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Abstract

Quantitative models of human memory often rely on as-
sumed latent memory processes, such as patterns of re-
hearsal of the words on a study list. Consequently, the ap-
plication of memory models that assume latent rehearsals
typically make use of overt rehearsal data. However, these
data are not always available in some settings where the
application of memory models has proven useful (e.g.,
clinical assessments of memory performance). In this
paper, we show Bayesian statistical methodology can be
used to infer the latent pattern of rehearsals needed to suc-
cessfully apply a temporal model of memory to a clinical
data set. We discuss the relevance of this research for
those interested in neuropsychological assessment as well
as cognitive psychologists interested in basic memory re-
search.
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Cognitive psychometrics; Hierarchical Bayesian mod-
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Introduction
Quantitative models of human memory often rely on as-
sumed latent memory processes. These assumptions are
common to a range of memory models, based on dif-
ferent theoretical motivations (e.g., two-store vs. tempo-
rally based accounts of memory), and are used to account
for a similarly diverse range of observed memory phe-
nomena (for an overview, see Norman, Detre, & Polyn,
2008).

In general, however, these memory models are typi-
cally developed to account for data collected in the en-
vironment of a controlled laboratory experiment, and
problems can arise when the model is forced to leave
this environment and account for data collected in less
controlled settings. These problems that should be con-
sidered by the developers and users of memory models,
since they help determine the effectiveness of the model
as an explanatory tool. In this paper, we outline one such
problem that arises in the context of applying a popular
memory model to clinical data coming from the diag-
nosis and assessment of Alzheimer’s disease and related
disorders (ADRD). The issue is that overhert rehearsal
times that are often collected in the laboratory are not
available in this clinical setting. Instead, we show how
Bayesian statistical methods can be used to infer these
rehearsal times from the available behavioral data.

The plan of the paper is as follows. In the next section,
we provide an overview of our clinical memory data and
the database from which they are obtained. Following
this, we present the details of the memory model we use
to explain these data and as well as the Bayesian sta-
tistical methodology used to connect our model to our
data. It is shown that the basic version of this model,
which does not include rehearsal processes, is unable to
account for our data, agreeing with current results in the
memory literature. This leads to a modification of the
model that allows for the unkown rehearsal times needed
for the successful application of the model to be inferred
from the data. In addition, we show that the model can
be fitted easily to more complex data sets than are typi-
cally used in previous applications. The results of fitting
this model to this more complex data set, including in-
ferences about the latent patterns of rehearsal, are then
presented. We conclude with a discussion on the limita-
tions of the current approach and suggest potential ways
to improve our results, and we also discuss the relevance
of this research for clinical applications and for cognitive
psychologists interested in basic memory research.

Task and Data
Our memory data are a subset of a large clinical ADRD
database (e.g., Pooley, Lee, & Shankle, in press). This
database contains a wealth of information on thousands
of ADRD patients—and often on their caregivers as
well—who visit neurology clinics for dementia screen-
ing and assessment. Among other things, this informa-
tion includes demographic information and information
concerning personal medical history. In addition to this
information, this database also contains the results of var-
ious psychological tasks that are administered as part of
the cognitive portion of these dementia assessments. Of
these numerous psychological tasks, however, we focus
exclusively on a sequence of four free recall memory
tasks, and we limit our focus to the data of 541 “cog-
nitively normal patients” (i.e., those individuals judged
not to have a form of ADRD by a trained clinican). In
this sense, we are treating the data as standard memory
data coming from normally functioning adults.

Collectively, these four memory tasks constitute a sin-
gle multitrial free recall (MFR) task. Stimuli for this
MFR task consisted of words based on the CERAD
(Consortium to Establish a Registry for Alzheimers Dis-
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Figure 1: Serial position curves for multitrial free recall data. The “IFR i” panel shows the serial position curve for
the ith immediate free recall task, and “DFR” panel shows the serial position curve for the delayed free recall task.

ease) word list (Morris, Mohs, Rogers, et. al, 1988),
which serves as the basis for the neuropsychological por-
tion of numerous ADRD assessments. These words,
which included a mixture of common nouns (e.g., BUS,
WEATHER, etc.), were chosen via statistical methods
such as latent semantic analysis (Landauer & Dumais,
1997) with the goal of minimizing item effects such as
semantic associability, differential item frequency, and
so on.

