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a b s t r a c t

The study of human episodicmemory is a topic that interests cognitive andmathematical psychologists as
well as clinicians interested in the diagnosis and assessment of Alzheimer’s disease and related disorders
(ADRD). In this paper, we use simple cognitivemodels for the recognition and recall tasks typically applied
in clinical assessments of ADRD to study memory performance in ADRD patients. Our models make use
of hierarchical Bayesian methods as a way to model individual differences in patient performance and
to facilitate the modeling of performance changes that occur during multiple recall tasks. We show how
the models are able to account for different aspects of patient performance, and also discuss some of the
predictive capabilities of themodel.We concludewith a discussion on the scope to improve on our results
by discussing the link between memory theory in psychology and clinical practice.

© 2010 Elsevier Inc. All rights reserved.
1. Introduction

Much recent work in cognitive and mathematical psychology
has focused on the application of psychological models to clin-
ical data (e.g., Neufeld, 2007). In areas ranging from reinforce-
ment learning models of decision making in substance abuse
populations (e.g., Wetzels, Vandekerckhove, Tuerlinckx, & Wa-
genmakers, 2010) to response time modeling in elderly popu-
lations (e.g., Ratcliff, Thapar, & McKoon, 2001), useful links are
being made between the more theoretical and the applied sides
of psychology.

One cognitive domain in particular that has long attracted the
interests of both psychological and clinical researchers is episodic
memory, a type of memory (or memory system) for personally
experienced events (e.g., Tulving, 2002). Episodic memory affects
many aspects of an individual’s daily life and is particularly impor-
tant for understanding a variety of neurological disorders that are
associated with dementia. Collectively referred to as Alzheimer’s
disease and related disorders (ADRD), these disorders are charac-
terized by a variety of cognitive deficits. However, the effects of
ADRD on episodic memory are particularly severe (e.g., Hodges,
2000). In fact, for Alzheimer’s disease, as well as for many of the
other disorders that comprise ADRD, differences in the severity of
episodic memory degradation best distinguish adults who are ag-
ing normally from those affected with dementia on the basis of be-
havior alone (e.g., Locascio, Growdon, & Corkin, 1995).
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Although great advances in our understanding of the neu-
ropathological basis of ADRD of have been made since the initial
description of Alzheimer’s disease (Hodges, 2006), comparatively
little progress has been made toward a rigorous description of the
actual memory deficits these disorders cause. Behavioral memory
data from ADRD patients possess a rich structure in the sense that
the data are obtained from patients who can be clustered into dis-
tinct groups based on, for example, the severity of their ADRD im-
pairment. In practice, this structure is often ignored for simplicity.
Related to this methodological issue is a more philosophical one.
Specifically, it seems desirable to use methods and models that
deal directly with the memory concepts that one is interested in,
and it is unclear how well off-the-shelf statistical models can ac-
complish this. Fortunately, there is a clear path to applying what
has been learned from psychological research to the problem of
memory assessment in ADRD patients.

The key link is that some of the most important ADRD assess-
ment tools standardly used in clinical practice are exactly those
memory tasks that are studied bymemory researchers in cognitive
and mathematical psychology for years. These fields, in turn, have
developed numerous mathematical and computational models of
memory based on behavioral data from these tasks. The utility of
these cognitive models is that they allow researchers to charac-
terize memory performance in terms of psychologically meaning-
ful variables (e.g., recognition bias) rather than standard statistical
variables (e.g., regression coefficients). Thus, we feel that the use
of memory models, together with the use of hierarchical Bayesian
methods to connect thesemodels to thememory data of ADRD pa-
tients, can potentially be a useful complement to research on the
neuropathology of ADRD.
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Fig. 1. Recognition data from the clinical ADRD assessments. Each panel corresponds to a FAST stage. The crosses in each panel correspond to a patient and show the hit
and false alarm counts produced by this patient.
In this paper, we present such an approach to understanding
the episodic memory deficits associated with ADRD, all within
a hierarchical Bayesian framework using cognitive models. This
paper is organized as follows: first, we give an overview of a
relatively large clinical data set and the assessment protocols that
underly the memory data it contains. Next, we outline the two
memory models that we will use to account for the data, as well
as the hierarchical Bayesian methods and related mathematical
tools we use to connect these models to the data. Following this,
we present the results of our analysis and discuss what they have
to say about the episodic memory performance in ADRD at both a
group and individual patient level. We conclude with a discussion
of the implications of these results for both clinical practice and
basic psychological research.

