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a b s t r a c t

The bandit problem is a dynamic decision-making task that is simply described, well-suited to controlled
laboratory study, and representative of a broad class of real-world problems. In bandit problems, people
must choose between a set of alternatives, each with different unknown reward rates, to maximize the
total reward they receive over a fixed number of trials. A key feature of the task is that it challenges
people to balance the exploration of unfamiliar choices with the exploitation of familiar ones. We use
a Bayesian model of optimal decision-making on the task, in which how people balance exploration
with exploitation depends on their assumptions about the distribution of reward rates. We also use
Bayesian model selection measures that assess how well people adhere to an optimal decision process,
compared to simpler heuristic decision strategies. Using these models, we make inferences about the
decision-making of 451 participantswho completed a set of bandit problems, and relate variousmeasures
of their performance to other psychological variables, including psychometric assessments of cognitive
abilities and personality traits.We find clear evidence of individual differences in theway the participants
made decisions on the bandit problems, and some interesting correlations with measures of general
intelligence.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Bandit problems

Imagine you are staying in an unfamiliar city for a few weeks,
and are consigned to eat alone each evening. There are a number
of Chinese restaurants, all with essentially the same menu, and all
within a short walk of your hotel. Each menu is cheap enough (or
your expense account is large enough) that whether the meal is
‘good’ or ‘bad’ acts as the sole criterion for choosing one restaurant
over the other.
Over the course of your stay, a natural dining goal would be to

maximize the number of goodmeals. In the first fewdays, pursuing
this goal might involve trying a number of the restaurants. If the
meal on the first night was bad, it seems unlikely you would
re-visit that restaurant on the second night.
Towards the end of your stay, however, it becomes increasingly

likely you will visit the same reasonably good restaurant repeat-
edly, even if it does not produce good meals every night. There
is less incentive to explore options about which you are less cer-
tain, and more incentive to exploit options which are reasonably
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good, and aboutwhich you aremore certain. Because of the limited
nature of your stay, how you search the environment of restau-
rants is likely to move from an initial exploration phase to amature
exploitation phase.
Another source of information that will affect your decision-

making is any potential knowledge you have about the quality
of Chinese restaurants in the city. If the city has a reputation for
havingmany excellent Chinese restaurants, then a smaller number
of badmeals will encourage the trying of alternatives. On the other
hand, if you believe the city does not have many good Chinese
restaurants, a relatively modest success rate at one place might
encourage repeat dining.
It seems clear that your decision-making in trying to maximize

the number of good meals you have is a non-trivial optimization
problem. Choices must be sensitive to previous dining outcomes,
how many days of your stay remain, what you know about the
relevant base-rates for good and bad meals, and the interaction of
all these factors.
This realworld decision-making scenario has the same essential

characteristics as a formal mathematical optimization problem
known as the ‘bandit’ problem,1 which, following its original

1 The name ‘bandit’ problem comes from an analogy with multiple-armed
gaming machines, sometimes known as slot machines or bandit machines. From
this analogy, a sequence of trials on the bandit problem is often called a ‘game’.
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description by Robbins (1952), has been studied extensively in the
machine learning and statistics literatures (e.g., Berry (1972), Berry
and Fristedt (1985), Brezzi and Lai (2002), Gittins (1979, 1989),
Kaebling, Littman, and Moore (1996), Macready and Wolpert
(1998) and Sutton and Barto (1988)). In a general N-armed bandit
problem, there is a set of N bandits, each having some fixed but
unknown rate of reward. On each trial, a decision-maker must
choose a bandit, afterwhich they receive feedback as towhether or
not one unit of probabilistically determined reward was attained.
The decision-maker’s task is, over a set of K trials, to use this
feedback to make a sequence of bandit choices that maximizes
their reward.

1.2. Why study bandit problems?

We believe that bandit problems provide an interesting and
useful task for the study of human capabilities in decision-
making and problem solving. They provide a challenging task,
similar to many real-world problems that is nevertheless simple
to understand. They require people to search their environment
in intelligent ways to make decisions, exploring uncertain
alternatives and exploiting familiar ones. The ability to search
effectively, striking the right balance between exploration and
exploitation, is a basic requirement for successful decision-
making (Gigerenzer & Todd, 1999). Bandit problems also have a
known optimal solution process to which human decision-making
can be compared. Being able to make the distinction between
‘outcome optimal’ and ‘process optimal’ decision-making is useful,
because adherence to the process can always be achieved, but
attainment of the reward is inherently stochastic. This property can
make process optimality a less noisy measure of decision-making
performance than outcome optimality (Lee, 2006).
Early studies of human performance on bandit problems used

models and experimental manipulations motivated by theories of
operant conditioning (e.g., Brand, Wood, and Sakoda (1956) and
Brand, Sakoda, andWoods (1957)). Later studies were informed by
economic theories, leading to a focus on deviations from rationality
in human decision-making (e.g., Anderson (2001), Banks, Olson,
and Porter (1997), Horowitz (1973) and Meyer and Shi (1995)).
Most of these economic studies focused on two-choice bandit
problems, but considered variants on the basic bandit problem we
have defined. In particular, they sometimes fixed the reward rate of
one of the two choices, or,motivated by the economic concept of an
‘infinite horizon’ (i.e., the potential of an arbitrarily long sequence
of decision-making between the alternatives), considered bandit
problems without a fixed number of trials, but instead introduced
a small probability of terminating the problem after any given trial.
Human performance on the bandit problem has also been a recent
focus of interest in cognitive neuroscience (e.g., Cohen, McClure,
and Yu (2007) and Daw, O’Doherty, Dayan, Seymour, and Dolan
(2006)).
One issue that deserves more systematic study involves

individual differences in solving bandit problems. The ability to
solve problems involving the maximization (or minimization) of
some criterion under multiple interacting constraints is generally
regarded as a basic expression of intelligence. Accordingly, how
well people solve optimization problems like bandit problemsmay
provide an interesting window onto differences in basic human
cognitive abilities. A good recent example of this line of inquiry
is provided by Burns, Lee, and Vickers (2006), who explored the
relationship between human performance on optimal stopping
problems known as secretary problems (Gilbert &Mosteller, 1966)
and standard psychometric measures of cognitive abilities. These
authors demonstrated that performance on the Secretary Problem
loaded on fluid intelligence (Gf ), with performance on the problem
also being shown to load approximately 0.4 on a general ability

