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Abstract

We develop a model of the interaction between rep-
resentation building and category learning. Our
model is a hierarchical extension of Nosofsky’s
(1986) Generalized Context Model of category
learning, based on the extended set of stimulus rep-
resentation possibilities developed by Vanpaemel,
Storms and Ons (2005). Using Bayesian inference,
the model provides an account of the representation
people are using, and what process generated that
representation. We apply the model to data sets
from four category learning tasks, and demonstrate
how the results inform the prototype vs exemplar
representation debate, and the similarity- vs rule-
based categorization debate.

A fundamental challenge for cognitive science is to
understand the interaction between building stim-
ulus representations and learning category struc-
tures. When people learn categorical associations,
they usually rely, in part, on internal representa-
tions of stimuli. Learning whether or not a newly
encountered breed of dog is dangerous is facilitated
by thinking about the known hostilities of familiar
dogs. In this sense, stimulus representations are the
building blocks for learning category structures.

Most representations, however, are themselves
learned. And often category membership is a key
source of the stimulus similarity that can guide the
building of representations. The similarity between
Las Vegas and Atlantic City derives, in large part,
from their shared association to the gambling indus-
try. In this sense, category structures are building
blocks for learning stimulus representations.

Many successful models of category learning and
stimulus representation make assumptions along
these lines. Exemplar-based models of category
learning, like the Generalized Context Model (GCM:
Nosofsky, 1986), make categorization decisions us-
ing memory representations of related stimuli.
Similarity-based models of representation, including
dimensional and featural models (Goldstone, 1999),
rely on similarity judgments sensitive to shared cat-
egorical associations between stimuli.

Rarely, though, is the tight coupling of represen-
tational and category learning processes modeled.
Models of category learning usually assume a fixed

stimulus representation. Often these representations
are derived using similarity-based models, and some-
times the representations are manipulated during
category learning by processes like selective atten-
tion, but more fundamental representational adapta-
tion during category learning is not accommodated.
Similarity-based representational modeling, on the
other hand, has as its end goal the learning of the
representations, and does not extend to accounting
for category learning behavior.

We describe a hierarchical model that relates a
representation building process to category learn-
ing behavior. It builds on the Varying Abstraction
Model (VAM: Vanpaemel, Storms, & Ouns, 2005).
The VAM was designed to address the debate re-
garding the merits of exemplar- and prototype-based
models of category learning. The VAM does this by
specifying a class of representations for learning cat-
egory structures that includes exemplar and proto-
type representations as special cases. Using the cate-
gory learning processes of the GCM, the VAM makes
inferences about representations, based on the deci-
sions made in a category learning task. In effect,
the VAM provides a model of what representations
might be used for category learning. Our exten-
sion is to include a representational process describ-
ing how those representations might be generated.
With this extension, we can make inferences about
the representation building processes used to sup-
port their learning of categories.

In this paper, we test the hierarchical extension of
the VAM by re-analyzing data from seminal category
learning tasks (Nosofsky, 1986; Nosofsky, Clark, &
Shin, 1989). These experiments involve single sub-
jects or groups of subjects learning various two-
category structures over a small number of stimuli,
all of which have two-dimensional spatial represen-
tations. The collected data measure the way the
trained stimuli, and a set of additional stimuli not
seen in training, were categorized.

A Representation Building Process

The Class of Representations

The VAM considers all possible representations that
can be obtained by merging the stimuli belonging
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Figure 1: The bottom row shows the 15 possible VAM representations for a four-stimulus category structure.
The top five rows give the probability distribution over these 15 representations for the generation process,
corresponding to parameterizations = .99, v = 1 (white), 8 = .01, v = 1 (black), 8§ = .7, v = 0 (light gray),
6 =.7,v =1 (medium gray), and § = .7, v = 10 (dark gray).

to each category. The exemplar representation is
the one where no stimuli are merged. The proto-
type representation is the one where all stimuli are
merged. Intermediate possibilities involve some of
the stimuli being merged.

The bottom row of Figure 1 provides a concrete
example of VAM representations. Panel A shows
the exemplar representation of four stimuli in two-
dimensional space. Panel B shows the representation
created when two of the stimuli are merged, with the
original stimuli shown as smaller squares, joined by
lines to their merged representation.