2. Clinical data
Our memory data comprise a subset of a large clinical ADRD

database. This database contains a wealth of information on ADRD
patients (and often on their caregivers as well) who have visited
neurology clinics located in the United States for routine demen-
tia screening and assessment, including potentially relevant demo-
graphic information and information concerning personal medical
history. In addition to this medical information (andmore likely to
be of interest to psychologists), this database also contains the re-
sults of various psychological tasks that are administered as part of
the cognitive portion of these dementia assessments. Of these psy-
chological tasks, however, we focus exclusively on a recognition
memory task and sequence of four free recall memory tasks.

Stimuli for each memory task consisted of words selected from
the CERAD (Consortium to Establish a Registry for Alzheimer’s
Disease) word list (Morris, Mohs, & Rogers, 1988), which serves
as the basis for the neuropsychological portion of many ADRD
assessments. These words, which included a mixture of common
nouns, were chosen with the goal of minimizing the degree to
which they influence patient performance on the memory tasks.
Based on these stimuli, the following assessment protocols were
used to obtain the memory data.

2.1. Recognition task and data

Each patient first completed a standard old/new recognition
task. In this task, patients were presented with a list of 10 words
to study. Following the presentation of this study list, the patients
were presentedwith a test list consisting of these 10 studiedwords
as well as 10 non-studied words, and the patients were instructed
to indicate whether or not a given word on the test list was on
the study list by responding old or new accordingly. Based on
these dichotomous responses, the recognition data for each patient
take the form of four counts: (1) hits (i.e., correct old responses to
studied words), (2)misses (i.e., incorrect new responses to studied
words), (3) false alarms (i.e., incorrectold responses to non-studied
words), and (4) correct rejections (i.e., correct new responses to
non-studiedwords). Since the numbers of studied and non-studied
words are typically treated as known quantities that are part of the
experimental design, there are redundancies in the above counts,
and it is typical to consider only the hit and false alarm counts.
These hit and false alarm counts for each of the 525 patients are
displayed in Fig. 1.
2.2. Recall tasks and data

Following this recognition task, each patient completed a
sequence of four free recall tasks: three immediate free recall tasks
followed by one delayed free recall task. On the first three of these
tasks, each patientwas shown a list of 10words to study. Following
this study period, each patient was instructed to recall as many
of the words as possible. Each patient saw the same 10 words in
the same order on each task. Following these three immediate free
recall tasks, and following the administration of a distractor task
(an unrelated cognitive task administered as part of the dementia
assessment), each patient was given a surprise delayed free recall
task in which they were required to recall as many of the 10 words
that comprised the previous study list as possible. The data for each
patient on each task consist of a binary sequence that indicates
whether or not the patient recalled the word at each of the serial
positions on the study list. It is much more common, however, to
work with data that have been averaged over patients, and show,
at each serial position, the proportion of patients that recalled a
given word. These averaged data are shown in Fig. 2.

2.3. FAST stage classifications

Independent of the performance of each patient on thesemem-
ory tasks, a trained neurologist used the functional assessment
staging test (FAST) to classify the severity of each patient’s demen-
tia. The FAST (Reisberg, 1988) is a diagnostic tool used by clinicians
to track the progression of ADRD by classifying patients into one of
the seven stages in terms of the severity of dementia. Our data set
contains individuals classified in each stage except for FAST stage
7. At best, patients with a classification of FAST stage 7 can speak
approximately six or seven words per day; at worst, these patients
are unable to lift their heads. Consequently, no data from patients
with this classification were included in our data set. Important
characteristics of the FAST are summarized in Table 1, including
the number of patients from each stage whose data we are model-
ing. In total, our data set contains thememory data and FAST stages
for 525 patients.

3. Measurement models for recognition and recall

Cognitive and mathematical psychologists have developed nu-
merous mathematical and computational models in order to ac-
count for performance on episodic memory tasks, ranging from
abstract process models to neural network models that are in-
tended to have some degree of biological plausibility (e.g., Nor-
man, Detre, & Polyn, 2008). Each type of memory model has its
merits, some of which make many of them unnecessary to use in
our current application, where all we require are models whose
parameters have psychological interpretations. For this reason,
we adopt simple psychological measurement (cf. process) mod-
els (Batchelder, 1998). A key feature of these models is that they
‘‘. . . capture some of the psychologically important variables in a
paradigm, but they are necessarily approximate and incomplete
and are usually confined to particular paradigms’’ (Batchelder &
Riefer, 1999, p. 58).
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Fig. 2. Recall data from the clinical ADRD assessments. Each column corresponds to a FAST stage, and each row corresponds to one of the recall tasks. The data are averaged
over patients and show, for each task, the proportion of words recalled at each of the serial positions on the study list.
Table 1
FAST stages.

