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Abstract 
The ability to identify a target texture in a visual display is a 
basic capability of the human visual system. Traditionally, as 
with much psychophysical modeling in the cognitive 
sciences, models of texture discrimination have been fit to 
individual subject data. By estimating model parameters 
independently, this approach emphasizes individual 
differences, and does not model the similarities between 
subjects. We consider alternative assumptions about 
individual differences in texture discrimination, using a 
standard model and previously studied data. In particular, we 
show how a hierarchical Bayesian approach can capture both 
the similarities and differences over subjects in a theoretically 
satisfying way. We also show that the hierarchical Bayesian 
approach has a number of methodological advantages over 
existing analyses, including improving parameter estimation 
when data are either sparse or missing, and improving model 
predictions when generalizing to new or different stimuli. 

Introduction 
A key question in understanding any phenomenon in the 

cognitive sciences relates to individual differences. From 
basic visual and auditory abilities to more abstract memory, 
learning and decision-making abilities, there are both 
similarities and differences between people. A goal of any 
model should be to provide an account of these similarities 
and differences. 

Often in modeling higher-order cognition, the assumption 
is made that there are no important individual differences, 
because the modeling focuses on data averaged or 
aggregated across subjects (Lee & Webb 2005). In modeling 
lower-order capabilities, such as in vision and audition, 
however, the opposite assumption is often made. Models are 
fit independently to the data of each individual subject, and 
so the similarities between people are not modeled. 

In this paper, we follow current work in modeling 
individual differences for both low- and high-level 
capabilities, and adopt hierarchical Bayesian methods to 
capture both the similarities and individual differences 
between subjects (e.g., Rouder & Lu 2005, Lee 2008). 

Our study of hierarchical Bayesian methods for modeling 
individual differences takes the form of a case study in a 
fundamentally important low-level visual capability: the 
discrimination of texture. Human vision preattentively 
segments the visual world into different regions based not 
only on color and light intensity but also on texture. In order 
to detect a patch of one texture in a background of another 
in a brief display, human vision must embody one or more 
fast, spatially parallel mechanisms that are differentially 
activated by the target versus the background textures.   
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Figure 1: Example of stimuli used by Victor et al. (2005). 
The stimulus on left has a target composed of structured 
texture against random background. The stimulus on the 
right has a target composed of random texture, presented 
against a structured texture background. 

Texture Discrimination Data 
We reconsider data collected by Victor, Chubb and Conte 

(2005), who analyzed human visual sensitivity to change 
within a two-dimensional texture space, using an 
experiment in which subjects were given a four-way forced-
choice task and had to locate a target texture against a 
background. As shown in Figure 1, the stimuli were 64×64 
element arrays of black and white squares. Rectangular 
(either 16×64 or 64×16 element) targets were embedded 
within the background near one of four stimulus edges. On 
half of the trials, the target was composed of a structured 
texture (iid with white and black elements occurring with 
equal probability). On the other half of the trials, the target 
was the random texture, and the background was the 
structured  texture. 

 

 
 

Figure 2: Textures used in the stimuli: Oddnesses 0.5, 0.6, 
0.7 (left to right, top row), and 0.8, 0.9. 1.0 (bottom row) 



We reanalyze a subset of the data collected by Victor, 
Chubb and Conte (2005). In this subset, the structured 
texture varied in “odd-parity” or more simply “oddness”: 
i.e., in the proportion of 2×2 element-blocks that contain 
odd numbers of whites (and blacks). In particular, the 
structured textures considered here had oddnesses of 0.6, 
0.7, 0.8, 0.9 and 1.0. (All of the panels except the top-left 
panel in Figure 2 show examples). The random texture (the 
top-left panel of Figure 2) used in each stimulus had 
oddness 0.5 (i.e., in the random texture, 2×2 blocks were 
equally likely to have an even or an odd number of white 
elements).  