The remaining panels in the bottom row of Fig-
ure 1 show the VAM representations resulting from
averaging other stimuli. Panels B-G show the re-
sults of single merge, leaving three representations,
while Panels H-N show the results of two merges,
leaving two representations. The final VAM repre-
sentation in Panel O shows the prototype represen-
tation in which all four stimuli are merged into a
single representation.

The Generation of VAM Representations

We propose an iterative process for generating the
class of VAM representations. The process has two
parts; one controlling how many merges are made,
and another deciding which stimuli are merged. For-
mally, 0 < 6 <1 is a parameter giving the probabil-
ity that an additional merge will take place, and the
iterative process will continue. This means, at any
stage, there is a 1 — § probability that the current
representation will be maintained as the final one.
When an additional merge is undertaken, it is
based on the similarities between all of the current
representations (i.e., the original stimuli, or their

merged replacement). The similarity between the
ith and jth representations is, consistent with the
GCM, modeled as an exponentially decaying func-
tion of the distance between their points, according
to a Minkowski r-metric:

1/r
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Given these similarities, across all pairs in the cur-
rent representation, the probability, m;;, of choosing
to merge the pair (4, j) is given by an exponentiated
Luce-choice rule

(exp sij)’y
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The parameter v > 0 controls the level of empha-
sis given to similarity in determining the pair to be
merged. As v increases, the maximally similar pair
dominates the others, and will be chosen as the pair
to be merged with probability approaching one. At
the other extreme, when v = 0, similarity is not
taken into account. All choices of pairs to merge
then are equally likely, and the merge is essentially
chosen at random. Values of v between these two
extremes result in intermediate behavior.

Given a value for the 6 and ~ parameters, every
VAM representation has some probability of being
generated by the process just described. The top
five rows in Figure 1 show the probability of the
VAM representations being generated for different
parameters. In the top row 6 = 0.99, so merging is
very likely, and hence the prototype representation

mi; =

(2)



almost always results. In the second row 6 = 0.01,
so merging is very unlikely, and hence the exemplar
representation is almost always retained.

The third, fourth and fifth rows show, for a fixed
6 = 0.7, the effect of the v parameter. When v =0
in the third row, the exemplar and prototype repre-
sentations are most likely, but all others are possi-
ble. In particular, any representation arising from a
single merge is equally likely, and any representation
arising from two merges is equally likely, because the
pair of stimuli to be merged is chosen at random. In
the fourth row, when v = 1, representations like B
and L that involve merging similar stimuli become
much more likely, although some other possibilities
remain. Once v = 10 in the fifth row, only the most
similar stimuli are merged, and B and L are the only
intermediate possibilities between exemplar and pro-
totype representation with non-negligible probabil-
ity.

The Hierarchical VAM

Graphical Model Notation Figure 2 shows as
a graphical model the specific adaptation of the hi-
erarchical VAM we applied to re-analyze the Nosof-
sky (1986) and Nosofsky et al. (1989) data. Fig-
ure 2 uses a standard graphical model representa-
tion (Jordan, 2004). Nodes represent the labeled
variables. The directed graph structure indicates
dependencies between the variables, with children
depending on their parents. Stochastic variables
have single-borders and deterministic variables have
double-borders. Observed variables have shading
and unobserved variables have no shading. Contin-
uous variables have circular nodes and discrete vari-
ables have square nodes. Independent replications
in the model are represented by enclosing parts of
the graph in square boundaries called plates, and
are labeled by the indexing of the replications.

Representation At the top of Figure 2 are the
coordinate locations p;; and p} for the N training
and M additional stimuli, respectively, in &k = 1,2
dimensions, as found by previous multidimensional
scaling analysis. The training stimuli are the ones
assigned to categories, and so are the basis for the
representation building process.

Formally, the parameters 6 and v determine the
index x of the VAM representational class, which we
write

z ~ Merge (6,7). (3)

This index defines the N, points in the VAM rep-
resentation, with v; denoting the ith of these rep-
resentations. We used Monte Carlo estimates of
p(z|6,v) to define the Merge distribution, found
by simulating the iterative process over the stim-
uli and category structures used in the applica-
tions across the grid 8 = (0.025,0.05,...,0.975) and
~v=(0,0.1,...,10).