Stage Name Characteristics Number

1 Normal aging No deficits whatsoever 156
2 Possible mild cognitive impairment Subjective functional deficit 86
3 Mild cognitive impairment Objective functional deficit interferes with a person’s most complex tasks 89
4 Mild dementia Troubles with bill paying, cooking, cleaning, traveling 130
5 Moderate dementia Needs help selecting proper attire 41
6 Moderately severe dementia Needs help bathing 23
7 Severe dementia Can no longer hold up head 0
3.1. A SDT model for recognition

To account for the recognition data, we adopt the standard
equal-variance Gaussian signal detection theory (SDT) model
(e.g., Wickens, 2002, Chapter 2). In this model, an individual’s
memory representations for the studied and non-studied words
aremodeled as unit variance1 Gaussian distributions over a unitary
dimension of memory strength. The mean of the distractor distri-
bution is arbitrarily set to 0, so the mean of the target distribution
d′ is the separation of the target and distractor distributions and so
referred to as the discriminability of the items.

Due to the overlap of the target and distractor distributions at
the point d′/2 on the memory strength continuum, an individual
needs a decision strategy for relating subjective memory strength
to decisions on the old/new recognition task. According to SDT,
an individual accomplishes this by choosing a criterion level of

1 In current memory theory, it is more common to adopt an unequal-variance
assumption in which the distribution for the studied words is 25% more variable
than the distribution for the non-studied words (e.g., Ratcliff, Sheu, & Gronlund,
1992). Preliminary simulations using this unequal-variance assumption produced
identical results to those presented in this paper, so we decided to to use the
simpler, equal-variance SDT model in the current application.
memory strength λ above which the individual always responds
old (i.e., ‘‘this word was on the study list’’) and below which the
individual always responds new (i.e., ‘‘this word was not on the
study list’’).

The point of overlap d′/2 of the target and distractor distribu-
tions is the optimal placement of the criterion in the sense that
individuals with this criterion show no preference for one partic-
ular response, so responses made using this criterion are unbiased.
However, it is often the case that an individual will be more or less
concerned with one aspect of the old/new recognition task. In the
parlance of SDT, the individualmay choose to be conservative or lib-
eral in deciding the placement of the criterion. As such, the distance
c = λ−d′/2 between an individual’s actual criterion and the unbi-
ased criterionmeasures an the response bias of the individual, with
c > 0 indicating that the individual has a conservative response
bias, c < 0 indicating that the individual has a liberal response
bias, and c = 0 indicating that the individual is unbiased in the
placement of their criterion.

3.2. A two-factor model for recall

To account for the recall data, we developed a simple two-
factor model with the goal of accounting for the serial position
curve. Two-factor models have a history in the memory literature



50 J.P. Pooley et al. / Journal of Mathematical Psychology 55 (2011) 47–56
(e.g., Henson, 1998), and provide a simple (if incomplete) method
of accounting for salient properties of free recall data. The current
model contains two parameters: a primacy parameter α that
controls the probability of recalling a word presented near the
beginning of the study list, and a recency parameterβ that controls
the probability of recalling a word presented near the end of the
study list. These parameters can roughly be thought of as a form
of memory strength, in the same way that d′ in SDT is a measure
of memory strength. However, we are not asserting that a two-
store model (e.g., Raaijmakers & Shiffrin, 1981) is the mechanism
responsible for memory performance.

In particular, the kth presented word in the list with N words
has primacy recall probability αk and recency recall probability
βN−k+1 according to the model. These terms then combine
multiplicatively to give the probability of recalling word k as θk =

1−(1−αk)(1−βN−k+1). We note that thismodelmakes a number
of unrealistic simplifying assumptions (e.g., there is no internal
re-ordering of the study list by the patients and no mechanism
for dealing with false recalls is provided), but is sufficient for our
exploratory goals in the current application.

4. Hierarchical Bayesian analysis

The Bayesian approach to statistical inference and data analysis
has a number of conceptual and practical advantages when
compared to classical statistics (e.g., Gelman, Carlin, Stern, &
Rubin, 2004). One such advantage is the relative ease with
which hierarchical (or multilevel) modeling is accommodated,
making it relatively easy to work with multiparameter statistical
models such as the memory models just discussed (Gelman et al.,
2004, Chapter 5). From the perspective of psychology, hierarchical
methods are important and useful since they allow psychologists
to model individual differences in performance as well as facilitate
the modeling of changes in performance.