factor, (g). This g-loading was comparable to that of the Digit
Symbol task from theWechsler Adult Intelligence Scale. In a similar
spirit, it seems worth examining whether people’s abilities to
follow optimal decision processes in bandit problems differ, and
whether any differences are related to psychometric measures of
cognitive abilities.
Performance on bandit problems also seems to have natural

links to personality traits that control risk behavior. Too much
exploration in solving a bandit problem could be regarded as
a form of risk seeking behavior, while too much exploitation
could be regarded as risk averse behavior. Recently, the risk
propensity of clinical and normal populations has been a research
focus in neuropsychology. In particular, clinical populations with
damage to the ventromedial prefrontal cortex, cocaine abusers,
and patients with Aspberger’s syndrome often take decisions
that are risk seeking relative to a normative analysis (Bechara,
Damasio, Damasio, & Anderson, 1994; Yechiam, Busemeyer, Stout,
& Bechara, 2005). In a laboratory setting, risk-taking behavior is
often quantified using tasks such as the Iowa Gambling Task (e.g.,
Bechara et al. (1994), Busemeyer and Stout (2002) and Wood,
Busemeyer, Koling, Cox, andDavis (2005)), which can be conceived
as a special type of bandit problem, and the Balloon Analog
Risk Task (e.g., Wallsten, Pleskac, and Lejuez (2005)). The classic
bandit problems we consider provide another task for continuing
and expanding the study of individual differences in risk-related
behavior.

1.3. Overview

In this paper, we study individual differences in how people
balance exploration and exploitation in solving bandit problems,
using a natural Bayesian extension of the optimal decision model.
The basic idea is to extend the optimal decision process to operate
in a range of environments, characterized by different distributions
over the reward rates. The insight is that people who explore
(i.e., choose alternatives about which less in known) can be
regarded as making optimistic assumptions about the underlying
reward rates, while people who exploit (i.e., choose alternatives
about which more is known) can be regarded as making more
pessimistic assumptions. Within this framework, differences in
human decision-making can be explained in terms of differences
in the assumptions people make about the statistical structure of
their environment.
We begin by giving a formal characterization of the optimal

Bayesian decision process for bandit problems, parameterized by
assumptions about the distribution of underlying reward rates.
We develop a method for inferring these parameters from the
decisions peoplemake solving bandit problems. Thesemethods are
then applied to data from 451 participants, for whom extensive
additional cognitive ability and personality trait measures are
also available. From a basic analysis, we observe that there are
individual differences that make it useful to be able to measure
the extent to which people adhere to the optimal decision process,
rather than simpler heuristic strategies. Accordingly, we develop
a method based on Bayesian model selection to compare the
optimal decision model to a three alternative heuristic models,
with varying degrees of psychological sophistication. When we fit
the models and their parameters to human data, we find clear
evidence of individual differences, both in terms of which model
is used, and what the interesting parameter values are. Finally,
we use our models, together with simpler experimental measures
of performance, to examine how the decision-making of all 451
participants on the bandit problems relates to measures of their
cognitive abilities and personality traits.
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Fig. 1. Optimal decision-making for the same alternatives in a four-choice ten-trial
game, under different assumptions about the environment.

2. Optimal bayesian decision-making for bandit problems

2.1. Environmental assumptions

We assume that the way people might think about bandit
problem environments can be modeled by allowing the reward
rates to come from any Beta distribution. In its standard form,
the Beta distribution has two parameters: a count α of ‘prior
successes’ and a count β of ‘prior failures’. A natural and useful
re-parameterization is to consider α/ (α + β), which is a measure
of the expected rate of reward, and α + β , which is a measure
of the strength of the prior evidence. Psychologically, α/ (α + β)
corresponds to something like the level of ‘optimism’ about reward
rates, while α + β corresponds to something like the ‘certainty’
with which that level of optimism is held.
A consequence of using the flexible Beta environment is

that, based on exactly the same task information, different
values of α and β will lead to different optimal decisions.
Optimistic assumptions about the nature of the environment,
corresponding to believing that it is likely alternatives will have
high reward rates, will tend to lead to optimal decisions involving
exploration on largely untested options. Pessimistic assumptions
about the environment, corresponding to believing that it is likely
alternativeswill have low reward rates, will tend to lead to optimal
decisions involving the exploitation of relatively well known, if not
highly rewarding, alternatives. We note that this perspective on
the balance of exploration and exploitation is quite different from
standard reinforcement learning accounts, such as Q -learning (see
Sutton and Barto (1988)), which view exploration as resulting from
the occasional introduction of randomness into decision-making
processes.
Fig. 1 provides an example of this relationship between

environmental assumptions and optimal decisions. The left panel
shows the state of a game with four alternatives, after eight of
ten trials have been completed. The x-axis corresponds to the
number of failures for each alternative. The y-axis corresponds to
the number of successes. Accordingly, the previous reward history
of each alternative is represented as a point the space, labeled by
that alternative’s numbers. In Fig. 1, the first alternative has not
been chosen; the second alternative has been chosen twice, for
one success and one failure; the third alternative has been chosen
five times, for two successes; and the fourth alternative has been
chosen once, for a lone failure.
The right hand panel of Fig. 1 shows the optimal decision (we

explain how this is calculated in the next section), as a function
of different assumptions about the nature of the environment as
measured by α and β . If it is assumed that α ≥ β , so that there
are many high reward alternatives, then the optimal choice is
the previous unseen first alternative. If, on the other hand, β is
much greater than α, so that their are many low reward rates,
the third alternative, which has been successful the most often

is the optimal choice, particularly since only two trials remain
in the game. Between these extremes, the optimal choice is the
second alternative, for which one success and one failure has been
recorded. The fourth alternative can never be the optimal choice.