-
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Figure 2: Graphical representation of the hierarchi-
cal VAM used in the applications.

For this representation component of the model,
we use priors

6 ~ Uniform (0,1),
v ~ Erlang (1). (4)

The uniform prior for the rate 6 is an obvious choice.
The Erlang prior for v gives support to all positive
values, but has most density around the modal value
one, corresponding to our prior expectations.

Categorization Having generated the VAM rep-
resentation, the remainder of the model deals with
the categorization process, and follows closely the
GCM. The only difference is that the category simi-
larity of the N 4+ M stimuli presented to participants
is formed by summing over their similarities to the
N, representations constituting the VAM represen-
tation.

First, the attention-weighted distances between
the stimuli and representations are calculated, ac-
cording the Minkowski r-metric, so that

dij = ([w (pa—vj1)]" + [(1—w) (pia—v52)] )", (5)



for the training stimuli, and analogously for the ad-
ditional stimuli, where w is the attention weight pa-
rameter measuring the relative emphasis given to the
first stimulus dimension over the second.

From the distances, the generalization gradient
with scale parameter ¢ and shape « determines the
similarities,

nij = exp {—cdf‘j} . (6)

The assignment of the representations to the two
categories is defined by the category structure, and
is given by indicator variables, so that a; = 1 means
the jth representation belongs to Category A, with
a; = 0 otherwise. For the current re-analyses we ig-
nore the possibility of response bias, and so the prob-
ability of the ith stimulus being chosen as a member
of the Category A is determined by the sum of simi-
larities between the ith stimulus to the N, represen-
tations in each category, according to a Luce choice
rule,

> 3 @iTij (7)
2o amij + 22 (1 —aj)nij

Finally, the response probabilities are used to ac-
count for the observed data, D, which are the counts,
k; of the number of times the ith stimulus was chosen
in Category A out of the ¢; trials it was presented.
The counts k; follow a Binomial distribution

ki ~ Binomial(ti, Tl') . (8)

For this categorization component of the model,
we use priors

T =

w ~ Uniform (0,1),

¢ ~ Gamma (e,¢). (9)
The uniform distributions for w is again an obvious
choice. The ¢ parameter functions as an inverse scale
(i.e., 1/c scales the distances), implying ¢? functions
as a precision, and so is given the standard near non-
informative Gamma prior with ¢ = .001 set near
Zero.

Applications

This section presents four applications of our model
to the seminal category learning data reported and
analyzed by the GCM in Nosofsky (1986) and Nosof-
sky et al. (1989). We counsider seven of the eight
available data sets, leaving the ‘Dimensional’ cate-
gory structure, because its heavy reliance on selec-
tive attention manipulations is not well accommo-
dated by our current model. We follow the original
analyses in using r = a = 2 for Nosofsky (1986), and
r = a =1 for Nosofsky et al. (1989).

Our primary interest is on two posterior distribu-
tions: x | D, which describes the inferences made
by the model about what VAM representation is be-
ing used; and (0,) | D, which describes inferences
about what process people used to generate that rep-
resentation.
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Figure 3: Interior-Exterior category results.

Interior-Exterior from Nosofsky (1986) Fig-
ure 3 summarizes the results from the Interior-
Exterior category structure. The upper panels show
the VAM representations inferred from the catego-
rization decisions made by each subject. The stim-
uli for the two categories are shown by circles and
squares, together with any merged representations.
For both subjects, there is a single VAM representa-
tion that captured virtually all of the posterior prob-
ability. These representations are extremely similar,
and involve a single merge of two of the stimuli in
the interior category.

The lower panels of Figure 3 show the joint pos-
terior distribution over # and v inferred from the
data. The main central panel shows samples from
this joint posterior for each subject. The side panels
show the marginal distributions for § and ~ for each
subject. These distributions are also extremely sim-
ilar for both subjects. In both cases, the value of §
is likely to be relatively low, indicating the use of a
near-exemplar representation.

