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Abstract 

Category-based feature generalisations are affected by 
similarity relationships between objects and by knowledge of 
causal relationships between features. However, there is 
disagreement between recent studies about whether people 
will simultaneously consider both relationships. To help 
resolve this discrepancy, the current study addresses an 
important difference between past experimental designs: the 
strength of causal relationships between features. Participants 
were trained on a set of four different kinds of artificial alien 
animals (with a known perceptual similarity structure), and 
were taught about three novel features. Participants were 
taught that either: 1) there were no relationships between the 
three features; 2) the features shared weak causal 
relationships; or 3) the features shared strong causal 
relationships. After training, all participants then made 
predictions about the features of the four kinds of animals. As 
expected, it was found that the strength of the causal 
relationships influenced the degree to which participants’ 
feature predictions were affected by causal and similarity 
considerations. Three probabilistic graphical models were fit 
to the participants’ predictions, in a preliminary effort to 
predict participant responses. 
 

Keywords: feature inference; causal information; similarity; 
graphical models. 

Informants of Feature Inference 

Inferring or predicting unobserved properties of objects is 

something that we do frequently in our daily lives, often 

with little conscious effort. We make decisions about 

inductive problems such as, “Is this coffee too hot to 

drink?” or “Is it safe to pat this dog?”. Feature inferences of 

this sort involve generalising existing knowledge in light of 

the observed properties of the stimulus before us. For 

example, we may think that this cup of coffee looks a lot 

like the extremely hot one that we were given yesterday, and 

so today’s coffee is also probably too hot. Alternatively, we 

may consider that this coffee was made 20 minutes ago, so 

has probably cooled by now. These two coffee 

considerations can be thought of as examples of two 

different types of information that may be used when 

inferring a feature: similarity relationships between objects 

(i.e., comparing today’s coffee with those previously 

experienced) and causal relationships between features of an 

object (i.e., the coffee’s temperature is causally related to 

the “age” of the coffee).
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Experimenters have studied the use of each of these types 

of information separately. There is experimental evidence 

that people do consider similarity relationships between 

objects (e.g., Carey, 1985; Rips, 1975). For example, if told 

that a mouse has some novel enzyme X, people generally 

agree that a rat is more likely to also have this same enzyme 

than is a sheep. It has also been shown that people do 

consider causal relationships between features (e.g., Heit & 

Rubenstein, 1994; Rehder & Burnett, 2005), such as if an 

animal has wings, it can probably fly. 

It will often be rational and useful to simultaneously 

consider both types of relationships. For example, imagine 

seeing a fairy penguin for the first time, and trying to predict 

whether it can fly. It has wings, so normally you would 

predict that it can fly. However, this particular bird looks 

rather similar to other penguins that you have seen before, 

which you know cannot fly. Therefore, it would be 

reasonable to predict that this new bird is unlikely to fly. 

(For a similar example about predicting lung cancer, see 

Kemp, Shafto, Berke & Tenenbaum, 2007). 

It is quite easy to imagine scenarios such as this where the 

two types of information should be integrated. However, 

there is mixed experimental evidence as to whether people 

will simultaneously consider both similarity relationships 

between objects and causal relationships between features, 

when such information is available. Recent studies by 

Rehder (2006) and Kemp et al. (2007) find seemingly 

contradictory results. Rehder’s experiments suggest that 

people use only one or the other information types, and that 

if people have causal knowledge about properties, this will 

often draw attention away from similarity information. 

Rehder trained participants on novel categories, such as 

                                                           
1 Note that referring to relationships between objects as 

“similarity” relationships and relationships between features as 

“causal” is mostly for descriptive convenience: relationships 

between objects can often be causal too, such as phylogenetic 

relationships between animals. The key distinction here is 

relationships between objects versus relationships between features 

of an object. 



“Kehoe Ants”, which were presented as lists of 

characteristic category features such as “Blood high in iron 

sulfate”. In Experiment 3, for example, when participants 

were told of a causal relationship between a characteristic 

(cause) feature and a novel (effect) feature, decisions of 

whether this novel feature could be generalised from one 

category member to another were largely unaffected by the 

degree of similarity shared by two category members. 