2.2. Optimal decision-making in Beta environments

As we have already mentioned, for a fixed environment, the
bandit problem has a known optimal solution process (see, for
example Kaebling et al., 1996, p. 244). Because of the finite
horizon of our bandit problems, the solution does not rely on
well known Gittins’s (1989) indices. Rather, the solution can be
explicitly derived by recursive methods for small enough numbers
of trials and alternatives. The basic idea is that, on the last trial, the
alternative with the greatest expected reward should be chosen.
On the second-last trial, the alternative that leads to the greatest
expected total reward over the remaining two trials should be
chosen, assuming the last trial is chosen optimally in the way
already established. On the third-last trial, the alternative that
leads to the greatest total reward for the remaining three trials
should be chosen, assuming the final two choices are also optimal,
and so on. By continuing backwards through the trial sequence in
this way, it is possible to determine the optimal decision process
for the entire problem.
Formally, our goal is to define an optimal Bayesian decision pro-

cess for a bandit problem, under the assumption that the under-
lying reward rates are independent samples from a Beta (α∗, β∗)
distribution. Denoting the reward rate for the ith alternative as θ gi ,
we can write θ gi ∼ Beta (α

∗, β∗). The constants α∗ and β∗ define
the true environmental distribution from which the reward rates
are drawn, and should be distinguished from the α and β parame-
ters of the decision model, which index the range of possible envi-
ronments that participants could assume.
We denote the decision on the kth trial of the gth game by Dgk ,

and the set of all decisions in a condition by D. On the kth trial, if
the ith alternative is chosen, whether or not a reward is attained
is determined as the outcome of a Bernoulli trial using the reward
rate θ gi , so that R

g
k ∼ Bernoulli

(
θDgk

)
.

To define the optimal decision process with respect to
Beta (α, β) environments, we let Sgk = {s1, f1, . . . , sN , fN}
be the state of the gth game after k trials, where si and fi
count the number of existing successes and failures for the ith
alternative. This is appropriate, because for decision-making, the
only relevant aspects of the game are these counts. We let
uα,βk (s1, f1, . . . , sN , fN) be the expected total additional reward
to be gained by following the optimal decision process for the
remaining trials. Following Kaebling et al. (1996), this can be
calculated recursively, using the update equation

uα,βk (s1, f1, . . . , sN , fN)
= max

i
E [Future reward for choosing ith alternative,

if all subsequent decisions are optimal]

= max
i

[
si + α

si + fi + α + β
uα,βk+1 (s1, f1, . . . , si+1, fi, . . . , sN , fN)

+
fi + β

si + fi + α + β
uα,βk+1 (s1, f1, . . . , si, fi+1, . . . , sN , fN)

]
. (1)

In this equation, the term (si + α) / (si + fi + α + β) is the
probability of a success for the ith alternative in a Beta (α, β)
environment, and (fi + β) / (si + fi + α + β) is the probability of
a failure. The expected additional reward for the last trial uα,βK = 0,
which completes the recursive definition.2

2 The recursive definition to compute expected reward can be programmed
efficiently using dynamic programming techniques that exploit symmetries in the
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The optimal choice, for a specific environment given by α and
β , is simply one that maximizes the total expected reward given
by Eq. (1), so that

p(Dgk = i | S
g
k , α, β) =

{1 if the ith alternative maximizes
the total expected reward,

0 otherwise.
(2)

2.3. Allowing for suboptimal decisions

One practical difficulty with Eq. (2) is that zero likelihood is
given to sub-optimal decisions. From the perspective of making
inferences about human decision-making, this is undesirable,
because it means a person’s behavior can be completely consistent
with some (α, β) combination for all but one decision, but zero
posterior density will be given to that combination as a result of
the one sub-optimal decision.
To address this problem,we introduce an additional responding

parameter w. This parameter is a rate that controls the level of
determinism in decision-making, or, equivalently, the ‘‘accuracy of
execution’’ of the deterministic optimal decision rule. Under this
conception, the responding parameter is not part of the optimal
decision-making process, but, rather, characterizes the inevitable
noise in human behavioral data. For this reason, we continue to
implement the optimal decision-process in its traditional form,
although we note that if the responding parameter were to be
included, this optimal process would have to be augmented.
The basic idea in our approach is that, for high rates of w,

the optimal rule is followed exactly, but as the rate w decreases,
occasionally a non-optimal decision is made. There are many
ways this idea can be implemented formally, including by soft-
max or the Luce (1963) choice rule, or using entropification
methods (Grünwald, 1998; Lee, 2004). We chose a simple
implementation, in which

p(Dgk = i | S
g
k , α, β,w,Mopt)

=

{
w/Nmax if the ith alternative maximizes

total expected reward,
(1− w) / (N − Nmax) otherwise,

(3)

where N is the number of alternatives, and Nmax is the number of
alternatives that maximize reward for a given combination of α
and β .

2.4. Inference using graphical modeling

A graphicalmodel representation (see Jordan (2004) and Koller,
Friedman, Getoor, and Taskar (2007) for statistical introductions,
and Griffiths, Kemp, and Tenenbaum (2008) and Lee (2008) for
psychological introductions) of this Bayesian model is shown in
Fig. 2. The variables of interest are represented as nodes in a graph.
Observed variables, including the decisions of participants (D), the
rewards obtained from choices (R), and the states of the game (S)
that follows from these decisions and rewards have shaded nodes.
Because the states are determined by the sequence of decisions
and rewards, they are deterministic, and have double-lined border.
All of the other variables are stochastic. Unobserved variables,
including the true nature of the environment (α∗, β∗), the reward
rates (θ ) sampled from the environment, the structure assumed by
the participant (α, β), and the determinism of their responding (w)

game states. For example, for N = 4, and K = 15 (the values we will use in our
experiment), there are only 35,876 unique game states that need to be explicity
represented to calculate the expected rewards of any game.