Based on these stimuli, the MFR task was adminis-
tered according to the following protocal. First, patients
are presented with a study list of ten words. Following
this presentation of the study list, the patients are asked
to recall, in any order, the words on the list. Immediately
following the completion of this first immediate free re-
call task, the same procedure is then repeated twice, with
the same study list in the same order on the second and
third immediate free recall tasks. After the third immedi-
ate free recall task, there is a delay during which the pa-
tients complete a variety of unrelated cognitive tasks as
part of their dementia assessment. Following these tasks,
there is a surprise delayed free recall task, in which the
patients are asked to recall, in any order, the words on the
previous study lists.

Since each patient produces a binary string as data,
indicating whether or not a given word in a given se-
rial (or input) position on the study list was recalled, it
is often helpful to reduce the data and provide a group
aggregate of recall performance. This aggregated data,
averaged over patients for each serial position, is shown
in Figure 1. These data demonstrate the standard serial
position curve in free recall (e.g., Murdock, 1962), where
words presented in early and late portions of the study list
are better recalled than are words presented in the middle
portion of the study list.

A Temporal Model of Memory
One goal of this research is to find a psychological model
of memory that has the potential to be applied usefully
to ADRD memory data in a clinical context. Serial po-
sition curves have been well studied in the memory lit-
erature; consequently, many theories and models of this

curve have been developed.
Psychological models of memory typically take one of

two forms. Two-store (or “buffer”) models of memory
(e.g., Raaijmakers & Shiffrin, 1981) treat the memory
system as being goverened by processes that vary accord-
ing to the time scale of the to-be-remembered informa-
tion (i.e., they distinguish short- vs. long-term memory).
In contrast, temporal models of memory (e.g., Brown,
Neath, & Chater, 2007) assume that all aspects of mem-
ory, regardless of the time scale of the to-be-remembered
information, are goverened by the same processes (i.e.,
they do not distinguish short- vs. long-term memory).

So we have two styles of memory model, each with
complementary strengths and weaknesses, that could po-
tentially be applied to our MFR data. Since temporal
models of memory tend to be simpler in their imple-
mentation (which is well suited to exploratory research
such as this) and would appear to be easier to scale up to
larger data sets (which is well suited to potential future
clinical applications), we explore one representative and
currently popular temporal model in the current applica-
tion.1

The Basic Model

The representative temporal model of memory2 we ap-
ply was introduced by Brown, Neath, and Chater (2007).
This model assumes that each word on the study list is
representated in memory as a simple logarithmic com-
pression of the time since its last rehearsal by the patient,

1We stress that this choice should not be taken as an en-
dorsement of temporal models as superior to two-store models
in accounting for memory. More specifically, we do not fun-
damentally believe in the general superiority of any of the cur-
rently popular (or unpopular) memory models.

2A note on our terminology: Models in cognitive psychol-
ogy often are referred to by an acronym. In the current case,
the model is known as SIMPLE (Scale-Invariant Memory, Per-
ception, and Learning). In the current paper, we have chosen to
identify the model by what we fell is its most important struc-
tural feature for our purposes; namely, the use of a single tem-
poral dimension, rather than two “stores” and associated con-
trol processes, to account for memory performance.
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Figure 2: Graphical model representation of the temporal
model for MFR data.

where log (Tj) is the representation of the jth word3 in
memory, which was last rehearsed at time Tj relative to
the start of the recall task. Based on these representa-
tions, the similarity between the jth and kth words is
given by

ηjk = exp {−c| log(Tj)− log(Tk)|} ,

where the parameter c measures the “distinctiveness” of
the memory representations. These pairwise similarities
are then used to compute the pairwise discriminability
between the jth and kth words, which is given by

δjk =
ηjk∑
x ηjx

.

