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ABSTRACT

Analyses of multi-attribute decision problems are dominated by accounts which assume
people select from a repertoire of cognitive strategies to make decisions. This paper
explores an alternative account based on sequential sampling and evidence accumu-
lation. Two experiments varied aspects of a decision environment to examine compet-
ing models of decision behavior. The results highlighted the intra-participant
consistency but inter-participant differences in the amount of evidence considered
in decisions. This pattern was best captured by a sequential evidence accumulation
model (SEQ) which treated pure Take-The-Best (TTB) and pure ‘‘rational’’ (RAT)
models as special cases of a single model. The SEQ model was also preferred by the
minimum description length (MDL) criterion to a naive strategy-selection model (NSS)
which assumed that TTB or RAT could be selected with some probability for each
decision. Copyright # 2010 John Wiley & Sons, Ltd.
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INTRODUCTION

A problem faced commonly by decision makers is determining how much information to incorporate into a

decision. Some decisions are trivial (e.g., choosing a breakfast cereal), but some more important (e.g.,

choosing a mate), and consequently the amount of information or evidence examined prior to deciding will

vary. One way to model this variance is to suggest that people sample evidence sequentially and adjust the

amount of evidence they consider according to a decision threshold. Inherent in this conception is that

thresholds will vary not just between decisions but also between individuals (some of us need more

information than others when choosing clothes, for example). Newell (2005) suggested an ‘‘adjustable

spanner’’ (or wrench) to capture this idea; a spanner in which the width of the jaws represents the amount of

evidence a person accumulates before making a decision. An alternative way to model the variance is to
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suggest that people have access to a repertoire of decision strategies or ‘‘tools’’ which are suited for particular

tasks. Such explanations are often invoked in the literature on both preferential choice (Beach & Mitchell,

1978; Christensen-Szalanski, 1978; Payne, Bettman, & Johnson, 1993) and inference (Gigerenzer & Todd,

1999), and recent work has begun to examine how decision makers might learn to select different strategies

(Rieskamp, 2006; Rieskamp & Otto, 2006).

This paper provides an initial step in comparing these alternative theoretical conceptions. The

performance of a sequential sampling model first proposed by Lee and Cummins (2004) is compared with a

strategy selection model in two experiments. The experiments vary factors that have been shown to impact

the adoption of decision strategies and the amount of evidence people consider in inference tasks. In

Experiment 1 the format (image or text) of stimulus materials was varied, and in Experiment 2, the cost of cue

information was manipulated. These manipulations provide ‘‘test-beds’’ in which to observe the behavior of

the models under consideration. A further aim is to examine the validity of some of the assumptions

underlying the sequential sampling model; assumptions which have been questioned by some researchers

(e.g., Bergert & Nosofsky, 2007). We begin by introducing the models under consideration and explain why

these particular models were chosen for the comparison.

THE SEQUENTIAL SAMPLING MODEL

Sequential sampling processes have been extensively studied as models of human decision-making (e.g.,

Busemeyer & Rapoport, 1988; Busemeyer & Townsend, 1993; Busemeyer & Johnson, 2004; Laming, 1968;

Nosofsky & Palmeri, 1997; Ratcliff, 1978; Vickers, 1979;Wallsten &Barton, 1982) particularly in relation to

elementary psychophysical tasks, such as judging which of two lines is longer. Although there are many

variants, the basic assumption of these models is that stimuli are searched for information until sufficient

evidence has been accumulated to favor one decision, or no more information is available. These models have

not often been applied to multiple-cue inference tasks, but their extension to such tasks is straightforward and

provides a valuable alternative to the more commonly proposed strategy selection perspective.

Lee and Cummins (2004) presented a formal instantiation of an evidence accumulation model based on

sequential sampling ideas for a two-alternative, multiple-cue task. In such tasks participants learn through

trial-by-trial experience how to predict which of two objects is more likely to be higher on a given criterion.