4.1. Basic assumptions

Our hierarchical Bayesian analysis requires a few basic assump-
tions. Tomotivate these assumptions, consider our clinical data set.
In this data set, we should expect variability on at least two quali-
tatively distinct levels to contribute to the observed memory data.
At an individual level, each patient should be expected to have dif-
fering memory ability; for example, regardless of any impairment
due to ADRD, some patients simply have better memory ability
than do others. At a group level, patients with a given FAST stage
classification are expected, on average, to differ in their memory
ability from patients with a different FAST stage classification. For
example, memory performance (e.g., as measured by the parame-
ters of the memory models) should decrease as severity of demen-
tia (e.g., as measured by the FAST) increases.

To formalize these intuitions, we first assume that FAST stage
groups are modeled as Gaussian distributions over the possible
values of the memory strength parameters (viz., discriminability
d′, primacy α, and recency β), with the means and variances of
these distributions differing both across parameters and FAST stage
classifications. Our second basic assumption is that the unique
memory strength parameter values for each patient are sampled
from the appropriate group distributions that are determined by
each patient’s FAST stage classification.

One additional assumption is needed in order to implement our
hierarchical Bayesian analysis. Each patient completes only one
recognition task. However, each patient completes four recall tasks
during the dementia assessment, and it is highly unlikely that, for
any given patient, performance on these four tasks is indepen-
dent. Consequently, some assumption that explains how patient
performance is related on these tasks is required. Rather than de-
veloping a psychological model that ties these tasks together, we
performed a simple statistical analysis based on independent im-
plementations of the general model just described. Briefly, the
means of the primacy α and recency β group distributions were
either increased or decreased, relative to the baseline levels for the
first recall task, by an amount that stayed constant across the six
FAST stages. A complete explanation of the statistical analysis un-
derlying thismodel is given in the Appendix.We return to the issue
of using statistical versus psychological models to account for this
change in the Discussion.

4.2. Graphical model

Although thememorymodels discussed in the previous section
are relatively simplewith respect to the psychological assumptions
they embody, a full hierarchical analysis with thesemodels greatly
increases the complexity of the problem. Thus, it is helpful to
find an efficient representations of these models as an aid to both
communication and statistical inference. Fortunately, the fields of
statistics and machine learning have developed a language that is
suited to this task. Graphical models (e.g., Jordan, 2004) provide
diagrammatic representations of statistical models in which the
nodes of a graph correspond to random variables, and the edges
between these nodes correspond to the various independence
assumptions of the statistical model the graph represents, with
children independent of all other nodes given their parents.
We adopt the notation used in recent tutorials on graphical
models aimed at psychologists (Lee, 2008; Shiffrin, Lee, Kim, &
Wagenmakers, 2008). Square nodes represent discrete variables
and circular nodes represent continuous variables. Shaded nodes
represent observed quantities and unshaded nodes represent
unobserved quantities; in situations where the data are ‘‘partially
observed’’ (i.e., when there are missing data), a lighter shade is
used to indicate the variable that is partially observed. Stochastic
variables are represented by nodes with a single border and
deterministic nodes are represented with double borders. Finally,
independent replications of portions of the graph structure are
enclosed within rectangles, which are referred to as plates.

A graphical model representation for our hierarchical Bayesian
analysis is shown in Fig. 3. The left-hand side of this graphical
model is a representation of the two-factor model for the recall
data, and the right-hand side of themodel is a representation of the
SDTmodel for the recognition data, which we will now describe in
turn.

4.2.1. Two-factor recall model
At the level of FAST stage groups, the means of the primacy α

and recency β parameter distributions for stage i on recall task
t = 1 are given independent, non-informative uniform prior
distributions over all possible parameter values, with

µ
(1)
α,i, µ

(1)
β,i ∼ Uniform(0, 1).

Similarly, the standard deviations of the primacy α and recency β
parameter distributions for stage i, which remain constant across
the four recall tasks, are given independent, non-informative
uniform prior distributions, with

σα,i, σβ,i ∼ Uniform(0, 1).

For each subsequent recall task t ∈ {2, 3, 4}, the mean of the
primacy α parameter distribution for stage i on the first immediate
recall task t is given by

µ
(t)
α,i = µ

(1)
α,i + δα,

and the mean of the recency β parameter distribution for stage i
on the recall task t is given by

µ
(t)
β,i = µ

(1)
β,i + δ

(t)
β .



J.P. Pooley et al. / Journal of Mathematical Psychology 55 (2011) 47–56 51
Fig. 3. Graphical model representation for our hierarchical Bayesian analysis.
In the graphical model shown in Fig. 3, these means are combined
into deterministic nodes which correspond to the subsequent
primacy means vector

µ
(−1)
α,i = (µ

(2)
α,i, µ

(3)
α,i, µ

(4)
α,i)

and the subsequent recency means vector

µ
(−1)
β,i = (µ

(2)
β,i, µ

(3)
β,i, µ

(4)
β,i),

where the superscript ‘‘−1’’ is intended to indicate that the vector
contains the means of ‘‘all recall tasks except recall task 1’’. Since
each of the six FAST stage groups is assumed to have its own
primacy and recency parameter distributions, all of these nodes are
enclosed within the plate indexed by i ∈ {1, . . . , 6}.

