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Abstract

A widely-used assumption cognitive modeling is that
stimuli are represented in terms of features. Two exper-
imental approaches to finding appropriate features, and
characterizing stimuli in terms of these features, involve
feature generation and similarity judgment tasks. In fea-
ture generation, people list a set of candidate features, and
then decide whether or not each stimulus has each fea-
ture. In similarity judgment tasks, people rate the simi-
larity between pairs of stimuli, and models like additive
clustering are used to infer features, and their patterns of
belonging to stimuli. In this paper, we show how relating
feature generation and similarity judgment can provide a
powerful method for finding feature representations. We
describe a model that constrains a potentially large set
of generated features to only those that are needed to
explain similarity judgments. Using modern computa-
tional Bayesian methods, we apply our model to part of
the Leuven natural language database, considering a set
of 30 mammals and 764 candidate representational fea-
tures. We show that the inferred feature representation is
interpretable, is able to describe the existing similarities,
and provides good generalization performance to with-
held similarities.
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Introduction
Model of higher-level cognitive processes must make
assumptions about how stimuli are represented. One
widely-used assumption is that stimuli are represented
in terms of whether or not they have each of a set of bi-
nary features. This assumption is widely used in models
of memory (e.g., Dennis & Humphreys, 2001; Hintz-
man, 1984; Raaijmakers & Shiffrin, 1981; Shiffrin &
Steyvers, 1997), of category learning (e.g., Medin &
Schaffer, 1978; Lee & Navarro, 2002; Love, Medin, &
Gureckis, 2004), decision-making (e.g., Gigerenzer &
Goldstein, 1996; Payne, Bettman, & Johnson, 1990), and
other cognitive processes.

There are at least two well-established experimental
classes of tasks that are useful for defining stimuli in
terms of a set of features. The first class involvesfeature
generationtasks, in which subjects generate a set of can-
didate representational features, and then judge whether
or not each stimulus has each of the features. The second
class involvessimilarity judgmenttasks, in which sub-
jects assess—via rating scales, association or confusion

probabilities, or a range of other possible approaches—
the psychological similarity between each pair of stimuli.
These similarities can then be used by models like addi-
tive clustering (Shepard & Arabie, 1979), or its various
extensions (e.g., Navarro & Lee, 2004) to infer a feature
set, and the assignments of each feature to each stimulus.

Both classes of experimental task have strengths and
weaknesses. Feature generation leads directly to stim-
ulus representations, but requires faith in the introspec-
tive accuracy of the people who generate and assign the
features. The free-form nature of the generation is es-
pecially problematic, because it is not clear how people
generate the features, nor how they decide to terminate a
list of candidate features. Making inferences from sim-
ilarity judgment has a better understood theoretical ba-
sis, but is much more challenging computationally (see
Navarro & Griffiths, in press, for the state of the art). In
addition, additive clustering models do not provide any
semantic interpretation for the features they derive.

In this paper, we show we show how relating feature
generation and similarity judgment can provide a pow-
erful method for addressing the feature representation
problem, combining the best aspects of both approaches.
We first develop our model, and explain it using a sim-
ple toy example. We then apply the model to part of
the Leuven natural language database, considering a set
of 30 mammals and 764 candidate representational fea-
tures. We present results showing how the inferred fea-
ture representation is interpretable, is able to describe
the existing similarities, and provides good generaliza-
tion performance to withheld similarities.

Relating Feature Generation and
Similarity Judgment Tasks

The key insight of our approach is that the observed data
in feature generation and similarity judgments tasks can
be related to each other, if we assume that both types of
data were based on the same underlying feature repre-
sentations of the stimuli. The form of the relationship
between generated features and similarity judgments is
shown in Figure 1 as a commutative diagram. In the com-
mutative diagram,F denotes the ‘true’ feature-based
representations,F + denotes the ‘augmented’ or ‘addi-
tional’ feature representations produced in a generation
task, andS denotes the similarity judgments produced in
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Figure 1: A commutative diagram describing the as-
sumed relationship between the unobserved true feature
representationF , the augmented feature representation
F + observed from a feature generation task, and simi-
larity judgmentsS observed from a similarity judgment
task.

a similarity task. The important point about Figure 1 is
that, if we are willing to make specific assumptions about
how the generation and similarity tasks work, we can au-
tomatically derive a specific relationship, based on the
requirement of commutativity, between the augmented
features and the similarities.