The retrieval probability for the jth and kth words is
then calculated as a sigmoid function of the associated
discriminability and is given by

ρjk =
1

1 + exp{−s(δjk − t)}
,

where the parameter t measures the “retrieval threshold”
for the words and s the “noise” in this retrieval threshold.

Based on these retireval probabilities, an arbitrary
function (i.e., one that is unmotivated by psychological

3For simplicity of exposition, we use the phrase “the jth
word” to mean “the word presented in the jth serial position of
the study list.”

concerns) is used to compute the response probability for
the jth word, which is given by

θj = min

(
1,
∑

k

ρjk

)
.

Finally, these response probabilities are are used to
generate the binary recall data

rj ∼ Bernoulli (θj) ,

where rj = 1 indicates that the jth word was recalled
and rj = 0 indicates that the jth word was not recalled.

Applying the Model to MFR Data
The generative process just outlined, extended to ac-
count for the full structure of our MFR data, is shown
as a graphical model in Figure 2. Graphical models
(for an overview, see Jordan, 2004) provide diagram-
matic representations of statistical models in which the
nodes of a graph correspond to random variables, and
the edges between these nodes correspond to the various
independence assumptions of the statistical model the
graph represents, with children independent of all other
nodes given their parents. Our notational conventions
are as follows: Square nodes represent discrete quan-
tities and circular nodes continuous quantities. Shaded
nodes represent observed quantities and unshaded nodes
unobserved quantities. Stochastic quantities are repre-
sented by nodes with a single border and deterministic
nodes are by nodes with double borders. Finally, inde-
pendent replications of portions of the graph structure
are enclosed within rectangles, which are referred to as
“plates” in the literature on graphical models.

We apply two variants of the above model. Our first
model assumes words are rehearsed exactly when they
are presented at study. It also assumes that all individ-
uals share the same values for the psychological param-
eters c, s, and t. Thus, in the graphical model in Fig-
ure 2, each of these deterministic quantities is enclosed
in plates corresponding to each patient i ∈ {1, . . . , 541}
and word j, k ∈ {1, . . . , 10}, and the final study times of
the words (relative to the start of the recall task) are not
enclosed in the plate corresponding to the patients (i.e.,
each patient rehearses the words using the same temporal
schedule). Furthermore, the psychological parameters c,
s, and t are not enclosed within any of the plates, which
means that they are both shared between the patients and
remain fixed across the four recall tasks.

Our second model differs by assuming that there are
covert rehearsals of the words after they have been pre-
sented. There are no data giving these rehearsal timings,
so they must be inferred from the available data.

Statistical Inference
As should be clear from the above discussion, knowl-
edge of the temporal schedule of the rehearsals (the Tjm

variables in Figure 2) is critically important for the func-
tioning of the model. In typical psychological exper-
iments applying temporal models, experimenters often
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Figure 3: Posterior predictive distributions for the MFR task for two implementations of the temporal model, once in
which rehearsal times are fixed (top panel) and the other in which they are inferred from the available data (bottom
panel). The “IFR i” columns show the serial position curves for the ith immediate free recall task, and “DFR” columns
show the serial position curves for the delayed free recall task. The black line shows the observed serial position curve
for each task, and boxes represent posterior predictions made by the model, with the areas of the boxes proportional
to the posterior predictive mass.

have some knowledge of these rehearsal times by hav-
ing individuals rehearse the words out loud, and keep-
ing track of the specific timing of the (observed) tem-
poral characteristics of the rehearsals; thus, researchers
using this experimental paradigm can apply this tem-
poral model (e.g., Brown, Della Salla, Foster, & Vous-
den, 2007). Fortunately, this missing data problem can
be addressed using Bayesian statistical methods, where
our uncertainty about all unobserved quantities (includ-
ing missing data such as latent rehearsal times) is ex-
pressed using probability distributions (for a compre-
hensive overview of these methods, see Gelman, Carlin,
Stern, & Rubin, 2005).