Based on the statistical analysis discussed in the Appendix, a
single primacy change parameter applies across the subsequent
recall tasks t ∈ {2, 3, 4} and is given a non-informative uniform
prior distribution, with

δα ∼ Uniform(−1, 1).

Similarly, the recency change parameter each subsequent task t ∈

{2, 3, 4} is also given a non-informative uniform prior, with

δ
(t)
β ∼ Uniform(−1, 1).

In the graphical model, these parameters are combined in the
vector

δβ = (δ
(2)
β , δ

(3)
β , δ

(4)
β ).

At the level of individual patients, the primacy αjt and recency
βjt parameters for patient j on the recall task t are drawn from the
appropriate distributions at the group level determined by their
FAST stage classification, which is given by the categorical variable
zj ∈ {1, . . . , 6}. Specifically, a patient’s primacy and recency
parameters are drawn from truncated Gaussian distributions
with appropriate mean and standard deviation, with truncation
below 0 and above 1 since, formally, these parameters represent
probabilities of recall. More formally, the primacy parameter

αjt ∼ Gaussian(µ(t)
α,zj , σα,zj) × I[0,1]

and the recency parameter

βjt ∼ Gaussian(µ
(t)
β,zj

, σβ,zj) × I[0,1],

where I[0,1] is the indicator function on the unit interval [0, 1].
For reasons that will be explained shortly, we withheld the known
FAST stage classifications of a small portion of the patients from
each FAST stage. The prior on the stage indicator for these patients
is

zj ∼ Categorical

1
6
, . . . ,

1
6


.

Since each patient is assumed to have unique parameter values on
each recall task, these nodes are enclosedwithin the plates indexed
by j ∈ {1, . . . , 525} patients and t ∈ {1, . . . , 4} tasks.

These primacy and recency parameters then deterministically
combine to give the probability that patient j recalls word k on the
recall task t as

θjkt = 1 − (1 − αk
jt)(1 − βN−k+1

jt ),

where N = 10 is the number of words on the study list. Given this
recall probability, patient j either recalls or fails to recall word k on
the recall task t according to the binary random variable

rjkt ∼ Bernoulli(θijk),

where rjkt = 1 indicates that the word was recalled and rjkt = 0
indicates that thewordwas not recalled. Since these nodes are also
enclosed within the patient and task plates, as well as the plate
indexed by each word (or serial position) k ∈ {1, . . . , 10} on the
study list used for the free recall tasks.
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4.2.2. SDT recognition model
At the level of FAST stage groups, the means of the discrim-

inability and bias parameter distributions for stage i are both given
non-informative Gaussian priors, with the mean of the discrim-
inability parameter

µd′,i ∼ Gaussian(0, 1/σ 2
= 2),

and the mean of the response bias parameter

µc,i ∼ Gaussian(0, 1/σ 2
= 1/2).

Following the general advice of Gelman (2006), the standard
deviations of the discriminability and response bias parameter
distributions for stage i are both given non-informative uniform
priors, with

σd′,i, σc,i ∼ Uniform(5/100, 3).

Since each of the six FAST stage groups is assumed to have its
own discriminability and response bias parameter distributions,
all of these nodes are enclosed within the plate indexed by i ∈

{1, . . . , 6}.
At the individual patient level, each patient j has a unique

discriminability and response bias, each of which is sampled from
the appropriate group distribution depending on their FAST stage
classification zj, with the discriminability

d′

j ∼ Gaussian(µd′,zj , σd′,zj),

and the response bias

cj ∼ Gaussian(µc,zj , σc,zj).

The discriminability and response bias for each patient j is then
reparameterized according to SDT into a hit rate hj and false alarm
rate fj. Finally, based on these hit and false alarm rates and T = 10
targets and D = 10 distractors, the hit and false alarm counts for
patient j follow binomial distributions, with

Hj ∼ Binomial(hj, T ),

for the hits and

Fj ∼ Binomial(fj,D),

for the false alarms. These nodes are enclosed within the plate
indexed by j ∈ {1, . . . , 525} patients.

4.3. Details of MCMC sampling

The graphical model shown in Fig. 3 was implemented in
WinBUGS (Lunn, Thomas, Best, & Spiegelhalter, 2000), the software
which uses a variety of Markov chain Monte Carlo (MCMC)
algorithms (e.g., Gamerman & Lopes, 2006) to draw samples from
theposterior distributions of the parameters of interest. Our results
are based on three chains consisting of 5000 samples collected
following a burn-in period of 1000 samples. Convergence of the
chains was assessed using the R̂ statistic (Brooks & Gelman, 1998).