Fig. 2. Graphical model representation of Bayesian optimal decision-making in
Beta environments.

are unshaded. Directed arrows indicate the dependencies between
variables in the model.
The encompassing plates indicate independent replications, so

that there are N alternatives within a game, and G independent
games for an experimental session. To extend our notation to cover
separate games, we use θ gi to denote the reward rate for the ith
alternative in the gth game, Sgk for the state of the gth game after
the kth trial, Dgk for the kth decision in the gth game, and R

g
k for the

reward obtained on the kth trial of the gth game.
To undertake inference using this graphical model, the proba-

bility of a particularα,β combination, based on a series of decisions
D, is given by

p (α, β,w | D) ∝ p (D | α, β,w) p (α, β,w)

=

[
G∏
g=1

K∏
k=1

p
(
Dgk | S

g
k , α, β,w

)]
p (α, β) p (w) . (4)

The conditional probabilities p (Dk | Sk, α, β) are tabulated
according to the optimal decision process for bandit problems
given in Eq. (3). We simply assume a uniform prior on the
responding parameter w. Determining a prior for the beliefs
about the environment is less straightforward. Gelman, Carlin,
Stern, and Rubin (2004, p. 128) suggest an appropriate vague
prior distribution is p(α, β) = (α + β)−

5
2 . Their argument is

that this prior is uniform over the psychologically interpretable
parameterization α/(α+ β) and (α+ β)−1/2. This is an appealing
result, that we adopt. It places a uniform prior over the optimism
about reward rates, and favors smaller levels of certainties or prior
evidence, without being too prescriptive.

3. Experiment

3.1. Subjects

A total of 451 participants completed a series of bandit
problems, as well as battery of other psychological tests, as part
of ‘testweek’ at the University of Amsterdam.

3.2. Method

Each participant completed 20 bandit problems in sequence.
All of the problems had 4 alternatives and 15 trials, and drew the
reward rates for each alternative independently from a Beta (2, 2)
distribution (i.e., we set α∗ = β∗ = 2). The drawing of rates for the
games was done only once, so each participant played games with
the same θ values, but the order of the games was randomized.
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Fig. 3. Basic design of the experimental interface.

A representation of the basic experimental interface is shown
in Fig. 3. The four large panels correspond to the four alternatives,
each of which can be chosen on any trial by pressing the button
below. Within the panel, the outcomes of previous choices are
shown as count bars, with good outcomes on the left, and bad
outcomes on the right. At the top of each panel, the ratio of good
to bad outcomes, if defined, is shown. The top of the interface
provides the count of the total number of good outcomes to the
current point in the game, the position of the current trial within
the sequence, and the position of the current game within the
overall set.3
Thus, in Fig. 3, the first game of 20 involving four alternatives

over 15 trials is being played. Seven trials in this game have been
completed, with the first, second and third alternatives having
been chosen once, three, and three times respectively. Choosing
the first alternative has produced one bad outcomes; the second
and third alternatives have both produced two good and one bad
outcomes. The fourth alternative has not been chosen.

3.3. Basic results

Fig. 4 shows the basic experimental results that motivate our
modeling of the data. The distribution of average reward per trial
is shown for all participants, and is compared to three other
distributions. These other distributions come from 451 simulated
participants, following different decision models. On the left is the
distribution of reward achieved by simulating ‘random’ decisions,
which means having equal probability of choosing each of the
alternatives on each trial.
On the right are two optimal distributions. One corresponds to

following exactly the optimal decision process. The other is a yoked
optimal distribution. This is found by taking the state of the game
at each trial, calculating what the return would have been for that
trial if an optimal decision was followed, and then summing the

3 The actual software used for data collection relied on a ‘fishing game’ cover
story, in which each choice was a pond, and either a frog was caught or was not
caught on every trial. The layout was otherwise the same as Fig. 3, but the more
complicated graphic elements in the real interface are not well suited to journal
reproduction.

Fig. 4. The distribution of average reward per trial for all participants, optimal
decision-making, yoked optimal decision-making, and random decision-making.

scores across trials. In this procedure, the game state is not updated
with the optimal decision. Rather, the game state corresponding
to the actual decision of the participants is always used. In other
words, the yoked distribution corresponds to the return of the
optimal decision process a trial-by-trial basis, with all game states
determined by the decisions of the participants.
It is clear from Fig. 4 that reward associated with the decision-

making of our participants is neither as good as optimal nor as
bad as random, but overlaps considerably with both. The fact that
the yoked distribution is very similar to the optimal distribution
suggests that it is not the case participants make one early sub-
optimal decision, and cannot recover to achieve a good reward
by behaving optimally from the remainder of the game. That is,
the yoked optimal analysis tell us it is likely that participants
make sub-optimal decisions onmany trials, rather than crucial bad
decisions that are difficult to recover from.
Perhaps themost important result in Fig. 4, however, is the large

overlap between the participant and random distributions. One
possible reason for this is that many participants may be making
decisions that can be described by simple heuristic strategies, and
are not necessarily adhering to the optimal decision process. Of
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course, it is not the only possibility, because a poorly executed
optimal strategy could performworse than a good simple heuristic
that is executed accurately. Nevertheless, the overlap evident in
Fig. 4 needs attention. This is because, for inferences about the
assumptions participants make about the environment – through
the α and β parameters – to be useful, it is important to have
evidence that their decisions are consistent with the assumed
optimal decision process. For this reason, we decided to develop
a modeling analysis of the decision-making data that allows for
the evidence for adherence to the optimal decision process to be
assessed.