Generation and Similarity Assumptions
Although many specific assumptions about feature gen-
eration and similarity judgment processes are possible,
we focus on the following reasonable starting ones. First,
we assume that when people generate feature lists in a
generation task, they list all of the true features that are
important components of their mental representations of
the stimuli, but augment the feature list with additional
peripheral features. Secondly, we assume that when peo-
ple make similarity judgments, they follow the ‘com-
mon features’ approach formalized by additive clustering
models (Shepard & Arabie, 1979). That is, people assign
a weight or salience to each feature and, when asked the
similarity between two stimuli, sum the weights of the
features both stimuli have in common.

We denote a feature representation ofn stimuli using
m features by a matrixF = [ fik], where fik = 1 if the ith
stimulus has thekth feature, andfik = 0 if it does not. We
denote the pairwise similarities betweenn features by a
matrix S= [si j ], wheresi j is the similarity between the
ith and j th stimuli. Finally, we denote the weight of the
kth feature aswk.

Using this notation, our account of feature generation
is that an× (m+m+) matrix F + is generated, contain-
ing the m true features, and an additionalm+ features.
Our account of similarity judgment is that the matrixS
is generated with each pairwise similarity given by

si j =
m

∑
k=1

wk fik f jk +c, (1)

wherec is a constant corresponding to the minimum level
of similarity between stimuli, and can be conceived in the
additive clustering model as the weight of a ‘universal
feature’ that all stimuli share.

Our Model
With these assumptions in place, it is straightforward to
specify the model that relates the observed feature repre-
sentation from the generation task to the similarity judg-
ment data. We introduce a set of latent indicator vari-
ables, one for each feature, whose role it is to indicate
whether each feature is a true feature or an additional
feature.

Formally, we denote the latent indicator for thekth fea-
ture by zk, with zk = 1 if the kth feature is part of the
underlying representation, butzk = 0 if the kth feature
is an additional feature produced during the generation
task. This means that the model estimates the similarity
between theith and j th stimuli as

si j =
(m+m+)

∑
k=1

zkwk fik f jk +c. (2)

This model in Equation 2 is easy to interpret. It as-
sumes that only those features belonging to the true un-
derlying representation are evident in the similarity judg-
ments. A feature only influences the similarity between
stimuli if it is assigned to be a true feature, withzk = 1.

This means that using the model to make inference
about thezk indicator variables corresponds to ‘pruning’,
‘paring back’, or ‘regularizing’ the augmented feature
representation provided by a generation task to a smaller
set of true features, based on the information latent in the
measures of stimulus similarity. Another way of under-
standing the model is that the commutative diagram in
Figure 1 says that the similarities,si j in Equations 1 and
2 must be the same, which determines which features are
true and which are additional, as formalized by thezk
indicator variables.

Bayesian Inference for the Model

To make inferences using our model, we implemented
it as a probabilistic graphical model (see Jordan, 2004;
Lee, 2008, for statistical and psychological introduc-
tions, respectively). This allows us to undertake fully
Bayesian inference on the model, using modern compu-
tational methods based on posterior sampling.

To make the model probabilistic, we made the stan-
dard assumption (e.g., Tenenbaum, 1996; Lee, 2002a)
that observed similarity data are noisy, according to a
Gaussian error model with common variance, so that

ŝi j ∼ Gaussian
(
si j ,σ2). (3)

and placed a point prior on the variance, so that

σ2 ∼ Delta
(
0.052), (4)

relying on the guidelines develop by (Lee, 2002b). We
then placed uniform priors on the feature weights

wk,c∼ Uniform
(
0,1

)
, (5)



Table 1: A feature representation of four animals using three ‘true’ features, three ‘additional’ features, and a similarity
constant.