Rather, generalisation decisions were based primarily upon 

whether the causal feature was or was not present in the 

second target category member. 

In contrast, Kemp et al. (2007) found evidence that people 

do incorporate both causal and similarity information. The 

experimental design was quite different. Participants were 

trained on causal relationships between three novel 

enzymes, such as “percidase”. Participants then made 

generalisation decisions about the presence of each enzyme 

in four real animals of varied similarity. Participants’ 

feature generalisations were best accounted for by a model 

that captured both the tree-structured similarity relationships 

between animals and the causal relationships between the 

three features. 

One possible explanation for this discrepancy of results is 

the apparent strength or certainty of the causal relationships 

between features that were available for consideration 

during the experimental tasks. It has been shown that 

people’s feature generalisations are sensitive to the strength 

of relevant causal relations between features (Rehder, 2009). 

Causal strength may explain the discrepancy here because 

similarity information may be considered relevant to 

informing feature predictions only when there is uncertainty 

about any causal relationships between features. It seems 

that the causal relationships taught by Rehder (2006) were 

strong, deterministic relationships. Rehder explicitly told 

participants that the novel feature under consideration for 

generalisation “is caused by” one of the characteristic 

category features (e.g., the novel feature may be “Has a 

venom that gives it a stinging bite”, and participants were 

told that “The stinging sensation is caused by the high 

concentration of sulfate in the venom.”). Rehder’s 

experimental results suggest that participants may have 

interpreted these causal relationships as deterministic: to the 

extent that a causal feature was likely to be present, 

participants tended to predict that an effect feature would 

also be present. Consequently, when participants made the 

feature inferences in Rehder’s experiments, perhaps the 

similarity information was considered to be of little 

importance, because the causal relationships appeared 

certain (see Schulz & Sommerville, 2006). 

In contrast, Kemp et al. (2007) taught weaker, 

probabilistic relationships. Participants were shown that the 

three enzymes tended to cause each other, but the causal 

relationships were not deterministic. It may be the case that 

participants then went on to combine the causal and 

similarity relationships in the subsequent test phase because 

there was uncertainty about whether the causal relationships 

would hold, and thus similarity information was still useful. 

The aim of the current study is to demonstrate that the 

strength of causal relationships between features affects 

whether people integrate both similarity relationships 

between objects and causal relationships between features. 

The goal is to further our understanding of the conditions 

under which people integrate both types of information 

when making category-based feature inferences. 

Furthermore, this will help to resolve the different findings 

of Rehder (2006) and Kemp et al. (2007). 

The plan of this paper is as follows. First, three models of 

feature inference will be presented and then the experiment 

and its results will be outlined. Finally the predictions of the 

three models will be compared with the experiment’s data. 

Models 

The predictions of three preliminary probabilistic graphical 

models of feature inference will be compared. The simplest 

model considers only the causal relationships between 

features. A second model considers only the similarity 

relationships between objects, and a final model combines 

both relationship types. These models are based on those 

used by Kemp et al. (2007). The models infer parameters 

that control feature transmissions within or between objects. 

Each model can then make posterior predictions that 

correspond to the feature inferences that people should draw 

if they are using the same structure as the model to inform 

their inferences. The models were implemented in 

WinBUGS (Lunn, Thomas, Best & Spiegelhalter, 2000) and 

are qualitatively described here. Further details of the 

models can be found in Lee & Wagenmakers (2009). 

Causal Model 

The causal model involves simple feature transmission 

along a causal feature structure. For this experiment, there 

are three binary features that are linked in a causal chain, so 

that the presence or absence of earlier features in the chain 

influences the presence or absence of later features (see 

Figure 1, right panel). The causal model (just like the 

participants) is given this basic causal chain structure, then 

learns three probability parameters that control the causal 

feature transmission process for each object. The presence 

or absence of the first feature for an object is determined by 

a base-rate γ. If this first feature is absent, then the second 

feature for the object becomes present with probability α. If 

the first feature is present, then the second feature is also 

present with probability β. Similarly, the third feature for 

the object is present with probability α if the second feature 

is absent, or with probability β if the second feature is 

present. These parameters are inferred from training 

observations of the presence or absence of the features for a 

set of objects. These are the same training observations that 

participants see during the experiment. The model 

“observes” one of the three sets of training data shown in 

Table 1 (see the Procedure section).  



f1 f2 f3

 
Figure 1: Left panel: the similarity relationships between the 

four “alien animal” objects, modelled as a taxonomic tree 

structure. The black lines are the “branches” of the tree, and 

the black dots are the “internal nodes”, which are both 

discussed below. Right panel: Causal chain relationships 

between three features, f1 to f3. 