Texture Discrimination Modeling 
Victor et al. (2005) modeled the effect of texture 

oddness on performance using a Weibull psychophysical 
function, so that the probability the ith subject successfully 
discriminated the jth oddness, , is given by: jo
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where the parameter v governs the steepness of the Weibull 
function, or the speed with which the stimuli become more 
discriminable, and λ is a scale parameter, that can be 
thought of as the rate at which subjects approach perfect 
performance relative to oddness. Because chance 
performance in the task was 25% correct, the Weibull was 
restricted to values between 0.25 and 1.0. 

Victor et al. (2005) modeled the two target and 
background relationships described in Figure 1 separately; 
however, data from both conditions were combined in our 
analyses.  These changes mean that the data we modeled 
take the form of: counts of the number of correct responses 

 out of n=120 trials for the ith subject at the jth oddness. ijk

Three Models of Individual Differences 
In our modeling, we retain the core visual modeling 

assumptions made by Victor et al. (2005), and continue to 
model the effect of oddness on performance using a Weibull 
function. This provides a psychophysical model to map 
physical stimulus properties to individual subject behavior, 
using which we use to evaluate different assumptions about 
individual differences.  

Specifically, we consider three analyses, corresponding 
to distinct theoretical perspectives on individual differences. 
The first analysis involves a “No Individual Differences” 
model in which there are no underlying differences in 
subjects’ sensitivity to texture oddnesses. The second 
analysis involves a “Full Individual Differences” model in 
which each subject’s sensitivity function is fully 
independent of other subjects. The third analysis involves a 
“Hierarchical Individual Differences” model in each 
individual has their own sensitivity function, but its form is 
constrained by assumptions at the population level that 
characterize the distribution of individual differences. 

No Individual Differences (NID) Model 
The NID model assumes that there are no individual 
differences in sensitivity to texture oddness. This means that 
it infers a single v and λ parameter for a single Weibull 
function that applies to all subjects. According to the NID 
account, all differences between the performance of subjects 
for the same stimuli are random noise.  
 

 
 
Figure 3: The “No Individual Differences” (NID) model. 

 
Figure 3 shows our implementation of the NID model 

using the language of probabilistic graphical modeling (see 
Lee 2008, for a psychologically-oriented introduction). The 
basic idea is that variables are represented by nodes in a 
graph, with the graph structure indicating dependencies 
between nodes, with children depending on their parents. 
Observed variables (e.g., data) are shaded, while unobserved 
variables (e.g., underlying psychological parameters) are not 
shaded. Enclosing plates denote independent replication in 
the graph structure.  

In Figure 3, the probability that  out of n textures will 
be discriminated follows a Binomial distribution with 
probability of success 

ijk

jθ , and this probability is 
determined by the Weibull psychophysical model using the 
v and λ parameters, and the known texture oddness. The 
inner plate repeats this modeling over the i=1,…,N subjects, 
and the outer plate repeats over the j=1,…,M oddnesses. The 
final part of the model gives standard uninformative prior 
probability distributions to the v and λ parameters. 

  
Results All of our modeling results are achieved using 
modern computational Bayesian methods, through sampling 
from the posterior distribution of the using Markov-Chain 
Monte-Carlo. We implemented these analyses in WinBUGS 
(Lunn, Thomas, Best and Speigelhalter, 2000). 
 

Table 1: Posterior parameter means and 2.5% and 97.5% 
credible intervals for the NID model. 

 
Parameter Mean 2.5% CI 97.5% CI 

v 2.22 1.96 2.51 
λ 0.59 0.57 0.62 



Table 1 summarizes the marginal posterior distributions 
for the v and λ parameters, in terms of the mean and 2.5% 
and 97.5% credible intervals. Figure 4 shows the posterior 
predictions of the data for each subject, which is a standard 
Bayesian method for assessing the descriptive adequacy of a 
model. Because of the assumption that there are no 
individual differences, the predictions are the same for each 
subject. We also calculated the arc-sin transformed root 
mean square deviation (RMSD) as a standard 
psychophysical summary measure of the goodness-of-fit. 
For the NID model, the RMSD was 3.83. 
 