4. Modeling analysis

4.1. Evidence via model comparison

One way to measure the evidence the decisions made by
participants provide for following the optimal decision process is
to propose alternative accounts of how they completed the task,
and use model selection methods to infer which of these is the
most likely from their behavioral data. To this end, we considered
three heuristicmodels of howpeoplemight solve bandit problems,
and contrasted them with the optimal Bayesian model. The goal
in developing these models was to build a sequence starting from
an extremely simple guessing model, and finishing at the optimal
model, and including between models with an intermediate level
of psychological sophistication. In this way, it is possible to assess
the human decision-making we observed in terms of not only
whether it is consistent with optimality, but also the nature of the
shortcomings when it is less than optimal.
Our first model is an extremely simple guessing model, without

any parameters, to act as a baseline or anchor. According to this
model, every decision on every trial is made by choosing one of
the alternatives at random, with equal probability given to each
possible choice. This guessing model has likelihood function

p(Dgk = i | Mguess) =
1
N
, (5)

where Dgk = imeans the ith alternative is chosen on the kth trial of
the gth game.
Our second model is a version of the classic win-stay lose-shift

model (Robbins, 1952). Under this heuristic, the decision-maker
chooses randomly on the first trial, and subsequently stays with
an alternative with (high) probably λ if they receive a reward,
but switches randomly to another alternative with probability λ
if they do not receive a reward. This model – essentially, but for
the random choice on the first trial – has likelihood function

p(Dgk = i | D
g
k−1 = j, λ,Mwsls)

=


λ if j = i and Rgk−1 = 1
(1− λ) / (N − 1) if j 6= i and Rgk−1 = 1
1− λ if j = i and Rgk−1 = 0
λ/ (N − 1) if j 6= i and Rgk−1 = 0,

(6)

where Rgk−1 = 1means the (k− 1)th trial of the gth game resulted
in a reward. Notice that this model is cognitively very simple.
Unlike the guessing model, it responds to whether or not rewards
are provided, but does so based on only the preceding trial, and so
does not invoke any sort of memory.
Accordingly, our thirdmodel is more complicated, and assumes

the decision-maker does relies on memory of previous trials. We
call it the success ratio model, because decisions are made on the
ratio of successes to failures for each of the alternatives at each trial.
Formally, the model considers the ratio (sx + 1) / (sx + fx + 2) for
the xth alternative, where sx and fx are the number of successes

(i.e., rewards) and failures, respectively, for all the previous trials
of the current game. After evaluating this ratio over all of the
alternative, the model chooses the alternatives having the greatest
ratio with (high) probability δ. If two or more of the alternatives
have the same greatest ratio value, the model chooses randomly
between them. This model has likelihood function

p(Dgk = i | δ,Msr)

=

{
δ/Nmax if i ∈ argmax

x
(sx + 1) / (sx + fx + 2)

(1− δ) / (Nmax) otherwise.
(7)

We compare all four of the models – the guessing, win-
stay lose-shift, success ratio, and optimal models – using Bayes
Factors (Kass & Raftery, 1995). This is a standard method of
Bayesian model selection, which compares the average likelihood
of a participant’s decisions being generated under one model
rather than the other. Using the guessing model as a low-
end benchmark, this gave us three Bayes Factors, involving the
following ratios of marginal densities:

BFopt =
p
(
D | Mopt

)
p
(
D | Mguess

)
=

∫
p
(
D | α, β,w,Mopt

)
p (α, β) p (w) dα dβ dw

p
(
D | Mguess

)

=

∫∫∫ [ G∏
g=1

K∏
k=1
p
(
Dgk | S

g
k , α, β,w,Mopt

)]
p (α, β) p (w) dα dβ dw

G∏
g=1

K∏
k=1
p
(
Dgk | Mguess

) ,

(8)

BFwsls =
p (D | Mwsls)
p
(
D | Mguess

)
=

∫
p (D | λ,Mwsls) p (λ) dλ
p
(
D | Mguess

)

=

∫ [ G∏
g=1

K∏
k=1
p
(
Dgk | R

g
k−1, λ

)]
p (λ) dλ

G∏
g=1

K∏
k=1
p
(
Dgk | Mguess

) , (9)

BFsr =
p (D | Msr)
p
(
D | Mguess

)
=

∫
p (D | δ,Msr) p (δ) dδ
p
(
D | Mguess

)

=

∫ [ G∏
g=1

K∏
k=1
p
(
Dgk | δ

)]
p (δ) dδ

G∏
g=1

K∏
k=1
p
(
Dgk | Mguess

) . (10)

We estimated these three BFmeasures for every participant, using
brute-force methods based on a finite grid to approximate the
required integrals. This grid had 40 evenly-spaced points over the
domain (0, 1) for thew, λ and δ parameters, and both the α and β
parameters were sampled from 0.2 to 5 in increments of 0.3.

4.2. Model recovery ability

To test the usefulness of the Bayes Factor model selection
measures, and the general identifiability of our models, we
conducted a simulation study, using the same set of problems
encountered by our participants. We generated four artificial
decision-making data sets by simulating 451 participants, with
each of the sets corresponding to one of the guessing, win-stay
lose-shift, success ratio, and optimal models.



Author's personal copy

174 M. Steyvers et al. / Journal of Mathematical Psychology 53 (2009) 168–179

Fig. 5. Results of the artificial model recovery analysis, showing the distribution of the three log BF measures over simulated participants whose data were generated by
each of the four models.

Table 1
Model recovery performance, showing the proportion of simulated participants
inferred to belong to each model for each of the four generating data sets.

Generating model Guessing Win-stay lose-shift Success ratio Optimal

Guessing 98 0 0 2
Win-stay
lose-shift

0 100 0 0

Success ratio 0 0 100 0
Optimal 0 0 0 100

Because we conceive of thew, λ and δ parameters as ‘‘accuracy
of execution’’ parameters – describing how an essentially deter-
ministic decision process is translated to noisy observed choice be-
havior – we set them to the value 1 in generating artificial data.
This corresponds to ideal execution of the decision strategy.4 For
the optimal model, we also need to choose values for the assumed
nature of the environment, and here we chose to set α = β = 2.
For every simulated participant in every condition, we then

made two analyses of their decision data. First, we calculated
the log BF measures, to find which of the four models was best
supported. Here we used uniform priors over the w, λ and δ
parameters. Then, we found the maximum a posteriori (MAP)
estimates of the parameters of the best supported model, unless
the best model was the parameter-free guessing model.
Fig. 5 summarizes the results of the first step in this analysis.