Feature Weight Dog Cat Elephant Donkey
Kept as pet 0.5 • • •
Is hunted 0.2 • •
Can be dangerous 0.1 • • •
Prime number of letters — • •
US political mascot — • •
Does not end in “t” — • •
Constant 0.05 • • • •

and a prior on the latent indicators

zk ∼ Bernoulli
(1

2

)
, (6)

consistent with the assumption that each feature is a pri-
ori equally likely to be a true or additional feature. We
implemented this model in WinBUGS (Lunn, Thomas,
Best, & Spiegelhalter, 2000).

An Illustrative Application
In this section we provide a concrete illustrative applica-
tion of the model. In this application we created a ‘toy’
domain with a few stimuli and features, and constructed
similarity data using the known features and weights. We
then test the ability of the model to recover the known
true features and their weights.

Features and Similarities
Table 1 gives a feature representation for four animals—
a dog, cat, elephant, and monkey—in terms of seven
features. Three of these features, “kept as a pet”, “is
hunted”, and “can be dangerous”, are given non-zero
weights in the representation, and so correspond to true
features that are an integral part of the representation of
the animals. Three other features, “has a prime number
of letters”, “is a US political mascot”, and “does not end
in the letter t” are given zero weights, to indicate that they
are additional features. These additional features might
be able to be produced in a generation task, but are not
an integral part of how animals are represented. The final
feature is the constant, with a weight that gives the level
of similarity all animals share.

Using the representation in Table 1, we generated ar-
tificial similarity data, using the similarity judgment pro-
cess described earlier. That is, we added the weights of
the common features for each pair of animals, and added
Gaussian noise with a variance of 0.52, to produce the
similarity matrix

S=




− 0.541 0.043 0.547
− 0.361 0.652

− 0.155
−


 .

Modeling Results
We then applied our model to the similarities inSand the
feature matrixF given by Table 1, recording 2,000 poste-
rior samples from 4 chains after a burn-in period of 3,000
samples. The recorded samples are treated as draws from
the full joint posterior distribution of the weightsw =
(w1, . . .,wk,c) and indicator variablesz = (z1, . . .,zk).

Table 2: The seven patterns of indicator variable assign-
ments found in the posterior samples, together with their
proportion in the sample.
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1 0.94 • • •
2 0.02 • • • • •
3 0.02 • • • •
4 0.01 • • • •
5 < 0.01 • • • • •
6 < 0.01 • • • • •
7 < 0.01 • • • • •

The key analysis of the model’s inferences involves the
joint posterior over the indicator variables. Of the 26 pos-
sible combinations that could be sampled (i.e., all possi-
ble patterns of features being true versus additional fea-
tures), only seven were ever sampled. These seven pat-
terns are detailed in Table 3, together with their observed
proportion in the sample, which approximates their pos-
terior mass. Each pattern corresponds to a different in-
ference about which features are true and which are ad-
ditional, and the mass measures the certainty with which
each combination is the correct pattern.

The MAP assignments (i.e., the assignments with the
most posterior mass) given by pattern 1 dominate the
posterior, and have the right structure. In particular, the
first three features—pet, hunted and dangerous—are as-
signed as true features, while the others are assigned as
additional features, following the design we used to gen-
erate the data.



The posterior distribution of the weights conditional
on the assignments given by pattern 1 also show the
model is making the right inferences. The marginal ex-
pected values for the weights of the true features and
constant werew1 = 0.499,w2 = 0.207,w3 = 0.109, and
c= 0.043, all of which are very close to the original val-
ues in Table 1.

This simple example illustrates how our model can
identify just those generated features that play a role in
the judgment of stimulus similarity. While it is possible
to characterize animals, or any other stimuli, in terms of
an endless number of features, only some features are im-
portant for representing and understanding. In this exam-
ple, the spurious features like “is hunted” were inferred
to be important in explaining similarity, while features
like “has a prime number of letters” were inferred to be
unimportant.

