity. In the iDID model, each group
€ marginal posterior distributions over the number Olhag a single WSLS probabiliy, and the observed data for every

groups inferred by each of the iDID and iD&CID models are member of that group follow a binomial distribution with ras.

the uncertainty as to where the three modes lie rather than a sampling

indicating the assignments sampled by the iDID model con-syripytion for the individua;. In the iD&CID model, individuals
sist of three groups more often than any other number. Thevithin a group are not constrained to use exactly the s@gmdut

latter has a mode at one group. In fact, the iD&CID modelinstead to follow the same unimodal distribution. That being the
' ’ case, the distribution shown in the figure should be interpreted as

samples the assignment placing all participants in a singlgne expected sampling distribution tBe(since itis averaged across
group about 75% of the time. the full joint posterior distribution of its parameters).
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Figure 2: Posterior predictive distribution over the number of applications of WSLS conditional on the groups shown in Figure 1
plotted against the observed data for the iDID (top) and iD&CID (bottom) models.

near 0.4, 0.51, and 0.6 and the single group of the iD&CIDpredictive distribution is the distribution of the number of ap-
model has a mode near 0.51. This shows how the iDID modeplications of WSLS averaged across the posterior distribution
subdivides participants into groups: there is an “average’of the probability of applying WSLS. Comparing these distri-
probability of applying WSLS group, into which most par- butions to the observed data offers a standard Bayesian pos-
ticipants fall, a “high” probability of applying WSLS group, terior predictive check (e.g. Gelman, Carlin, Stern, & Rubin,
into which participants well-described by WSLS fall, and a 2004) for the models.
“low” probability of applying WSLS group, into which par- Figure 2 shows both models are able to capture general
ticipants poorly described by WSLS fall. In contrast, Fig- features of the observed data, such as the shape of the his-
ure 1b shows why the iD&CID model does not require thesetogram, but not all of the specifics. The iDID is too peaked,
groups to account for the data. Because it allows individualss it overestimates the masses of points near the mode and
within a group to vary continuously across a range of valuesunderestimates those of points near the tails. Alternatively,
the iD&CID model is able to capture the “average” group the iD&CID is too flat. Though it predicts the masses of
with the center of its single group distribution and the “high” the observed data away from the mode well, it is not peaked
and “low” groups with the tails. enough at the mode. Overall, however, we would argue that

In addition to illustrating the group structure in parame- the iD&CID model fits the data better, because none of the
ter space of the two models given their respective conditionabbserved data are given low predictive probability. There is
MAP assignments, Figure 1b shows how each models fits tha sense in which the iDID is too confident in its assessment
observed data using the groups and their WSLS probabilityf the variation in human performance, because it specifies
distributions. The central mode of the iDID model is approx- too narrow a range in human performance. This could be re-
imately equal to the mode of the iD&CID model and the den-garded as a form of over-fitting. The iD&CID , in contrast, is
sities of the upper and lower modes of the iDID model cor-too vague, and so, while giving high probability to the modal
respond to the densities of tails of the iD&CID model. For data values, slightly under-estimates their magnitude. This
the iDID, intuitively, this tells us that the iDID is doing its could be regarded as a form of under-fitting. A general rule
best to capture variation in the data—perhaps more naturallin modeling is that over-fitting is dangerous, because it makes
captured by the continuous iD&CID model—by finding the you think you know more than you really know, while under-
best placement of group modes. For the iD&CID model, thefitting is relatively harmless (Grunwald, 2007).
model tries to balance peakedness near the mode of the data . )
against the rate at which mass falls off away from the mode. Discussion

. Our results suggest that both the iDID and iD&CID are good

Model Fit accounts of individual differences with respect to the WSLS
Figure 2 shows the posterior predictive distributions overmodel employed here, but that the iD&CID is better. Both
the number of applications of WSLS for the iDID (top) and models are able to are able to fit the data reasonably well,
iD&CID (bottom) models conditional on the MAP assign- as measured by posterior predictive distributions. But the
ment of individuals to groups. For both models, the posterioriD&CID model is able to capture the single group structure,



and fit the pattern in the observed data better. Estes, W. K. (1956). The problem of inference from curves

In terms of bandit problem performance, this paper builds based on group dataPsychological Bulletin53(134-
upon the results of Steyvers et al. (in press) by showing that, 140).
among those individuals applying WSLS, the winning and Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2003).
staying or losing and shifting is not the same for all people, Bayesian data analysis\Y: Chapman and Hall.
or even subsets of people. Rather, the suggestion is that pe@elman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004).
ple exhibit a wide range of behaviors on bandit problems, and Bayesian data analysis (2nd ed.Boca Raton (FL):
that multiple models will probably be necessary to explain Chapman & Hall/CRC.
human behavior fully. Future bandit problem work should fo- Gittens, J. C. (1989)Multi-armed bandit allocation indices
cus on evaluating numbers of different heuristic models, and New York: Wiley.
partitioning participants into groups to capture variations in Grinwald, P. D. (2007).The minimum description length
the way those models are applied, using accounts of individ- principle. Cambridge, MA: MIT Press.
ual differences similar to those presented here. Kaebling, L. P, Littman, M. L., & Moore, A. W. (1996).
More generally, we have presented a new approach to mod- Reinforcement learning: A surveyournal of Artificial
eling of individual differences, iD&CID, and compared this Intelligence Researcht, 237-285.
to an existing model, iDID in a concrete way. We found thatLee, M. D., & Webb, M. R. (2005). Modeling individual dif-
the iD&CID model was better able to account for both the ferences in cognitiorPsychonomic Bulletin & Review

group structure and distributional pattern of the data, suggest- 12(4), 605-621.
ing the larger-scale applicability of the iD&CID model to the Macready, W. G., & Walpert, D. H. (1998). Bandit problems

general problem of modeling individual differences in human and the exploration/exploitation tradeoffEEE Trans-

cognitive processes. actions on Evolutionary Computatig8(1), 2-22.
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