 
 
Figure 4: The posterior prediction of the NID model (lines) 
and the data of each of the four Subjects A-D (circles). 

 
Although Figure 4 suggests the NID model predictions 

provide a reasonable first-order approximation to the data, it 
is also clear that the model provides an incomplete 
description, because of the presence of systematic individual 
differences. For example, the model underestimates 
performance at all oddnesses for Subject C, but 
overestimates performance at all but one oddness for 
Subject A.  

Full Individual Differences (FID) Model  
Our implementation of the FID model is shown in Figure 5. 
In this model, differences between the performance of 
subjects are assumed to result from genuine differences in 
their abilities. This means each subject has their own 
parameterization of the Weibull function, determined 
independently for each subject, that governs their 
probability of success at each modulation strength. In the 
graphical model in Figure 5, this key change is made by 
changing the inner plate, which now extends to contain vi 
and λi parameters for each subject. 
 

 
 

Figure 5: The “Full Individual Differences” (FID) model. 
 
Results Table 2 summarizes the marginal posterior 
distributions for both parameters for each subject 

 
Table 2: Posterior parameter means and 2.5% and 97.5% 
credible intervals for each subject for the FID model. 

 
Parameter Mean 2.5% CI 97.5% CI 

vA 1.84 1.43 2.33 
λA 0.55 0.50 0.60 
vB 2.09 1.50 2.77 
λB 0.65 0.60 0.71 
vC 2.51 1.91 3.19 
λC 0.65 0.61 0.70 
vD 2.47 1.97 3.00 
λD 0.53 0.49 0.57 

  
. Figure 6 shows the posterior predictions, which now 
capture the variation between individual subjects. The 
RMSD of the FID model was 2.01, indicating a large 
improvement over the NID model. 
 

 
 

Figure 6: The posterior prediction of the FID model (lines) 
and the data of each of the four Subjects A-D (circles). 



Hierarchical Individual Differences (HID) Model 
Figure 7 shows the HID model, which assumes that there 
are individual differences in the v and λ parameters, but that 
these differences have structure across the subjects, rather 
than being free to vary independently. The structure we 
assume is that both the v and λ parameters are draws from 
Gaussian distributions, and so have population-level means 
(µv and µλ) and variances (σv  and σλ). 
 

 
 

Figure 7: The “Hierarchical Individual Differences” (HID) 
model. 
 

Inference for this hierarchical model involves both the 
parameters of the Gaussian distributions and the specific v 
and λ parameters for each subject. Because v and λ are now 
generated from the Gaussian distributions, they are not 
assigned priors. Rather, we now assign standard vague 
priors on the µv, µλ, σv , and σλ  parameters of the Gaussians. 
 
Results Table 3 summarizes the marginal posterior 
distributions for both parameters for each subject 

 
Table 3: Posterior parameter means and 2.5% and 97.5% 

credible intervals for each subject under the HID model. 
 

Parameter Mean 2.5% CI 97.5% CI 
vA 2.13 1.66 2.53 
λA 0.56 0.52 0.60 
vB 2.23 1.80 2.67 
λB 0.64 0.60 0.69 
vC 2.36 1.97 2.89 
λC 0.64 0.60 0.69 
vD 2.37 2.00 2.84 
λD 0.53 0.50 0.57 

 
Figure 8 shows the posterior predictions of the HID 

model, overlaid on the already presented NID and FID 
predictions from Figures 4 and 6. It is clear that the HID 
model makes extremely similar predictions to the FID 

model. Figure 8 also illustrates the impact of assuming 
structured individual differences; the predictions for each 
subject are pulled towards the group mean, because the 
Weibull parameters are modeled as draws from an over-
arching Normal distribution. 

 
 

Figure 8: The posterior predictions of the NID, FID and 
HID models (dashed, solid and dotted lines, respectively) 
against the data of each of the four Subjects A-D (circles). 
 
The RMSD for the HID model is 2.15, slightly worse than 
the 2.01 for the FID model. Given they make similar 
predictions, and the FID model fares quantitatively better in 
terms of data fit, it is reasonable to ask what, if any, 
advantages, are conferred by the HID model, and the 
general approach of using structured individual differences. 
The remainder of our results address this challenge. 