5. Results

5.1. Posterior predictive distributions

Before examining the posterior distributions for these memory
strength parameters, it is important to check that our model is
sensible. Many factors contribute to what makes a psychological
model sensible, and just which of these factors are emphasized in
a given analysis will ultimately depend on both the model itself
(e.g., the ‘‘level of analysis’’ at which the model is formulated)
and on the context in which the model is applied (e.g., Shiffrin
et al., 2008). In our application, it makes sense to focus mainly
on our model’s descriptive adequacy (i.e., the ability of the
model to account for and describe interesting patterns in the
observed data). Posterior predictive distributions provide an
intuitive and principled graphical approach to assessing the
descriptive adequacy of a Bayesian model (e.g., Gelman et al.,
2004, pp. 165–172). A posterior prediction corresponds to the
future (or, more generally, missing or unobserved) data the model
expects, based on the parameter values it has inferred from the
observed data, and naturally takes into account uncertainty in
these parameter estimates.

5.1.1. Recall data
Fig. 4 shows the group posterior predictive distributions for the

recall data. In the figure, the posterior predictions made by the
model are shown as squares, with the area of a square proportional
to the posterior predictive mass of the data point it represents.
It is clear from the figure that, for each block of recall tasks,
the group level predictions of the model match the observed
serial position curves. Specifically, the model is able to capture
the general decrease in performance as the FAST stage increases,
and the model also captures the loss of the recency effect in the
delayed free recall task (bottom panel of Fig. 4). We note that the
fit of the model to the delayed free recall task is noticeably worse
than the model fit to the previous three recall tasks. This is quite
probably due to the simple nature statistical analysis, described in
the Appendix, that ties together patient performance on the four
recall tasks. Still, the fit seems good enough for the exploratory
purposes of the current application.

5.1.2. Recognition data
Fig. 5 shows the group posterior predictive distributions for the

recognition data. It is again clear from the figure that the group
level predictions of the model match the observed hit and false
alarm counts for the patients and show a general degradation in
performance, with fewer hits and more false alarms, as the FAST
stage increases.

5.2. Posterior distributions

Given that our model achieves a basic level of descriptive
adequacy, it is sensible to examine the posterior distributions
for the model parameters shown in Fig. 6. The top panel of this
figure shows the joint posterior distribution for the recall primacy
α and recency β parameters, and the bottom panel shows the
joint posterior distribution for the discriminability d′ and bias
c parameters. Each column corresponds to one of the six FAST
stages. The black dots show 100 samples from the joint posterior
distribution of the parameters for the FAST stage of interest and
the gray dots show the same for all of the other FAST stages. It is
clear from the figure that these parameters change systematically
with the FAST stage. In the case of the recall parameters, primacy is
affected early in the course of ADRD and continues to degradewith
progression through the FAST stages. Recency, on the other hand,
seems to be relatively spared early in the course of ADRD, and it is
not until late in the course of ADRD (i.e., FAST stage 6) that recency
seems to be particularly affected.

In the case of the recognition parameters, the bottom panel
of Fig. 6 shows that the six FAST stage groups are well separated
in terms of the discriminability parameter. This is intuitive
since one would expect memory to be increasingly impaired
(e.g., discriminability should decrease) as the severity of ADRD
increases. Perhaps less intuitive is the result that recognition bias
does not seem to be particularly affected. Instead, bias is relatively
conservative for unimpaired patients (i.e., FAST stage 1), and it
still is relatively conservative (or at least unbiased) for severely
impaired patients (i.e., FAST stage 6). This finding is in contrast to
what some researchers have found when investigating the effects
of dementia on recognition bias (Budson, Wolk, Chong, & Waring,
2006; Snodgrass & Corwin, 1988).
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Fig. 4. Posterior predictive distributions for the recall data. The black line connected by open circles shows the observed serial position curve, and squares represent posterior
predictions made by the model. The areas of the squares are proportional to the posterior predictive mass.
Fig. 5. Posterior predictive distributions for the recognition data. The top panel shows the observed hit and false alarm counts for each patient, and the squares in the bottom
panel represent posterior predictions made by the model. The areas of the squares are proportional to the posterior predictive mass. Each column corresponds to one of the
six FAST stages.
5.3. FAST stage classification

Given that the task of prediction is naturally accommodated
by the Bayesian framework, we decided to test our model on
the task of predicting a patient’s known FAST stage from their
performance on thememory tasks. Thiswas accomplished byusing
the recognition and recall data from five patients with each stage
classification to obtain a posterior distribution over the memory
strength parameters. We then found the posterior distribution for
the FAST stage variables zj of those patients whose ‘‘true’’ FAST
stage was withheld, and made the predicted stage corresponding
to the mode of that distribution. This process was repeated 25
timeswith a different set of five patients from each stage randomly
chosen to be withheld from the model.