Similarity Model 

The similarity model captures similarity relationships 

between objects, using a taxonomic tree structure, as shown 

in Figure 1 (left panel). This tree represents the perceptual 

similarity between the four “alien animals”, but for real 

objects, such a tree could capture the intuitive similarity 

between objects, or even the shared evolutionary history of 

fauna or flora. In the similarity model, four objects lie at the 

terminal nodes or “leaves” of a tree, and a mutation process 

across the tree determines how the objects obtain or 

“inherit” their features. The idea is that a feature begins at 

the root node of the tree, then is transmitted down the tree, 

via internal nodes, to the objects. Along any branch of the 

tree, a feature can “mutate” or be switched from present to 

absent or from absent to present. As defined by Kemp et al. 

(2007), the probabilities of these switches depend on both 

the length of the branch between nodes, and on a mutation 

rate parameter. This model can produce the expected 

generalisation gradient for the “alien animal” objects in 

Figure 1, whereby if a feature is present for the topmost 

object, it will be predicted that the second (most similar) 

object will be more likely to share this feature than the third 

and fourth (more dissimilar) objects.  

Integrated Model: Root Variables Hypothesis 

The final model augments the first model that captures 

causal relationships between features with the similarity 

model that captures the taxonomic structure shared by 

objects. This integrated model is based on the idea that 

similarity relationships are used for predicting unobserved 

root cause features (f1 in Figure 1) in a causal structure. 

(This idea is similar to the root-variables hypothesis, 

suggested by Rehder; see Kemp et al., 2007.) In this model, 

the similarity tree-plus-mutation model is used to predict the 

presence of the first feature for each object and then the 

feature transmission chains from the causal model follow 

from these first features, to predict the second and third 

features. Note that this model is a simplified version of the 

full integrated model used by Kemp et al. (2007), which 

integrates the taxonomic similarity and causal feature 

structure for the second and third features. The scope of this 

paper is limited to examining a simpler way of integrating 

the similarity and causal structures. 

Experiment 

In this experiment, the strength of causal relationships 

between features was directly manipulated, to test the 

effects on feature inferences. The main conditions of interest 

were the weak causal relationships and strong causal 

relationships conditions, which involve feature relationships 

that correspond to those used by Kemp et al. (2007) and 

Rehder (2006), respectively. There was also a no 

relationships condition that served as a baseline. The design 

of the current study was based on that of Kemp et al. (2007), 

with new extensions that are highlighted below. 

Method 

Participants. Participants were 62 people
2
, recruited from 

the general community (30 males, 32 females). Ages ranged 

from 18 to 41 years. Participants went in a draw to win gift 

vouchers.  

 

Materials. Stimuli were selected for this experiment with 

two goals in mind. The first goal was to match the objects 

and features as closely as possible in terms of both their 

novelty and inherent structure. Meeting this goal helped to 

ensure a fair test as to whether people would consider the 

similarity or causal relationships. While Kemp et al. (2007) 

used real animals, but novel enzymes for the features, the 

current study used both novel “alien” animals, and novel 

features. Images were used to present the animal objects, so 

that the objects had an immediate perceptual similarity 

structure. Three features were also chosen that were more 

meaningful than arbitrarily related novel enzymes, with the 

potential to share believable causal relationships, as 

described below. Thus the features, like the animal objects, 

also had some inherent structure. The second goal was to 

use a set of objects and a set of features that were both semi-

realistic and as engaging as possible for participants, in an 

attempt to encourage sensible and ecologically valid feature 

inference behaviour. 