Application to Human Data
In this section we apply the model to large-scale feature
generation and similarity data collected experimentally.
The basic form of the data, and the way in which we
apply our model, is identical to the illustrative example.
We just work with many more stimuli and features.

Feature and Similarity Data
Our data come from the Leuven natural language con-
cepts database (De Deyne et al., submitted), which in-
cludes feature generation task and similarity judgment
task data for a number of semantic categories1. We con-
sidered just the “mammal” category, which gives the fea-
ture representation of 30 mammals in terms of 764 fea-
tures. The feature list was produced by one set of partici-
pants in a generation task, and the assessment of whether
each mammal had each feature was done by a different
set of participants. A third set of participants made simi-
larity judgments for every pair of mammals on a 20-point
Likert scale.

We performed the following pre-processing steps.
First any feature belonging to none of the stimuli, or just
one stimulus, was removed, because it can have no im-
pact on similarity under the additive clustering model we
assume. Secondly, any feature that belonged to all stim-
uli was removed, because it can be conceived as part of
the overall similarity constant. Finally, if more than one
feature had exactly the same pattern of belonging to stim-
uli, we retained only the most frequently generated of
those features. Making these changes reduced the total
list to 288 features.

Modeling Results
True and Additional Features Figure 2 summarizes
the posterior distribution over the latent indicator vari-
ables. It shows the marginal posterior mass for each of
the 288 features, ordered in terms of decreasing posterior
mass. The curve has a steep decline, with only 14 of the
288 features having posterior mass greater than 0.7, only

1The database is available at http://ppw.kuleuven.be/concat/

0 100 200 300
0

0.25

0.5

0.75

1

Features

M
ar

gi
na

l P
os

te
rio

r 
M

as
s

Figure 2: Marginal posterior mass for the latent indica-
tors of the 288 features, ordered in terms of decreasing
mass.

22 having mass greater than 0.5, and 214 having mass
less than 0.1.

Table 3: Examples of features always classified as true
features, and always classified as additional features.

True features Additional features
Eats grass Cartoon figure
Lives underground Occasionally in films
Has hoofs Is spectacular
Feline Is eaten with tomato sauce
Cattle-like animal Stands in the crib at Christmas
. . . . . .

It is not possible to list all 288 features, but an ex-
amination of which features were consistently classified
as true features, and which were consistently classified
as additional features, gives generally easily interpreted
results. Table 3 gives some representative examples of
both cases. All of the true features seem to correspond
to important semantic properties needed to describe the
relationships between mammals. The additional features
seem much less important.

The results in Figure 2 and Table 3 show that the la-
tent indicators identify three classes of features, and that
the differences between the classes are generally inter-
pretable.

Capturing Similarities We also examined how our
model helps us account for observed patterns of similar-
ities between the mammals, by considering two feature
representations. One simply uses all 288 features. The
second uses only those 14 features the model identified
as having a posterior probability of being a ‘true’ feature
greater than 0.7. Of course, other assumptions would be
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Figure 3: The performance of the model accounting for
similarity judgments, using only inferred true features
(left panel) and using all features (right panel).

possible, and this is an interesting direction for future re-
search.

We had both the 14-feature and 288-feature represen-
tations, which we also call the ‘true’ and ‘all’ feature
representations, learn appropriate weights for all of their
features from the similarity judgments, under the addi-
tive clustering assumptions, and examined how well they
were able to fit the pairwise similarities. In our Bayesian
context, the fits are assessed by generating posterior pre-
dictions (i.e., the distributionof similarities a feature rep-
resentation generates integrating over its posterior distri-
bution for the weight parameters), and comparing these
predictive distributions to the observed data.

