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a b s t r a c t

We introduce the special issue on formal models of semantic concepts. After outlining the research ques-
tions that motivated the issue, we summarize the rich set of data provided by the Leuven Natural Con-
cepts Database, and provide an overview of the seven research articles in the special issue. Each of
these articles applies a formal modeling approach to one or more parts of the database, attempting to fur-
ther our understanding of how people represent and use semantic concepts.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Since the early days of cognitive psychology, semantic concepts
have been studied extensively. Many researchers have investigated
on how stimuli are organized into natural categories, how seman-
tic concepts are stored in memory, and which processes operate on
this stored information to answer concept-related questions. For
an overview of the relevant literature, see, for instance, Medin,
Lynch, and Solomon (2000) and Murphy (2002).

In studying semantic concepts, psychologists have used a wide
variety of tasks, ranging from categorization decisions (e.g., Smits,
Storms, Rosseel, & De Boeck, 2002; Verbeemen, Vanpaemel, Pattyn,
Storms, & Verguts, 2007), speeded categorization (e.g., Larochelle &
Pineau, 1994; Storms, De Boeck, & Ruts, 2001), feature verification
(e.g., Rips, Shoben, & Smith, 1973), typicality rating (e.g., Heit &
Barsalou, 1996), category-based induction (e.g., Medin, Coley,
Storms, & Hayes, 2003; Osherson, Smith, Wilkie, Lòpez, & Shafir,
1990), and exemplar and feature generation (e.g., McRae, de Sa, &
Seidenberg, 1997; Malt & Smith, 1984). Furthermore, many types
of variables have been employed, either as explanatory variables
or as criterion variables, to further our understanding. These vari-
ables include response times from speeded categorization experi-
ments, categorization frequencies, word frequencies, typicality

ratings, age-of-acquisition norms, exemplar generation frequen-
cies, feature generation frequencies, similarity ratings, inductive
strength ratings, word associations, word frequencies, and so on.
Unfortunately, the exact stimulus sets used in these studies have
seldom been published and most of the researchers sampled their
stimulus sets in such a way that there is little overlap with sets
used in other studies. As a result, replicating the findings and ver-
ifying alternative accounts of the data (based on different explan-
atory variables) are often difficult and laborious.

2. The Leuven Natural Concept Database

In an attempt to remedy these problems, Storms and colleagues
(De Deyne et al., 2008; Ruts et al., 2004; Storms, 2001) selected a
large stimulus set, consisting of more than 400 stimulus words, dis-
tributed over 16 semantic categories: two food categories (fruits
and vegetables), two activity categories (professions and sports),
six animal categories (amphibians, birds, fish, insects, mammals,
and reptiles), and six artifact categories (musical instruments,
tools, vehicles, clothing, kitchen utensils, and weapons). For the
whole stimulus set, data were collected for a large number of vari-
ables, including typicality ratings, goodness ratings, goodness rank
order, exemplar generation frequencies, exemplar associative
strength, category associative strength, estimated age of acquisi-
tion, word frequency, familiarity ratings, imageability ratings, and
pairwise similarity ratings (within semantic categories). Further-
more, a large feature generation study was conducted in which
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more than a 1000 participants wrote down around 10 features for
6–10 stimuli. Features were generated for each of the stimulus
words by at least 20 participants. After tallying generation frequen-
cies, all features that were generated at least four times were se-
lected. These features were rated for their importance in defining
the different categories to which the corresponding stimulus words
belonged. They were also used in an extensive feature verification
task, in which four participants verified the applicability of all fea-
tures generated in a domain for all stimuli in that domain. This re-
sulted in two very large exemplar by feature applicability matrices,
one for the animal domain (with 129 animal stimulus words and
765 animal features) and the other for the artifact domain (with
166 artifact stimulus words and 1295 artifact features).

The resulting norm data, originally gathered in Dutch, were
translated in English and made available in the Psychonomic Soci-
ety’s Archive of Norms, Stimuli, and Data. Details about the norms
and about the procedures used to gather the data have been pub-
lished elsewhere (see De Deyne et al., 2008; Ruts et al., 2004;
Storms, 2001). Since the publication of the norms, the data set
has been elaborated with response times from a speeded categori-
zation task, a relevant large text corpus, and additional word asso-
ciation data for the same stimulus set (see De Deyne & Storms,
2008).