For the novel animals, four “greeble” images were 

selected, as shown in Figure 1, which are made available 

courtesy of Michael J. Tarr (http://www.tarrlab.org/). The 

four greebles were selected on the basis of objective 

similarity data collected from an odd-one-out task (Stephens 

& Navarro, 2008), to have a tree-based similarity structure 

similar to that of the animals used by Kemp et al. (2007). 

The lengths of branches in the tree were found using counts 

of the times each greeble was chosen by participants as the  
 

                                                           
2 Nine participants were removed from the weak cause 

condition, for failing to demonstrate an understanding of the causal 

relationships in the causal pre-test and the first simpler test phase 

task. This did not alter the overall conclusions. 



Table 1: Counts of training charts shown to participants in 

each condition, to reinforce the causal relationships taught. 

In column 1, “1” marks the presence of a feature and “0” 

marks the absence, for the three features:  

f1 = spanastete molecule, f2 = oily surface substance and  

f3 = pungent smell. 

 

Training 

examples: 

f1  f2  f3 

Condition 

No 

relationships 

Weak 

cause 

Strong 

cause 

1 1 1 3 7 12 

0 0 0 3 7 12 

1 0 0 3 3 0 

0 1 0 3 1 0 

0 0 1 3 3 0 

1 1 0 3 3 0 

0 1 1 3 3 0 

1 0 1 3 1 0 

 

odd one out, for each triple shown during the odd-one-out 

task (see Figure 1, left panel). In the current study, the 

greeble images were presented to participants with the 

explanation that each image represents a different kind 

within a class of alien animals. For each participant, each 

greeble image was randomly assigned one of the names 

shown in Figure 2, to the left of the greebles. 

Finally, three features were chosen that were novel, but 

could share sensical, uni-directional, causal chain 

relationships. The three features were: 1) whether a greeble 

has the spanastete molecule; 2) whether a greeble has an 

oily substance on its surface; 3) whether a greeble has a 

pungent smell. 

 

Procedure. Participants were given a cover story asking 

them to imagine they were a biologist specialising in alien 

life forms. Participants were then trained on the greebles 

and features, and answered pre-test questions to check that 

the greebles’ similarity structure was noticed, and that the 

causal property structures were understood. Participants 

were first introduced to the “four different kinds” of 

greebles, then learned (by trial and error) to correctly name 

all greebles, in order to become familiar with the four 

images. Participants then answered four similarity pre-test 

questions. 

Next, participants were trained on the three novel 

properties. This phase was where the experimental 

manipulation occurred, in a between-participants design. 

For all participants, the three properties were listed. 

Participants in the no relationships baseline condition were 

not given any further description of relationships between 

the properties. In contrast, participants in the weak causal 

relationships condition were given a description similar to 

that used by Kemp et al. (2007): “Your team has found that 

a greeble’s pungent smell is produced by several pathways. 

The most common pathway begins with greebles having the 

spanastete molecule, which can lead to greebles having an 

oily substance on their surface, which can in turn lead to  
 

 
 

Figure 2: Task 2 of the test phase. Participants were told that 

feature 1 was present for greeble 1, and feature 2 was not 

present for greeble 2. Participants then completed the 

remaining unknown cells of the object-by-feature matrix, 

using a confidence scale of 0 to 100. 

 

greebles having a pungent smell.” Finally, participants in 

the strong causal relationships condition were given a 

description with phrasing to match that used by Rehder 

(2006): “Your team has found the cause of a greeble’s 

pungent smell. If greebles have the spanastete molecule, this 

causes greebles to have an oily substance on their surface, 

which in turn causes greebles to have a pungent smell.” 

The causal property structure of each condition was then 

reinforced with training charts showing how often the three 

properties occur together (see Table 1). The charts were 

presented as “test results for a set of different kinds of 

greebles”. Participants saw a set of simple charts (one at a 

time in random order) that each displayed whether or not 

each of the three properties had been observed for a greeble. 

A different training set was used for each condition. For the 

strong cause condition, the presence of the three properties 

always “agreed” and for the no relationships condition, the 

properties agreed 50% of the time and were uncorrelated. 