The classification results are shown in Fig. 7, which shows how
the model’s classifications compares to the ‘‘true’’ classifications.
Each square corresponds to a truth-prediction pair, and the box
size is proportional to the frequency of that pairing. Black boxes on
the diagonal are correct classifications. The gray regions in Fig. 7
correspond to the broader classification dividing FAST stages 1
and 2, which essentially represent normal cognitive functioning,
from stages 3–6, which represent cognitive impairment with or
without dementia (i.e., ADRD). It can be seen that the predictions
of the model are generally good, especially at the broader level,
but are certainly not perfect. We are aware of the debate in the
field of machine learning (e.g., Ng & Jordan, 2002) concerning
the relative performance of generative models (e.g., our model)
versus discriminative models (e.g., logistic regression) for the task
of classification, with the general belief being that discriminative
methods are superior. It may well be the case that our method
is not optimal at this task. Our main point, however, is that it is
straightforward to make predictions for individuals by assuming
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Fig. 6. Joint posterior distributions for the model parameters. The top row shows samples from the joint posterior distribution over the recall parameters, and the bottom
row shows samples from the joint posterior distribution over the recognition parameters. Each column corresponds to one of the six FAST stages, with the set of samples
from the FAST stage represented by the column shown in black.
Fig. 7. FAST stage predictions. Black squares represent correct classifications
and white squares represent incorrect classifications. The size of each square is
proportional to the frequency of that classification. The small gray region represents
the broad classification of cognitively normal and the large gray region represents
the broad classification of ADRD.

hierarchical individual differences, and that these predictions are
informed by the different characteristics observed in Fig. 6.2

5.4. Parameter correlations

An interesting analysis is shown in Fig. 8, relating the d′ mea-
sure of ‘‘memory strength’’ in recognition to the primacy α and re-
cency β ‘‘memory strength’’ parameters in the recall model. It is
clear that these parameters covary systematically, consistent with
the notion that these parameters tap some common basic property
of humanmemory. It is an open problem to construct some theory
that integrates these two processes, which has long been a goal
of cognitive and mathematical psychologists interested in a gen-
eral theory of human memory and could also serve as the basis for
better methods for assessing ADRD patient performance in clinical
settings. The only pointwewish to demonstrate here is that, due to

2 Regardless of the optimality of generative versus discriminative classifiers for
the task of classification, an anonymous reviewer raised the possibility that part
of the reason for the misclassifications could be due to errors on the part of the
clinicians making the FAST classifications. This seems reasonable, and is an issue
worth further scrutiny.
the nature of clinical assessments, the resulting data sets may pro-
vide excellent settings in which to develop such amemory theory.

6. Discussion

We feel that our results demonstrate some of the advantages
that the combination of cognitivemodels andhierarchical Bayesian
methods have for the understanding of memory impairments
in ADRD patients. Clinicians interested in the early detection
of ADRD and related concerns as well as psychologists interested
in the basic processes of human memory and their dysfunction
both should have reasons for adopting this methodology in their
research.

As discussed in the introduction, the screening and assessment
of ADRD relies on the use of psychological tasks. Using psycho-
logical models to analyze the data from memory tasks can aid in
the understanding of the results in ways that the ad hoc meth-
ods (e.g., counts of correct recognition choices) cannot, and a more
thorough understanding of these results should ultimately lead to
modifications of the existing psychological tasks used in ADRD as-
sessments that are differentially sensitive to different forms and
severities of dementia.

A methodological issue that can be examined with the hierar-
chical methodology relates to the words used as stimuli for the as-
sessment tasks. The specific subset of words used as stimuli were
selected from the CERAD word list with the goal of minimizing
the semantic associations between these words. However, even
the specific subset of words selected from the CERAD word list are
unlikely to be free from these associations. The addition of these
‘‘item effects’’ to ourmodel (cf. ‘‘participant effects’’ included in our
model) is naturally accomplished using the hierarchical Bayesian
methodology, thus allowing for more accurate estimation of the
model’s parameters (e.g., Rouder & Lu, 2005). For example, Pratte
and Rouder (2011) use this more sophisticated approach that in-
cludes distributions over both individuals and items in an applica-
tion to recognition memory data.