Each of the four panels shows the distribution over all participants
of the three log BFmeasures, relative to the guessingmodel, which
by definition always sits at zero. A positive log BF value for one

4 In separate simulation studies not reported here, we also tested the ability to
recover artificial data generated by thewin-stay lose-shift and success ratiomodels
with λ and δ values ranging uniformly between 0 and 1, and found parameter
recovery to be excellent.

of the other three models constitutes evidence that participants
were using that model rather than the guessing model, and
the greater the values between competing models, the better
supported they are.
It is clear from this analysis that our inference methods are

able to recover the underlying decision models well, since there
is little overlap between the best distribution and its competitors
in each case. The exact level of recovery cannot, however, be
gleaned from Fig. 5 alone, because information about where each
individual simulated participant lies within the three distributions
is not shown. Accordingly, Table 1 presents the participant-specific
details of the recovery. Over all of the simulations, the correct
model always had the most evidence for data generated using the
optimal, win-stay lose-shift and success ratiomodels. The guessing
model data were correctly recovered 98% of the time, with the
remaining 2% being attributed to the optimalmodel, as can be seen
in the top-left panel of Fig. 5. These results means we can have
confidence applying the log BF measure to participants in our real
behavioral data.
Fig. 6 summarizes the results of the second step in the model

recovery analysis, showing the distribution of MAP parameter
estimates over simulated subjects, conditional on the model being
the one recovered by the log BF measures. The large panel shows
the distribution of α and β parameters of the optimal model in
terms of the psychologically interpretable optimism α/ (α + β)
and confidence α + β parameterization. The true environmental
values α∗ = β∗ = 2 in this parameterization are shown by
the cross. The circles indicate the distribution of participants MAP
estimates, with the area of the circle being proportion to the
number of participants at each possible point in the parameter
space. Recovery is clearly very good, although there is some minor
deviation from the true generating values for a few simulated
subjects. The smaller panels in Fig. 6 show the distribution of the
w, λ and δ accuracy of execution parameters. It is clear that these
are perfectly recovered.
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Fig. 6. Distributions of parameter estimates in the artificial model recovery analysis. The large panel relates to the α and β parameters of the optimal model, with the true
generating value shown by the cross. The three smaller panels relate to thew, λ and δ accuracy of execution parameters.

Fig. 7. The distribution of the log BF measures over the participant data (left panel), and the sub-division into the proportions best supported by each of the four models
(right panel).

5. Modeling results

In this section, we apply themodels to the human data, in order
to make inference about which model and parameterization best
describes their decision-making. We then use information from
these inferences to explore the relationship between individual
decision-making and various psychometric and personality vari-
ables.

5.1. Bandit problem decision-making

We begin by applying the log BF measures to the data for each
of the 451 human participants, assuming uniform priors on thew,
λ and δ parameters. The results are summarized in Fig. 7. The left
panel shows the distribution of log BF measures. The right panel
shows the break-down of the participants into the proportions
who best supported each of the four models (i.e., the MAP model
estimate, assuming equal priors).
As anticipated from our original analysis of average reward

distributions, there is clear evidence of individual differences in
Fig. 7, with a significant proportion of participants being most
consistent with all three of the optimal, success ratio, and win-
stay lose-shift models. Interestingly, about half of our participants
were most consistent with the psychologically simple win-stay
lose-shift strategy, while the remainder were fairly evenly divided
between themore sophisticated success ratio and optimal models.

Very few participants provided evidence for the guessing model,
consistent with these participants being ‘contaminants’, who did
not try to do the task.
One interpretation of these results is that subsets of participants

use successively more sophisticated decision-making strategies.
The win-stay lose-shift decision model does not involve any form
of memory, but simply reacts to the presence or absence of reward
on the previous trial. The success ratio model involves comparing
the entire reward history of each alternative over the course of the
game, and so does require memory, but is not explicitly sensitive
to the finite horizon of the bandit problem. The optimal model is
sensitive to the finite horizon, and to the entire reward history, and
so involves trading off exploration and exploitation. Fig. 7 suggests
that sizeable subsets of participants fell at each of these three levels
of psychological sophistication.
Fig. 8 shows the distribution of MAP parameter estimates,

conditional on the model with the most Bayes Factor evidence.
The three smaller panels in Fig. 8 show that, with the occasional
exception of the w parameter for the optimal model, the inferred
accuracy of execution was generally high. More interestingly, the
large panel shows the distribution for the α and β parameters of
the optimal model, in the α/ (α + β) and α+ β parameterization.
It is clear that the participants behaving consistently with the
optimal model show evidence of large individual differences. A
broad range of average reward rates α/ (α + β) is spanned by
the MAP estimates. The certainty α + β estimates are generally
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Fig. 8. MAP estimates of the parameters for the optimal, success-ratio and win-stay-lose-shift models, based on just those subjects whose behavior was best accounted for
by each of these models.

Fig. 9. Proportion of participants best supported by each of the four models, using
the log BF measure with different prior assumptions about the accuracy of model
execution.

low (and lower than the true state of the environment), but
some participants behave consistently with assuming much larger
values.
A sensible question to ask how the key result in Fig. 7 –

which shows how participants are allocated to the four models
– might be affected by different prior assumptions about the
responding parametersw,λ and δ. These parameters are conceived
as measuring the probability that the optimal, win-stay lose-shift,
and success-ratio deterministic models will be followed on any
trial. While we do not expect these accuracies of executions to
be perfect, we do expect them to be relatively high. In this sense,
placing a uniform prior on the w, λ and δ does not match our
expectations well.
To address this issue, we repeated the log BF analysis for eight

other prior distributions. These were the Beta (2, 2), Beta (4, 4),
Beta (2, 1), Beta (4, 2), Beta (8, 4), Beta (4, 1), Beta (8, 2) and
Beta (16, 4) distributions. Using the interpretation of the param-
eters of the Beta distribution as ‘prior successes’ and ‘prior fail-
ures’, it is clear the last six variants give more weight to accurate
over inaccurate execution of the models. As a set, these prior dis-
tributions correspond much more closely to a reasonable range of
assumptions that might be made about the accuracy of execution
parameters.
The results of the log BF analysis with the alternative priors,

together with the original analysis using the uniform Beta (1, 1)
prior, are shown in Fig. 9. Each stacked bar graph running

horizontally corresponds to a prior distribution, and the areas for
each model correspond to the number of participants inferred to
belong to thatmodel. It is clear that the different prior assumptions
about the accuracy with which people apply the models makes
only minor differences to the assignment proportions. The basic
conclusion that there are many win-stay lose-shift participants,
some optimal and success-ratio participants, and few guessing
participants, holds over the entire range of plausible prior
assumptions.