The weak cause condition was intermediate, with properties 

1 and 2 and properties 2 and 3 having a .71 probability of 

agreeing. Participants then answered three causal pre-test 

questions. 

After training, participants completed three test phase 

tasks, the second of which will be the focus of this paper. 

Participants were asked to reason about the presence of the 

three features in the set of four greebles. Participants were 

told, “Each day, as new information is obtained about the 

greebles’ properties, your colleagues will ask for your 

opinion about all remaining unknown properties, for all four 

of the greebles.” Participants reported their feature 

predictions by completing an object-by-feature matrix, as 

can be seen in Figure 2. The greebles were presented in 

random order, but are shown in order of decreasing 

similarity in Figure 2. For Task 2, participants were told, 

“On Day 2 of 3, your team found that in addition to the 



[name of greeble 1] having the spanastete molecule, the 

[name of greeble 2] did NOT have the oily surface 

substance.” The matrix cell corresponding to greeble 1 and 

feature 1 was thus completed with “100”, and the matrix 

cell for greeble 2 and feature 2 was completed with “0”. 

Participants completed the remaining empty cells. 

Participants’ predictions were reported as confidence ratings 

between 0 (“very unlikely”) and 100 (“very likely”), which 

were selected from a confidence rating bar on the screen.  

All experimental tasks were completed individually on a 

personal computer. The entire experiment took around 15 to 

20 minutes. 

Expected Pattern of Responses 

The different causal relationships learned in each condition 

should lead to different overall patterns of responses in the 

test phase task. First, to help explain the expected responses, 

consider what a sensible pattern of responses would have 

been if participants had known only that greeble 1 had 

feature 1 (i.e. if the presence of feature 2 for greeble 2 was 

unknown, rather than absent)
3
. Across all conditions, we 

would expect to see a standard similarity gradient for feature 

1. Since the first feature was present for the first greeble, 

participants should have been most willing to generalise this 

feature to the more similar greeble 2, and least willing to 

generalise the feature to the dissimilar greeble 4 (as can be 

seen in the large white and grey bars for feature 1 in the first 

panel of Figure 3). However, if participants’ judgements 

were affected by the strength of the causal relationships 

between features, responses for features 2 and 3 would have 

differed across conditions: we would have expected a 

“causal gradient” across features that was appropriate for 

the causal strength that was learned. Firstly, in the no 

relationships condition, participants were shown that the 

features were uncorrelated. Therefore, regardless of whether 

the first feature was likely or not to be present for a greeble, 

these participants could only sensibly respond with a rating 

of 50 (the base rate of the features) for features 2 and 3, 

across all greebles. In contrast, in the weak cause condition, 

we would have expected to see the pattern of responses 

found in Kemp et al. (2007). Here, participants’ predictions 

for features 2 and 3 could be informed by the weak causal 

relationships between features. If feature 1 had been present 

for a greeble, feature 2 should also have been predicted as 

quite likely to be present, as should feature 3. However, due 

to the weak causal relationships, the probability of feature 3 

being present would be smaller than that of feature 2, which 

would be smaller than that of feature 1 (similar to that seen 

in the large white and grey bars for greeble 1 in the second 

panel of Figure 3). Finally, in the strong cause condition, 

since the causal relationships were deterministic, we would 

have expected a flat causal gradient across features: to the 

extent that the root cause (feature 1) was present, the other 

                                                           
3 This expected pattern of responses across conditions was 

generally demonstrated in Task 1 of the test phase. 

“effect” features should also be present, with the same 

probability, similar to Rehder’s results (2006). 

What effects should we expect to see when participants 

are additionally told of the absence of feature 2 for greeble 

2? With this additional knowledge, depending on condition, 

considerations of similarities between objects and 

considerations of relationships between features make some 

opposing predictions for greeble 1 and greeble 2. Firstly, for 

the no relationships condition, the main effect of knowing 

that feature 2 is absent for greeble 2 should be for 

predictions of whether feature 2 should be present for the 

most similar object, greeble 1. Knowledge that features 1 

and 2 are generally uncorrelated should lead to a predicted 

rating of 50 for feature 2 for greeble 1, but knowledge that 

greebles 1 and 2 are similar should lead participants to 

predict that since feature 2 is absent for the second greeble, 

it should also be absent for greeble 1. Also, while 

knowledge of the (lack of) relationships between features 

should lead to a prediction of 50 for the first feature for 

greeble 2, similarity knowledge predicts that greeble 2 

should probably have the first feature. 