Diagonal from Nosofsky (1986) Figure 4 sum-
marizes the results from the Diagonal category struc-
ture. Subject 1 has two VAM representations with
posterior probabilities of 0.95 and 0.05, while the
second subject has a single representation. In this
case, there are significant individual differences, with
Subject 1using some merging, but maintaining many
stimuli, while Subject 2 uses a prototype representa-
tion. The 6 parameter accounts for these individual
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Figure 4: Diagonal category results.

differences, taking values close to one for Subject 2,
but much lower values for Subject 1.

This model analysis provides a useful explanation
of some striking features of the raw data in Nosofsky
(1986, Table 3). In particular, the use of prototype
representations results in a loss of sensitivity to the
diagonal structure of the category boundary, and so
explains the observation that the additional stimuli
labeled ‘7’ and ‘10°, located just below and right,
and just above and left of center respectively (see
Nosofsky, 1986, Figure 6), will be categorized quite
differently by the two subjects.

Criss-Cross from Nosofsky (1986) Figure 5
summarizes the results from the Criss-Cross cate-
gory structure. The representations are similar for
both subjects, and involve merging dissimilar stim-
uli within each category. The joint posteriors are
also similar for both subjects, with the posterior for
~ taking small values (i.e., less than one) indicating
the merging of dissimilar stimuli.

These results suggest a deficiency in our repre-
sentation building process. A more natural genera-
tive account of the representations in Figure 5 would
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Figure 5: Criss-Cross category results.

involve the deletion of stimuli, rather than relying
solely on merging for building representations.

Nosofsky et al. (1989) Nosofsky et al. (1989)
considered a single category learning task, similar in
structure to the Nosofsky (1986) Interior-Exterior
task, but using different stimuli, and giving differ-
ent instructions to three groups of subjects. The
first group was given no special instructions, and
so was expected to learn the category structure us-
ing the similarity-based principles that underly the
GCM. The remaining two groups were instructed to
use one of two simple rules accurately describing the
category structure.

Figure 6 summarizes the results from the hierar-
chical VAM analysis of each group. The group with
no special instructions are accounted for by a VAM
representation that does follow stimulus similarity,
by collapsing the similar stimuli in the interior cate-
gory to a prototype, and largely preserving the less
similar stimuli as exemplars in the exterior category.

The groups given the rule instructions, however,
do not follow stimulus similarity closely, especially
through their merging of the same two dissimilar
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Figure 6: Nosofsky et al. (1989) category results.

exterior stimuli. An examination of the rules reveals
that both had in common a logical proposition that
directly corresponds to these two dissimilar stimuli,
and so encouraged this merging.

As in the previous example, the posterior for ~
neatly distinguishes whether or not representations
were similarity-based, taking large values for the
group given no special instructions, and values less
than one for the two rule groups.

Discussion

The extension to the VAM developed here provides
a process model for the class of representations it
previously just assumed. The obvious benefit of
this extension is that it permits inferences about
the process of representation building. The appli-
cations demonstrated the ability of the model to
make inferences about two theoretically interesting
parameters: 6, measuring the extent of compression,
which is relevant to the exemplar vs prototype de-
bate; and 7, measuring to what extent compression
is based on stimulus similarity, which is relevant to
the similarity- vs rule-based categorization debate.
A further, perhaps less obvious, contribution of
the representation building process is that it natu-
rally overlays a sensible inductive bias on the VAM
class of representations. A strength of the VAM is

that it considers a wide range of representational
possibilities, but a reasonable criticism is that it
gives each of these equal prior status. Intuitively,
some the VAM representations seem more reason-
able than others, and the prior predictions made by
the hierarchical extension, as shown in Figure 1 seem
intuitively satisfying. In particular, there is a strong
inductive bias towards the exemplar and prototype
representations, as well as a bias towards similarity-
based representational compression. Our last two
applications show that these biases can be overcome
by data, and so we believe the hierarchical VAM
strikes the right balance of having theoretically-
based expectations, without losing flexibility by sim-
ply assuming the basic tenets of those theories.

Against these strengths, the applications pre-
sented here suggest a deficiency in the particular rep-
resentation building process we proposed. It seems,
at least for some categorization tasks, people ig-
nore a subset of the stimuli to learn the category
structure. Future work intends to refine the current
model with a more general representation building
process that allows for this possibility.
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