5.2. Relationship to psychological variables

To examine the relationship between howall of the participants
made decisions on the bandit problem, and other psychological
traits measured as part of the test battery, we considered a set of
16 variables that characterize various interesting aspects of how
the bandit problems were solved. These variables are defined in
Table 2. They include a series of variables – explore, exploit, better,
worse and untried – that count the number of decisions made
according to simple rules involving the state of the game.
The ‘explore’ count is the number of times, over all decisions

in all games, that a participant chose an alternative with
fewer successes and fewer failures than another alternative. For
the sample game state shown in Fig. 3, choosing the fourth
alternative would correspond to an ‘explore’ decision in relation
to alternatives two and three, because it has fewer successes and
fewer failures than both. The ‘exploit’ count is the number of times
a participant chose an alternative with more successes and more
failures than another alternative. In Fig. 3, choosing the second
or third alternative would correspond to an ‘exploit’ decision in
relation to the fourth alternative, because they both have more
successes and more failures. The ‘better’ count is the number of
times a participant chose an alternative with more successes and
fewer failures than another alternative. In Fig. 3, choosing the
second, third, or fourth alternatives would correspond to a ‘better’
decision in relation to the first alternative, because they havemore
successes and fewer failures. The ‘worse’ count is the number of
times a participant chose an alternative with fewer successes and
more failures than another alternative. In Fig. 3, choosing the first
alternativewould correspond to a ‘worse’ decision in relation to the
second, third, or fourth alternatives, because it has more successes
and fewer failures than the others. Finally, the ‘untried’ count is
the number of times a participant chose an alternative that had
never been chosen before. In Fig. 3, this corresponds to choosing
the fourth alternative.
The other decision variables in Table 2 include the average

reward per trial achieved by the participant, which corresponds
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Table 2
Explanations of the decision-making variables.

Variable Explanation

Explore The number of times a participant chose an
alternative with fewer successes and fewer
failures than another alternative.

Exploit The number of times a participant chose an
alternative with more successes andmore
failures than another alternative.

Better The number of times a participant chose an
alternative with more successes and fewer
failures than another alternative.

Worse The number of times a participant chose an
alternative with fewer successes andmore
failures than another alternative

Untried The number of times a participant chose an
alternative that had never been chosen before.

Return The average reward per trial achieved by the
participant.

Expected The expected reward per trial for the decisions
made by the participant.

Difference, d The absolute difference between the expected
reward in the environment, and inferred MAP
estimates of α and β .

Optimism, α/ (α + β) The value of the expected reward in the
environment inferred from the MAP estimates of
α and β .

Certainty, α + β The certainty in the expected reward in the
environment inferred from the MAP estimates of
α and β .

Execution,w The MAP estimate of thew accuracy of execution
in the optimal decision model.

Execution, λ The MAP estimate of the λ accuracy of execution
in the win-stay lose-shift model.

Execution, δ The MAP estimate of the δ accuracy of execution
in the success ratio model.

log BFopt The log Bayes Factor measure comparing the
optimal and guessing models.

log BFwsls The log Bayes Factor measure comparing the
win-stay lose-shift and guessing models.

log BFsr The log Bayes Factor measure comparing the
success ratio and guessing models.

to the outcomes of the decisions, as seen by the participant,
and the expected reward per trial for the decisions made by the
participant, which corresponds to the underlying rate of reward
for each alternative chosen, and so is not directly observed by the
participant. The absolute difference between the expected reward
in the environment, and that inferred from the MAP estimates is
included as variable d = |α/ (α + β)− 0.5|. The MAP estimate
measures of optimismα/ (α + β) and certaintyα+β are included,
together with the MAP estimates of the w, λ and δ accuracy
of execution parameters. Finally, the three log BF measures that
compare the optimal, success ratio and win-stay lose-shift models
to guessing model are included.
We examined the relationship of each of the decision variables

to a set of 12 psychological variables. These included basic demo-
graphic information such as gender and age; psychometric mea-
sures of intelligence, including a measure of general intelligence g
and two versions of the Ravens progressivematrices (Raven, Court,
& Raven, 1988); and measures of personality traits, including cre-
ativity, self control, change, extraversion, neuroticism, and rigidity,
that seemed plausibly related to the risk attitude balance inherent
in balancing exploration and exploitation.
Table 3 gives the correlations between each decision-making

variables and each psychological variable. Those correlations that
are significantly different from zero using the bootstrapped 95%
confidence interval are highlighted in bold. There are relatively few
significant correlations, and those that are significant are not large.
Accordingly, we view this analysis as exploratory and suggestive at
best, and interpret the results with caution.
The most interesting finding is that the log BFopt and log BFsr

measures have significant positive correlations with the g and

Ravens 2 intelligence measures. This suggests the ability of
participants to follow the optimal or a near-optimal decision
process provides an indication of their general intelligence. We
note that basic experimental measures, such as the achieved rate
of return and expected rate of return, do not correlate with these
intelligence measures, nor does evidence of using the win-stay
lose-shift decision strategy. This underscores the usefulness of the
model-based approach we have used to characterize the decision-
making abilities of the participants.
Table 3 also shows that participants with a higher intelligence

– as measured by g and the two Ravens measures – show
smaller deviations d from the true average reward rate. This
means that more ‘intelligent’ participants are not only better
able to approximate the optimal decision strategy, but they also
better approximate to the true environmental parameters used in
the experiment. The demographic variables show few interesting
correlations.
Finally, we note that the relationships between bandit prob-

lem decision-making and personality variables are also surpris-
ingly weak. One could have speculated, a priori, that participants
associated with higher risk-seeking behavior, creativity, or neu-
roticism would show a preference towards exploration, but there
are few discernable pattern in the correlations. The one possibility
relates to rigidity, which is negatively correlated with the log BFopt
and log BFsr, and suggests that too much rigidity somehow pre-
vents the adoption of optimal or near-optimal decision-making.