Secondly, for the weak cause condition, the additional 

knowledge that greeble 2 does not have feature 2 should 

also affect predictions for greebles 1 and 2. Knowledge of 

the weak causal relationships between features suggests that 

the three features should probably be present for greeble 1, 

but absent for greeble 2. However, the similarity shared by 

greebles 1 and 2 suggests that greeble 1 should not have 

feature 2 either, and greeble 2 should have the first feature 

(since greeble 1 has feature 1). 

Thirdly, in the strong cause condition, since the causal 

relationships are deterministic, the known presence of 

feature 1 for greeble 1 should lead to very high confidence 

that features 2 and 3 should also be present for greeble 1. 

Similarly, the absence of feature 2 for greeble 2 should lead 

to very high confidence that features 1 and 3 should also be 

absent for this greeble. However, as in the other conditions, 

the similarity shared by greebles 1 and 2 suggests that 

greeble 1 should not have feature 2 either, and greeble 2 

should have the first feature. 

For each condition in this study, we can thus examine 

whether participants’ predictions seemed to rely on the 

similarities between objects, the causal relationships 

between features, or whether indeed participants integrated 

both sources of information and compromised between 

competing predictions. We expected that participants would 

rely more on similarity in the no relationships condition, 

where the presence of one feature for an object was 

uninformative about the presence of the other two features. 

We expected that in the weak cause condition, just as was 

found by Kemp et al. (2007), participants would integrate 

both types of information because the causal relationships 

were useful but uncertain, so similarity still contributed 

useful information. Finally, we expected that in the strong 

cause condition, we would reproduce the effect found by 

Rehder (2006), whereby the certain deterministic causal 

knowledge would dominate over similarity considerations. 



 
 

 

Figure 3: Test phase data and model predictions for the three conditions, presented in object-by-feature matrices: white bars 

represent the information given to participants (feature 1 is present for object 1, and feature 2 is absent for object 2), grey bars 

are mean participant responses and points are model predictions. The small black marks at the top left corner of each grey bar 

are error bars. Here the greeble objects are presented in order of decreasing similarity. 

 

Results 

Examination of Pattern of Responses. As can be seen in 

the grey bars presented in Figure 3, the experimental 

manipulation on the strength of causal relationships between 

features influenced participants’ predictions. In the no 

relationships baseline condition, participants seemed to rely 

more on similarity information. As expected, since feature 1 

was known to be present for greeble 1, participants in the no 

relationships condition predicted that feature 1 was much 

more likely to be present for greeble 2 than did participants 

in the other conditions. Similarly, since feature 2 was 

known to be absent for greeble 2, participants in this 

condition thought that feature 2 for greeble 1 was less likely 

to be present. However, the average participant response 

here could be a compromise between a rating of 50, as 

predicted by the (lack of) relationships between features, 

and a much lower “absent” rating, as predicted by the 

similarity between greebles 1 and 2. Nonetheless, the 

similarity information appeared to be relied upon the most 

in this condition.
4
 

Now focussing on the strong cause condition, it is obvious 

that the deterministic causal feature knowledge dominated 

over similarities between objects, successfully reproducing 

the effect found by Rehder (2006). To the extent that one 

feature was present (or absent) for a greeble, participants 

                                                           
4 This was also supported by a comparison with responses in 

Task 1 of the test phase. 

predicted that the other two features would also be present 

(or absent). Predictions for greebles 1 and 2 appear not to be 

tempered by the close similarity shared by those greebles. 

Finally, participants’ predictions in the weak cause 

condition appear to be somewhere in between that of the no 

relationships and strong cause conditions. Knowledge that 

feature 2 was not present for greeble 2 pulled down 

predictions of whether feature 2 was present for greeble 1 

(compared to Test Task 1), but not as low as occurred in the 

no relationships condition. Similarly, predictions of whether 

feature 1 was present for greeble 2 were intermediate 

between the no relationships and strong cause condition. 