Advantages of the Hierarchical Model  
In addition to describing existing data accurately, a good 

model should be able to make predictions about unknown 
data. Indeed, being able to generalize successfully to new 
and different situations is one of the key tests of a model, 
and provides strong grounds for believing a model is useful. 
To address this issue, we tested the ability of the FID and 
HID models to predict the probability of discrimination for 
individual subjects at oddnesses for which data were 
withheld, and to predict individual sensitivity functions 
using scarce or missing data for one or more subjects. 

Generalizing to New Oddnesses 
We constructed four specific tests by removing for all 
subjects: oddness 3; oddnesses 1 and 5; oddnesses 2 and 4; 
and oddnesses 2, 3 and 4. RMSDs for the model predictions 
are shown in Table 4. Overall, the HID Model performed 
better than the FID model in predicting individual 
performance at missing oddnesses. 

The relatively poor performance of the FID Model is a 
direct consequence of the assumptions it makes about 
individual differences. When data points are missing, the 
model attempts inference based on only the remaining data 



points for that subject. If these remaining data points are not 
representative of the overall psychophysical function for the 
subject, the inferences and subsequent predictions will be 
inaccurate. The HID Model, in contrast, is able to use data 
from other subjects to help make inferences at the missing 
oddnesses. 

 
Table 4: RMSDs of FID and HID model predictions at 

missing oddnesses 
 

Removed Oddnesses FID HID 
3 1.66 1.56 

1, 5 5.13 3.03 
2, 4 3.71 3.81 

2, 3, 4 4.11 4.38 
Mean 3.65 3.19 

 
Figure 9 gives an example of the important difference 

between the FID and HID models when generalizing to 
stimuli for which data were not available. It shows the 
posterior predictions of the two models for Subject B in the 
second condition. Because the subject had near-linear data 
for the three middle oddnesses strengths, the FID Model 
generates a Weibull function that does not resemble any of 
the functions found when all data were modeled, and hence 
makes a drastic mis-prediction for the fifth oddness. The 
HID Model on the other hand uses the data of the other 
three subjects to guide predictions about Subject B at 
extreme modulations, which results in a better predicted 
psychophysical function. 

 

 
 

Figure 9: Posterior predictions for the FID (panel A) and 
HID (panel B) models for the data of Subject B when 
oddnesses 1 and 5 are missing (denoted by stars).  

Predictions from Scarce or Missing Data 
To study the effect of scarce or missing data for one or all 
subjects, the models were applied to data sets impoverished 
in different ways. Scarce data were created by dividing the 
number of correct trials and total trials at each data point by 
10, 20, 30 or 60, and then rounding to the nearest integer. 
Data thus took the form of a correct count out of 12, 6, 4 or 
2 trials, respectively. Although this rounding procedure is 
not equivalent to a true reduced trial experiment, it provides 
an easy and useful approximation to one. 

Scarce Data for Single Subjects For these analyses, the 
available information was modified so that each subject, in 
turn, had either scarce data (i.e., truncated to 6 trials) or their 
data were missing entirely. In each analysis, the data for the 
other subjects were left intact. Table 5 shows the RMSDs of 
the FID and HID model predictions for each subject under 
both the scarce and missing data analyses.  
 

Table 5: RMSDs for each subject, and the mean for all 
subjects, under the FID and HID models, in the scarce and 
missing data analyses. 

 
 Scarce Data Missing Data 

Subject FID HID FID HID 
A 4.55 2.46 9.63 3.15 
B 6.56 4.20 9.84 4.72 
C 7.54 2.49 11.45 4.60 
D 7.40 5.07 13.32 6.22 

Mean 6.51 3.55 11.06 4.67 
 

Across all conditions, the HID Model significantly 
outperformed the FID Model. The relative resilience of the 
HID Model to scarce data is again a consequence of its 
assumptions about the structure of individual differences. In 
both types of conditions, the model infers normal 
distributions using all available data. Since the other 
subjects provide a large number of data, the model infers 
group means of the parameters reasonably accurately. In the 
scarce data conditions, the model can then use limited data 
about a subject to shift the individual parameters away from 
the group mean. In the missing data conditions, the model 
resembles the NID Model, in the sense that it infers the data 
of missing subjects data based on the group mean. The 
differences in the performance of the HID model across the 
different missing-subject conditions are due the relative 
deviation of the specific subject’s data from the group mean.  