The most basic conception of the Bayesian paradigm
is quite simple: Start with a prior distribution for the
unobserved quantities, condition on the observed data
(in our case, the binary MFR data) to obtain the pos-
terior distribution for these unobserved quantities (in
our case, the psychological parameters and the latent re-
hearsal times), and use this posterior distribution to draw
all the substantive conclusions of the analysis.

Choice of Prior Distributions The choice of prior dis-
tribution is quite important when using Bayesian meth-
ods. In the work presented here, we the same non-
informative prior distributions for the latent psycholog-
ical prameters c, t, and s as have been used in previous

Bayesian applications this temporal memory model (e.g.,
Shiffrin et al., 2008). However, numerous logical con-
straints coming directly from the MFR task allow for a
more informative prior on the latent rehearsal times, and
in this paper we explore perhaprs the simplest of these
logical contraints.

Consider the three immediate recall tasks. Patients
are presented the words on the study list, one at a time
(spaced approximately 2 seconds apart), and then asked
to recall these words. Since individuals are allowed (in
expeirments where the rehearsals are recited out loud) to
rehearse the words at any time between their initial pre-
sentation and the start of the recall period, it seems rea-
sonable to assume a uniform prior over the period of time
from the presentation of any given word to the start of a
given recall period, where this period decreases from the
initial to the final serial positions. Since the fourth recall
task is delayed and a surprise (i.e., it has no proper study
period), it seems reasonable to assume that the prior dis-
tribution for the study time for each word is an identical
uniform distribution extending from the start of the third
immediate free recall task test period to the start the de-
layed free recall task. Of course, more realistic specifi-
cations of this basic idea can be made; however, it seems
reasonable as a first pass approximation to a more com-
plete prior distribution for the rehearsal times.
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Figure 4: Temporal characteristics of the MFR task and the inferred rehearsal times for the MFR data. White markers
correspond to stimulus presentations and black markers to MAP estimates of the rehearsal times; black circles rep-
resent rehearsal times for immediate free recall trials, and black triangles represent rehearsal times for delayed free
recall trials. Solid vertical lines denote test periods of the MFR task when subjects are asked to recall words.

Modeling Results

Details on MCMC

In order to perform statistical inference, the graphical
model shown in Figure 2 was implemented in Win-
BUGS (Lunn, Thomas, Best, & Spiegelhalter, 2000),
software that uses a variety of Markov chain Monte Carlo
(MCMC) methods (for an overview of such methods,
see Gamerman & Lopes, 2006) to simulate the poste-
rior distribution of the unknown quantities of interest in
the model. Our results are based on samples from three
MCMC chains, each consisting of 5,000 samples col-
lected following a burn-in period of 1,000 samples. Con-
vergence of the chains to the posterior distribution was
assessed via the R̂ statistic (Brooks & Gelman, 1998),
which compares between- and within-chain variability.

Model Checking

Before we make posterior inferences about the quanti-
tites of interest, we should check that our memory model
is adequate. Many factors determine what makes a psy-
chological model adequate, and just which of these fac-
tors are emphasized in a given analysis will ultimately
depend on both the model itself and on the context in
which the model is applied. In our current exploratory
application, it is sensible sense to focus mainly on our
model’s descriptive adequacy (i.e., its to account for and
describe interesting patterns in the observed data). In the
Bayesian paradigm, this task is naturally accomplished
using posterior predictive distributions (e.g., Gelman et
al., 2004, pp. 165-172). Briefly, these distributions cor-
respond to the data the model expects, based on the pa-
rameter values it has inferred from the observed data.

Figure 3 shows, for two implementations of the tem-
poral model of memory discussed above, the posterior
predictive distributions for four free recall tasks. The top
panel shows the posterior predictive distributions for a
model that fixes the rehearsal times Tjm to some fixed

values4, and the bottom panel shows the posterior pre-
dictive distributions for the full model, where these re-
hearsal times are inferred from the data. Each plot was
generated by sampling parameters values (c, t, s, and the
multiple Tjm) from the MCMC chains, and using these
parameter values to generate serial position curves. The
box sizes correspond to the amount of posterior predic-
tive mass the model places on a given data point. Clearly,
the model that allows the rehearsal times to be inferred
from the data fits the data well while the model that as-
sumes fixed rehearsal times a priori does not. Thus, we
proceed to draw posterior inferences concerning the la-
tent rehearsal times only for the full model.