Participants do appear to have integrated both similarities 

between objects, and causal relations between features. This 

replicates the pattern of responses found by Kemp et al. 

(2007), but with the novel greeble objects and new, more 

meaningful features.  

One last point of interest is that in the no relationships 

baseline condition, there was a trend that participants 

unexpectedly seemed to predict that the third feature should 

be present for the most dissimilar greeble 4. One possible 

explanation for this is that participants simply had a prior 

bias to expect that the “pungent smell” feature would be 

present for greeble 4. However, if this explanation is true, 

this bias was overridden in the other two conditions, which 

would need to be explained. An alternative, more interesting 

explanation, perhaps worthy of further investigation, is that 

participants saw that greeble 4 was different to the other 

greebles and thought it should also be differentiated in  
 

No relationships Weak cause Strong cause 

f1          f2          f3 f1          f2          f3 f1          f2          f3 

M
e
a
n
 s

u
b
je

c
ti
v
e
 p

ro
b
a
b
ili

ty
 r

a
ti
n
g

Similarity model Causal model Integrated model



Table 2: R
2
 values for the correlation between average 

participant responses and predictions of the three models. 

The value for the winning model/s is shown in bold type. 

Negative signs in parentheses indicate where the correlation 

was negative. 

 

 Similarity Causal Integrated 

No relationships .69 .06 .24 

Weak cause .04 (–) .44 .42 

Strong cause .39 (–) .92 .86 

 

feature generalisations. With the absence of useful causal 

information, participants in this condition may have 

assumed that for feature 3 to be interesting in this small toy 

greeble world (and maybe even for feature 3 to be worth 

including in this study in the first place), feature 3 could be 

a unique feature of greeble 4. 

 

Comparison With Model Predictions. R
2
 values are 

shown in Table 2 for the correlations between the model 

predictions and the average participant responses. This is a 

simple assessment of whether the models capture the trends 

in the average participant responses. In the no relationships 

condition, the similarity model best captured the response 

trends, since this model could utilise similarities between 

objects, and produce similarity gradients for features 1 and 2 

across greebles. The causal model could not use similarity 

information, and the current integrated model could not 

adequately adjust predictions around the known absence of 

feature 2 for greeble 2 (see Figure 3). 

In the weak cause condition, the causal and integrated 

models performed equally well overall. However, as can be 

seen in Figure 3, the causal model missed the similarity 

gradient for feature 1, and the integrated model 

overestimated predictions for feature 1. The similarity 

model failed because it could not use the causal information. 

Kemp et al. (2007) found that their integrated model best 

predicted responses with the weak causal relationships that 

were used. However, the integrated model presented in this 

paper is simpler than that used by Kemp et al. (2007), so 

their full model must be implemented before direct 

comparisons can be made. 

Finally, in the strong cause condition, the causal model 

accounted for participants’ responses slightly better than the 

integrated model, and both performed much better than the 

similarity model. Again, the similarity model failed because 

it could not use the causal information. As shown in Figure 

3, the causal model well captured the responses for greebles 

1 and 2, but the integrated model again set predictions too 

high for feature 1 across greebles. 

In summary, at present, the similarity model can best 

account for participants’ feature generalisations when 

features are uncorrelated. If Ockham’s razor is employed, at 

present, it seems that when there are weak or strong causal 

relationships between features, the causal model should be 

preferred over the more complex integrated model. 

However, as a complete test, the full integrated model by 

Kemp et al. (2007) needs to be considered, as does 

performance across a range of tasks. For example, the causal 

model may have an advantage in this particular test Task 2 

(for the weak and strong cause conditions) because the 

position of the absent feature reduces the contribution that 

can be made by similarity between objects for predicting the 

first feature. 