6. Discussion

The bandit problem provides an interesting decision-making
task that is amenable to formal analysis, but realistic enough
to engage many important issues in understanding how people
search for information and make choices. In this paper, we have
focused on the tradeoff between exploration and exploitation in
decision-making that lies at the heart of the problem. In particular,
we were interested in whether there are individual differences in
how people make the tradeoff, and how any differences might be
related to broader psychological constructs including intelligence
and personality.
We developed an extension of the optimal decision process that

allows for people to have different assumptions – ranging from
optimistic to pessimistic – about the statistical structure of the
reward rates of alternatives. Using Bayesian methods, we showed
how it is possible tomake inferences about people’s environmental
assumptions from behavioral data. Our artificial recovery studies
showed that thesemethodsworkwell, evenwith a relatively small
number of data.
We think our results highlight the benefits of developing formal

models to test empirical hypotheses. Models in the cognitive
science canbe thought of asmechanisms for related rawbehavioral
data to a (usually much smaller) set of latent and psychologically
meaningful parameters that generated the behavior. Having the
freedom to express alternative accounts of decision-making as
statistical models, and using them to infer these underlying
parameters, is a powerful combination. For example, using the
Bayes Factor to compare behavioral evidence for optimal decision-
making versus alternative heuristic models of simpler decision-
making, allowed us to process a large but very variable data set
in a principled way.
Even more compellingly, it is the model-based measures, and

not the simple experimental measures, that provided the most
insight in exploring the relationship people’s bandit problem
performance to their intelligence and personality measures. We
found that standard psychometric measures of intelligence had
significant correlations with a Bayes Factor model selection
measure of the optimality of people’s decision-making, but this
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Table 3
Pearson product–moment correlations between each decision variables and each psychological variable. Bold entries indicate correlationswith bootstrapped 95% confidence
intervals that do not include 0. (Note: Gender was encoded as male= 1, female= 2.)

Explore Exploit Better Worse Untried Return Expected d α
α+β

α+β w λ δ log BFopt log BFwsls log BFsr

Gender 0.12 −0.12 0.07 0.08 0.01 −0.04 0.01 0.06 0.01 −0.12 −0.08 0.06 −0.11 −0.09 0.05 −0.11
Age −0.05 0.01 −0.01 0 −0.03 0.01 0.02 0.05 −0.02 −0.01 0.05 0.05 0.02 0.05 0.09 0.03
g −0.09 0.03 0.05 −0.09 0.06 0.04 0.04 −0.18 0.10 0.06 0.11 0.07 0.15 0.13 −0.02 0.13
Ravens 1 −0.09 0.02 0.05 −0.10 0.05 0.04 0.03 −0.14 0.09 −0.01 0.08 0.06 0.08 0.08 −0.02 0.06
Ravens 2 −0.07 0.06 0.03 −0.16 0.02 0.05 0.03 −0.11 0.09 0.03 0.16 0.13 0.16 0.15 0.06 0.13
Creativity 0.02 0.01 −0.01 −0.01 0.05 0.03 0.01 −0.09 0.03 0 0.03 0.03 0.09 0.03 0.01 0.07
Self Control −0.02 −0.02 0.07 −0.09 0.01 0.01 −0.02 0 0.03 −0.01 0.05 0.08 0.05 0.02 0.03 0.02
Change 0.08 −0.06 0 0.09 0.03 −0.03 −0.02 −0.03 0.03 −0.02 −0.06 −0.01 −0.06 −0.06 0 −0.06
Order 0.09 −0.03 0.01 −0.03 −0.01 −0.01 −0.02 0.01 −0.06 −0.06 0.02 0.06 0.03 0.02 0.07 0.02
Extraversion 0.03 −0.04 0.01 0.05 0.04 0.03 0.05 −0.06 0.03 −0.02 −0.04 0 −0.03 −0.02 −0.02 −0.02
Neuroticism −0.01 0.07 −0.11 0.02 −0.13 −0.04 −0.01 0.10 −0.09 0.05 0.02 −0.02 −0.03 0.01 0.06 0.01
Rigidity 0.11 −0.08 0.00 0.11 0.03 −0.10 −0.04 0.04 0.01 −0.11 −0.09 0.01 −0.11 −0.11 0.03 −0.12

relationship was not detected by simpler measures like the
achieved average return.
One important way to extend the work we report here is to

consider a richer and larger set of possible models as accounts of
people’s decision-making. There are obviously many possibilities,
but we want to highlight one we suspect is particularly important.
This is the ‘soft-max’ extension of the success-ratio model we
used, which introduces an additional parameter to control the
exploration–exploitation tradeoff. This model is well established
in the reinforcement learning literature (Kaelbling, 1993), and is
still widely used (e.g, Daw et al. (2006)). We expect that fitting this
model to behavioral data would provide a parameter-estimation
approach to understanding how people make decisions on bandit
problems, andwould complement our approach based on applying
model selectionmethods to a set of simple deterministic heuristics.
The other important way to extend the study of exploration

and exploitation in bandit problems, building on the current
Bayesian optimal model, is to consider learning. In this paper,
we have assumed that people have one fixed assumption about
the distribution of rewards in the environment. A more realistic
assumption would be that, at least over the course of completing
a large number of problems, people are able to learn from the task
what their assumptions should be. If an environment proves to
be plentiful, with many high reward rates, there should be a shift
towards exploration. In scarce environments, there should be a
shift towards exploitation. Our Bayesian model can be extended
to have the capability to learn, in optimal ways, from feedback as
decisions are made. In this way, it is possible to continue using a
model-based approach to examine how people adjust exploration
and exploitation as they are confronted with different sorts of
environments.
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