Inferred Rehearsal Times
Figure 4 shows the inferred latent rehearsal times for the
data. In this figure, white markers correspond to stimulus
presentations and black markers to MAP estimates of the
rehearsal times; black circles represent rehearsal times
for immediate free recall trials, and black triangles rep-
resent rehearsal times for delayed free recall trials. Solid
vertical lines denote test periods of the MFR task when
subjects are asked to recall words.

Although there appear to be general patterns in these
inferences, without additional constraints (from either
theory or data) drawing substantive conclusions about
the rehearsal times is difficult. Finding patterns in these
rehearsal times, however, is not our goal here. Rather,
our point is to demonstrate that the application of tem-
poral models such as the one applied here need not be
limited by the lack of relevant data, which, it is impor-
tant to recognize, will typically be missing in ADRD set-
tings. Thus, we feel that these results justify further ex-
ploration and extension to the full structure of the data
described above. Once this is done, comparisons be-
tween the psychological parameter values learned for the

4Our investigations suggest that the exact pattern of latent
rehearsals is underdetermined by the model and the data. How-
ever, the point here is that without the assumption of covert
rehearsal, the temporal model cannot fit the data.



different stages can meaningully be made. As it stands
now, however, we can only claim that these results show
that our approach is in principle a sensible alternative to
not applying a model to a given set of data.

Discussion
In this paper, we used Bayesian methods to apply a tem-
poral model of memory to a subset of a clinical data set
concerning the memory performance of ADRD patients.
Critically, the Bayesian methods facilitated the applica-
tion of the model when the key data needed to make the
model work are missing from the data set. Furthermore,
this is, to our knowlege, the first time that this specific
temporal model of memory has been applied to the data
from a full MFR task. Obviously, however, the model
used here will need to be improved for fututre appli-
cations. For example, it was assumed that patients ex-
hibit no individual differences in terms of memory per-
formance. This is false when considering the case of nor-
mal aging adults due to ADRD, and even more clearly
false when comparing the memory performance of these
normal aging adults to groups of cognitively impaired
individuals with some form of ADRD. Extending the
model in such ways is straightforward using hierarchi-
cal Bayesian methods (e.g., Pooley, Lee, and Shankle, in
press).

In addition to fixing these misspecifications at the level
of the psychological model (used here for simplicity), we
feel that the constrained nature of the MFR task presents
an excellent opportunity to explore the use of prior distri-
butions that are quite informative. For example, numer-
ous physcial constraints determine when it is logically
possible to rehearse an item presented in a given serial
position on the study list. Our modeling here used per-
haps the simplest formulation, and there exists additional
information concerning the task to make this specifica-
tion more realistic. Hopefully, such an improved spec-
ification would further improve the performance on the
model.

Finally, a word about the potential users of this
Bayesian methodology for memory research: It is eas-
ier for the experimental psychologists to perform exper-
iments that than to learn the details of Bayesian method-
ology, so the why should an experimental psychologist
care about this research? Our answer is that, even with
the overt rehearsal paradigms currently used by exper-
imental psychologists, the obtained data is only an ap-
proximation of the true rehearsal schedule going on in
an individual’s mind. Thus, overt rehearsal data can and
should be used to constrain further the prior distributions
on the rehearsal times. In contrast to basic research in ex-
perimental psychology, changes in experimental design
are often hard (or costly) to implement on a large scale
in clinical settings, and the existing data needs to be ana-
lyzed, in any case. Thus, it is in this area that we feel this
work could yield the largest benefits. We feel that the
modeling presented in this paper, although preliminary,
are a positive first step in this direction.
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