Another area of research that may be worth exploring with
the hierarchical methodology adopted here relates to the FAST
stages themselves. In this paper, we have assumed that the FAST
stages as classified by the clinician represent the ‘‘true’’ level of
severity of a patient’s ADRD impairment. However, it is possible
that the clinician’s FAST classification of a patient is not justified by
the patient’s assessment performance, and it is certainly the case
that the discretization of a more or less continuous degradation
in memory performance by the FAST is a simplification of a more
complicated reality. Thus, issues such as the consistency of a
clinician’s classifications and the justification of a FAST stage in
terms of a patient’s memory performance could potentially be
usefully evaluated within the modeling framework used here.
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Fig. 8. Correlations between the d′ and α and β memory strength parameters. Gray dots represent posterior samples, and black dots represent the means of the samples.
There are several reasons for this work to be of interest
to cognitive and mathematical psychologists. In contrast to the
majority of work in these disciplines, clinical assessments often
result in large data sets such as the one analyzed here. Large data
sets such as these can in principle be used to answer questions
that may not be possible to answer with the small data sets from
undergraduate students typically used in modeling studies. In
addition, by forcing psychologists to come to termswith individual
differences and systematic changes inmemory performance across
tasks by asking good (and sometimes new) theoretical questions,
clinical data sets such as the one analyzed in this paper force the
psychologist to make useful modifications to existing models. This
process increases the realism and significance of the models.

Obviously, the measurement models applied in this paper are
much more limited in terms of explanatory power than are the
processmodels currently preferred in theoretical studies of human
memory. Although, as advocated throughout this paper, we feel
that measurement models provide an attractive compromise be-
tween theoretical insight and practical utility, we also feel that the
application of themore complex processmodels should ultimately
be pursued. For example, as mentioned above, there are different
patterns of decay for the primacy and recency parameters of the
two-factor recall model. It is easy to see how amore complex recall
model (e.g., a two-store model with more detailed processing as-
sumptions) could provide more detailed insight on the nature and
importance of this observation. However, this interplay between
measurement and process models, for clinical applications and ba-
sic research, is an issue that awaits further study.

Ultimately, as we have tried to show throughout this paper,
any distinction between developments that are exclusively of
either clinical or cognitive relevance is an artificial one. Progress
in modeling the basic processes of human memory will naturally
inform the practice of assessingwhen and how these processes fail
in patients with ADRD, and progress in clinical screenings (and the
large data sets they produce) will naturally lead to the revision of
existing cognitive models and to the development of new models
that account for previously unmodeled phenomena. In any case,
we feel that the hierarchical Bayesian methodology will play a key
role in such progress, and feel that the research presented in this
paper demonstrates its potential.
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Appendix

In this appendix, we discuss the development and details of the
statistical model used to tie a patient’s performance across the four
free recall tasks. As motivated below, this purely statistical model
for the change in performance across tasks is based on statistical
rather than psychological considerations. However, a psychologi-
cal theory that explains this change is ultimately to be desired.

Our analysis is based on independently running the same
hierarchical SDT model and estimating the means of the primacy
and recency parameters fromdata fromeach of the four recall tasks
independently. The means of the primacy and recency parameters
for each of the FAST stage groups were independently estimated
from data from each of the four recall tasks. This process is
represented by the graphical model in Fig. 9. All results are based

Fig. 9. Graphical model representation for our hierarchical Bayesian analysis.
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Fig. 10. Averages of the posterior samples of the means of the recall parameter distributions across the four recall tasks.
on three chains consisting of 1000 samples collected following a
burn-in period of 100 samples, and convergence of the chains was
assessed using the R̂ statistic.

Fig. 10 shows, for each of the six FAST stages, plots of the
mean of the posterior samples of the mean primacy and recency
parameters. Based on the plot of the mean of the primacy
parameter in the left panel of Fig. 10, we decided that is reasonable
to approximate the change in the mean primacy strength between
the tasks as a simple increase in strength δα that stays constant
across each of the four tasks and each of the six FAST stages, relative
to the baseline provided by the first recall task.

The right panel of Fig. 10 shows the plot for the mean of the
recency parameter. Based on this plot, we feel that it is reasonable
to model the change in the mean of the recency parameter as an
increase in strength δ

(2)
β on the second recall task, a larger increase

δ
(3)
β on the third recall task, and a decrease δ

(4)
β on the forth recall

task.
Despite the relative simplicity and admittedly ad hoc nature of

this change model as a way of unifying a patient’s performance on
the four recall tasks, the model works reasonably well in practice,
as demonstrated by the posterior predictives in Figs. 4 and 5.
However, as we mentioned above, an improved statistical model
or a model motivated by more psychological concerns is obviously
desirable.
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