Discussion 

The results of this study suggest that the strength of causal 

relationships between features affects whether feature 

generalisations are informed by similarity relationships 

between objects, by causal relationships between features, 

or perhaps by both. When causal relationships are weak and 

uncertain, as in Kemp et al. (2007), people may base their 

feature inferences on both the causal information and 

similarities between objects. Alternatively, when causal 

relationships are deterministic, as in Rehder (2006), these 

relationships can be trusted, and similarity information 

becomes less important. Similarity information may be 

more heavily considered when the presence of one feature is 

uninformative about the presence of another, as when 

features are unrelated. Note that this (no relationships) 

condition used features that are closest to the “blank” 

features that are typically used in experiments to 

demonstrate similarity effects in feature generalisation (e.g., 

Carey, 1985; Rips, 1975). 

It was possible that in the experiments by Kemp et al. 

(2007), people considered similarities between objects 

(beyond considering only causal feature relationships) only 

because real objects were used that were familiar to 

participants, and perhaps easy to reason about. However, 

this study helps to rule out that possibility, since participants 

seemed to consider similarities between objects as well as 

the weak causal relationships, despite the fact that the 

objects were novel and artificial. 

Based on the present results, several directions for future 

research are apparent. The first concerns the nature of 

learning. In the present study, participants were trained on 

the objects and on relationships between features in separate 

phases. However, it is likely that people learn about real 

objects and relationships between their features in a more 

simultaneous (or at least alternating) fashion. Future 

research could study feature inferences after more 

naturalistic combined training of objects and features. Can 

people learn these structures simultaneously? Does this 

enhance or hinder the learning of each structure type? 

Second, the present study used simple perceptual 

similarity relations between objects. Yet, people are also 

able to consider causal relationships between objects, when 

such information is available, such as food chain 

relationships between animals (Medin, Coley, Storms & 

Hayes, 2003; Shafto & Coley, 2003). Further work can 

attempt to incorporate these kinds of relations between 

objects into probabilistic graphical models of feature 

inference.  



A third issue is that for people to use knowledge of causal 

relations between features, people must first understand and 

be aware of the relations. To what extent do people really 

understand and think about cause and effect with features of 

real objects? The experiments by Heit and Rubinstein 

(2004) suggest that people can reason about causal 

relationships between features for natural animals: for 

people to generalise a property from one category to 

another, the categories need to share the causal mechanisms 

responsible for the property. Participants were more willing 

to generalise an anatomical property, such as a “liver with 

two chambers that act as one”, from bears to whales than 

from tuna to whales. This was presumably because whales 

are more likely to share the responsible biological 

mechanisms with other mammals than with fish. In contrast, 

for a behavioural property, such as “travels in a zig-zag 

trajectory”, people were instead more willing to generalise 

from tuna to whales. This was apparently because whales 

are thought more likely to share a survival behaviour with 

tuna, another prey animal in the same ecology, than with 

bears. However, Heussen and Hampton (2008) found that 

when asked to explain features of natural kinds and 

artefacts, people often do not provide complete or thorough 

explanations. Expertise will be important. For example, 

Shafto and Coley (2003) demonstrated that in a feature 

induction task, fisherman utilised food chain relationships 

for decisions of whether a disease would generalise across 

species of marine creatures, but novices did not. Context 

can also activate knowledge of different causal relations, as 

when it was found that expert fire fighters made opposing 

predictions for the spread of fire based on either wind or 

terrain slope, depending on whether the task was presented 

as a bushfire to be fought, or a controlled back burn fire 

(Lewandowsky & Kirsner, 2000). How do people decide 

which causal relations are useful for the current task? 

In experiments with novel causal feature relations, such as 

those by Rehder (2006), Kemp et al. (2007) as well as the 

current study, the causal relationships between features are 

explicitly presented to participants. Demand characteristics 

within the experiment probably encourage participants to 

use this information. These experimental designs can test 

whether people can use the causal information, and test the 

impact this has on use of other information, such as 

similarities between objects. However, there will still 

remain an open question for further research about when 

people will spontaneously consider particular sources of 

information, or combinations of sources. 

There are many possible directions for future work, and 

the modelling approach used by Kemp et al. (2007) can be 

used to make precise predictions and help to test which 

types of information inform people’s feature 

generalisations.  
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