The FID model, in contrast, infers the parameters for each 
subject based only on individual subject data. The result in 
the scarce data condition is that a Weibull is fit as closely as 
possible to noisy data. The large variations in the accuracy 
of model predictions across subjects are due to the varying 
degrees to which the 6 trial samples are representative of the 
full data set. In the missing data condition, the only 
information the FID model can draw on is the priors, 
leading to very poor prediction. 

 
Scarce Data for All Subjects Our final analyses examined 
prediction accuracy of the models when data were scarce for 
all subjects. The RMSDs in four truncation conditions, 
corresponding to 12, 6, 4 and 2 trials across all subjects are 
presented in Table 6. Posterior predictions for Subject C 
(which are representative of the other subjects) are shown in 
Figure 11 for both models over an additional set of 
truncations, involving 120, 40 and 6 trials. 

In both Table 6 and Figure 10, the HID model proves to 
be significantly more accurate than the FID model, further 
demonstrating its resilience when limited data are available. 



Conclusions When the HID model does not have access to a large 
number of trials for any individual subject, it is able to make 
inferences about the group distribution by combining the 
data from all four subjects. It then automatically adjusts the 
posterior predictions away from the group mean for 
individual subjects based on only their data. The FID model, 
by contrast, uses the data from each subject in isolation. As 
the number of trials decreases, the information available to 
infer individual subject parameters quickly decreases. This 
leads to less certainty and accuracy in the posterior 
distributions of the parameters, and the greater variability in 
posterior prediction, especially evident in Figure 10. 

Modeling of low-level phenomena in the cognitive 
sciences typically makes the assumption that there are no 
important similarities between individuals, and focuses on 
fitting models to individual subject data. One of the primary 
motivations for this approach is that, quantitatively, it 
generates models that best account for the observed data. 
However, on a theoretical level, the modeling approach runs 
counter to the general assumption in psychology that 
individual differences follow some orderly population-level 
distribution, as can be captured by hierarchical models. 

 
Table 6: RMSDs for the FID and HID models at different 

levels of truncation. 
 

Truncation FID HID 
12 4.27 2.65 
6 6.71 3.62 
4 6.50 2.77 
2 9.81 7.26 

Mean 6.82 4.08 

In this study, we considered three modeling approaches, 
corresponding to different theoretical accounts of individual 
differences. The NID model proved inadequate due to its 
failure to describe the systematic individual variation in the 
observed data. By contrast, both of the FID and HID models 
incorporated individual differences, and generated posterior 
predictions that described the original data well. 

We examined whether the FID and HID models could 
predict the full data set when trained using scarce or missing 
data for one or more subjects. Across nearly all of these 
conditions, the HID model was superior. It proved resilient 
under all but the most extreme sparse data condition, 
whereas the FID model was highly sensitive to all forms of 
data degradation. In the most extreme case, the theoretical 
distinction between the models is clearest. For a subject who 
has no data, the FID model depends entirely on the priors, 
because it does not model population-level relationships 
between individuals. 

 

 

In contrast, the relationship between individuals is built 
into the HID model, allowing it to make reasonable 
inferences about individuals even when they have yet to 
provide data. Finally, and perhaps most importantly to 
psychophysical experimentation, the HID model generalized 
subject data to untested oddnesses better than the FID 
model. 

Overall, our results suggest that, for both practical and 
theoretical reasons, hierarchical Bayesian models provide an 
appealing approach to understanding and incorporating 
individual differences in psychophysical modeling in the 
cognitive sciences.  
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