Because of the exceptional size and richness of the data norms,
and its suitability for use in formal modeling approaches, a work-
shop was organized in Leuven in June 2008. The participating
researchers were invited to analyze the data set from different per-
spectives, mirroring their different modeling strengths and inter-
ests. The hope was that the different approaches would yield
different and complementary insights about the nature of human
semantic representation, and higher-order cognition in general.

3. The articles in this special issue

The current special issue of Acta Psychologica contains seven
contributions from the Leuven workshop. Most of the papers
started from the exemplar by feature applicability matrices, but
in every paper these data were analyzed in a different way,
addressing different questions. In the opening paper, Kemp, Chang,
and Lombardi (in press) use the applicability matrices, the feature
generation frequencies, and the familiarity ratings to predict newly
gathered data from category and feature identification tasks. Stey-
vers (2010) adds the feature matrices to a standard text corpus to
create an augmented version of highly successful ‘‘topics” models
of semantic concepts (e.g., Griffiths, Steyvers, & Tenenbaum,
2007). Dry and Storms (in press) examine the relationship between
common and distinctive features in determining stimulus similar-
ity, using the database to estimate key psychological parameters in
a model that combines both types of information. Navarro and
Perfors (2010) combine the matrices with pairwise similarity rat-
ings, as well as with feature generation frequencies, to take a de-
tailed look at the ‘‘size principle” (e.g., Tenenbaum & Griffiths,
2001). Vandekerckhove, Verheyen, and Tuerlinckx (in press) study
the response times of a speeded categorization task using the well-
known ‘‘diffusion model” (e.g., Ratcliff, 1978), and use the typical-
ity and familiarity ratings, word frequencies and word length, and
the exemplar generation frequencies as explanatory variables. Zei-
genfuse and Lee (2010) relate the feature matrices to the pairwise
similarity ratings, in an attempt to find which features are impor-
tant for representing the stimuli. Finally, Ceulemans and Storms
(2010) use the similarity data to infer the structured representa-
tional models of domains provided by the HICLAS model (e.g., De
Boeck & Rosenberg, 1988).

Besides the specific research contributions made by each of
these individual articles, we think some more general themes
emerge, and make this special issue, in the best Gestalt tradition,

‘‘different from the sum of its parts.” Many of the papers—in one
form or another—tackle the foundational issue of what makes a fea-
ture an important representational component of a concept. Several
papers focus on a specific part of this issue, examining the ‘‘size
principle”, which asserts a law-like relationship between the sal-
ience of a feature and the number of stimuli that possess the fea-
ture. Other papers explore how stimulus similarity is determined,
trying to understand the roles of common and distinctive features,
and the nature of hierarchical relationships between stimuli.

The articles in the special issue use a broad range of modeling
approaches and philosophies, showing the different ways that con-
temporary psychology can formalize its theoretical ideas. Some
articles focus on the computational level in Marr’s (1982) hierar-
chy, trying to answer the question of why cognition behaves as it
does, while other articles focus on the algorithmic level, trying to
answer the question of how cognition behaves as it does. Some
articles use probabilistic and generative models, while others rely
on discriminative modeling. Some articles seek formal psychologi-
cal laws, reminiscent of empirical sciences like physics, while other
articles seek more general and approximate models, reminiscent of
other empirical sciences like economics. This variety of approaches
provides multiple windows onto the complexities of human repre-
sentation and cognition latent in the data sets, and highlights the
rich set of possibilities currently available for developing formal
psychological accounts of behavioral data.

Finally, we believe that the special issue raises broad methodo-
logical questions and challenges about how psychological model-
ing can best benefit from large data sets. Standard or benchmark
data sets are common in other fields, like machine learning, but
have traditionally been less widely used in psychology, except per-
haps in studying language. We think large and inter-related data
sets should and will become more common in our field, and this
special issue provides an example of how they can be used to help
us understand human representation and cognition.
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