Figure 3 summarizes these tests by showing the ex-
pected posterior predicted similarities of each feature
representation against the observed data. It can be seen
that both representations perform extremely similarly,
and that both perform well, having ar = 0.92 correla-
tion with the data. The important point is that the feature
representation using only the true features identified by
our model shows no decrement in descriptive adequacy.
That is, Figure 3 provides strong evidence the 14 features
we identified are adequate to account for the patterns of
similarities between the mammals.

Generalization A feature representation of stimuli
should serve not just to summarize what is known about
relationships between stimuli, but also to generalize to
new situations where observational data are not yet avail-
able. To test how the two feature representations per-
formed in this situation, we re-ran the posterior predic-
tive assessments, supplying only a fraction of the origi-
nal similarity judgments. This means that the weights for
the features must be inferred from fewer pairwise simi-
larity comparisons, and what is learned must be used to
make predictions about the similarity relationships be-
tween mammal pairs that are not provided.

Figure 4 shows the performance of both representa-
tions when approximately 60% of the similarity judg-
ments were withheld. The representation using the true
feature representation performs somewhat better,r =
0.83 versusr = 0.62, because the more complicated rep-
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Figure 4: The performance of the model accounting for
similarity judgments, when approximately 60% of the
judgments were removed, using only inferred true fea-
tures (left panel) and using all features (right panel).

resentation using all of the features over-fit the available
data, and so generalized less accurately (Pitt, Myung, &
Zhang, 2002). In addition to the large difference in cor-
relations, it is more impressive still that the true feature
representation performs better, because it did not use the
large set of features from 15 to about 200 in Figure 2 that
to varying degrees play some role in similarity.

We also note that the impressive absolute level of cor-
relation for both representations with so many similar-
ity data withheld supports our assumptions that the fea-
ture generation and similarity judgment data are closely
linked, and that the additive clustering model is a useful
and appropriate one.

Discussion
In this paper, we developed a model that relates the data
from feature generation and similarity judgment tasks,
and is able to use the relationship to determine a set of
‘true’ features, and their salience in assessing similarity.
As a practical method for generating feature representa-
tions, our model has a number of attractive properties.
Compared to methods based solely on similarity data,
our model needs to solve a relatively simple inference
problem, and so scales easily to large problem sizes. It
also automatically provides a semantic label for each fea-
ture. Unlike methods based solely on feature generation,
our model is able to determine which features are appro-
priate, how many there should be, and how they should
be weighted.

It is straightforward to extend our model in a num-
ber of different complementary directions. Alternative
assumptions about how features are generated or how
similarity judgments are made will automatically lead
to alternative models. For feature generation, one ob-
vious possibility is to weaken the assumption that all
true features are included in the generated list, and al-
low for the possibility some (relatively small) set of fea-
tures and their patterns of belonging to stimuli must still
be inferred. For similarity assessment, the reliance on
common features could be relaxed, to allow distinctive



features to play a role in how stimuli are related (e.g.,
Navarro & Lee, 2004).

A more dramatic extensions would involve alterna-
tives to feature representation, perhaps allowing for the
more structured accounts provided by trees or other
graph structures, or allowing for continuous dimensions
to underlie some aspects of how stimuli are represented
mentally (e.g., Kemp, Bernstein, & Tenenbaum, 2005;
Navarro & Lee, 2002). It would also be possible to
change or extend the types of tasks considered, including
others that are driven by feature representations of stim-
uli, such as category learning or analogy making tasks.

Finally, we argue that the basic idea of using behav-
ior in multiple tasks to understand a latent psychological
variable manifest in all of the tasks, is a general and po-
tentially very powerful one. It is unlikelyany one task, or
any one model of human performance on that task, will
be sufficient to characterize complicated psychological
constructs. The approach we have demonstrated, using
the relationship between observed data across different
related tasks to make inferences that neither task alone
supports, is one promising way of addressing this funda-
mental challenge.

References
De Deyne, S., Verheyen, S., Ameel, E., Vanpaemel, W.,

Dry, W., M and Voorspoels, & Storms, G. (sub-
mitted). Exemplar by feature applicability matri-
ces and other Dutch normative data for semantic
concepts.

Dennis, S. J., & Humphreys, M. S. (2001). A context
noise model of episodic word recognition.Psy-
chological Review, 108(2), 452–478.

Gigerenzer, G., & Goldstein, D. G. (1996). Reasoning
the fast and frugal way: Models of bounded ratio-
nality. Psychological Review, 103(4), 650–669.

Hintzman, D. L. (1984). Minerva-2 - a simulation-model
of human-memory. Behavior Research Methods
Instruments & Computers, 16(2), 96-101.

Jordan, M. I. (2004). Graphical models.Statistical Sci-
ence, 19, 140–155.

Kemp, C., Bernstein, A., & Tenenbaum, J. B. (2005).
A generative theory of similarity. In B. G. Bara,
L. W. Barsalou, & M. Bucciarelli (Eds.),Proceed-
ings of the 27th Annual Conference of the Cogni-
tive Science Society.Mahwah, NJ: Erlbaum.

Lee, M. D. (2002a). Generating additive clustering mod-
els with limited stochastic complexity.Journal of
Classification, 19(1), 69–85.

Lee, M. D. (2002b). A simple method for generating ad-
ditive clustering models with limited complexity.
Machine Learning, 49, 39–58.

Lee, M. D. (2008). Three case studies in the Bayesian
analysis of cognitive models.Psychonomic Bul-
letin & Review, 15(1), 1–15.

Lee, M. D., & Navarro, D. J. (2002). Extending the
ALCOVE model of category learning to featural
stimulus domains. Psychonomic Bulletin & Re-
view, 9(1), 43–58.

Love, B. C., Medin, D. L., & Gureckis, T. (2004). SUS-
TAIN: A network model of category learning.Psy-
chological Review, 111, 309–332.

Lunn, D. J., Thomas, A., Best, N., & Spiegelhalter,
D. (2000). WinBUGS: A Bayesian modelling
framework: Concepts, structure, and extensibility.
Statistics and Computing, 10, 325–337.

Medin, D. L., & Schaffer, M. M. (1978). Context theory
of classification.Psychological Review, 85, 207–
238.

Navarro, D. J., & Griffiths, T. L. (in press). Latent
features in similarity judgment: A nonparametric
Bayesian approach.Neural Computation.

Navarro, D. J., & Lee, M. D. (2002). Commonalities and
distinctions in featural stimulus representations. In
W. G. Gray & C. D. Schunn (Eds.),Proceedings of
the 24th annual conference of the cognitive science
society(pp. 685–690). Mahwah, NJ: Erlbaum.

Navarro, D. J., & Lee, M. D. (2004). Common and dis-
tinctive features in stimulus similarity: A modified
versionof the contrast model.Psychonomic Bul-
letin & Review, 11(6), 961–974.

Payne, J. W., Bettman, J. R., & Johnson, E. J. (1990).The
adaptive decision maker. New York: Cambridge
University Press.

Pitt, M. A., Myung, I. J., & Zhang, S. (2002). Toward
a method of selecting among computational mod-
els of cognition.Psychological Review, 109, 472–
491.

Raaijmakers, J. G. W., & Shiffrin, R. M. (1981). Search
of associative memory.Psychological Review, 88,
93–134.

Shepard, R. N., & Arabie, P. (1979). Additive cluster-
ing representations of similarities as combinations
of discrete overlapping properties.Psychological
Review, 86(2), 87–123.

Shiffrin, R. M., & Steyvers, M. (1997). A model for
recognition memory: REM: Retrieving effectively
from memory. Psychonomic Bulletin & Review,
4(2), 145–166.

Tenenbaum, J. B. (1996). Learning the structure of sim-
ilarity. In D. S. Touretzky, M. C. Mozer, & M. E.
Hasselmo (Eds.),Advances in neural information
processing systems(Vol. 8, pp. 3–9). Cambridge,
MA: MIT Press.