For example, participants might learn which of two companies is the better investment on the basis of

indicators or cues such as employee turnover, or market share (e.g., Newell, Weston, & Shanks, 2003). Each

cue in the environment has a predictive validity and participants must attempt to learn these validities in order

to improve their performance. Thus oneway of conceptualizing performance in these tasks is that participants

consider the evidence provided by the different cues and make choices accordingly.

Lee and Cummins proposed that a model which considered cues sequentially in the order of their validity

(i.e., highest to lowest) could be interpreted as a unification of ‘‘take-the-best’’ (TTB) (Gigerenzer &

Goldstein, 1996) and ‘‘rational’’ models (RAT) because these two models represent the two extremes of

evidence accumulation. TTB is a frugal heuristic which considers cues in the order of their validity like the

sequential sampling model but stops search as soon as a cue which discriminates between alternatives is

found. For example, one might discover that one company is a multi-national and the other is not and infer

that the former is a better investment. TTB is a noncompensatory strategy because the ‘‘best’’ cue cannot be

outweighed by any combination of less valid cues. TTB contrasts with compensatory strategies such as a

linear weighted additive strategy (WADD) or the ‘‘rational’’ strategy (RAT) which we consider in this paper,

because these strategies integrate cue values and choose the alternative with the higher weight of evidence.

Such compensatory strategies are often considered the ‘‘gold standard’’ and rational or optimal because they

weight appropriately and integrate the information available in a decision environment (Gigerenzer &

Goldstein, 1996; Keeney & Raiffa, 1976; Payne et al., 1993). There is a long-standing interest in examining
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the circumstances under which people’s judgments and decisions accord with the frugal models exemplified

by TTB or the more comprehensive models exemplified byWADD (e.g., Simon, 1956; see Newell, Lagnado,

& Shanks, 2007 for a review). Thus these models are important ones to include in our comparison. The key

advance of our perspective is that these models need not be considered as discrete, but rather points on a

continuum of evidence accumulation.

Figure 1 provides a graphical illustration of the sequential sampling process used by Lee and Cummins

(2004). This is the simplest and most popular form of sequential sampling, known as a random walk in which

information is accumulated in a single tally as cues are observed, and a decision is made as soon as there is a

threshold amount of evidence in favor of one alternative. (If all the cues are exhausted, and the threshold is not

reached, we follow previous sequential sampling modeling (e.g., Lee & Corlett, 2003), in assuming that the

alternative with the greatest evidence is chosen.)

Figure 1 illustrates a situation where the first cue provides strong evidence (measured on a standard log-

odds scale) in favor of decision A, but all of the subsequent lower validity cues favor decision B. The log-odds

scale is used because it is symmetric about the origin and additive: log-odds of zero mean that each decision

is equally favored, and equal positive or negative increments represent equal amounts of evidence in favor

of the two alternative decisions. (The Method section of Experiment 1 explains how cue validities are

transformed into log-odds.) Once all cues have been observed, there is more evidence for decision B than A.

Accordingly, for low thresholds (the value two is shown as a concrete example) decision Awill be made; for

higher threshold values (the value three is shown as a concrete example) decision B will be made.

In general, low thresholds that guarantee sampling terminates as soon as evidence favoring one option is

found will model TTB decisions, while high thresholds that guarantee exhaustive sampling of all cues will

model RAT decisions. The sequential sampling approach views these alternatives as special cases of a single

evidence accumulation model corresponding to low (TTB) and high (RAT) evidence thresholds. Lee and

Cummins (2004) tested the model in a multiple-cue judgment task and found that what they called the

‘‘unified’’ model1 (unifying TTB and RAT) accounted for a higher proportion of participants’ decisions

Figure 1. The sequential sampling model, showing the accumulated evidence as nine cues are sampled in validity order,
and Take-The-Best (TTB)-consistent (top) and rational (RAT)-consistent (bottom) decision thresholds

1We acknowledge that other models which posit a single underlying representation (such as exemplar models) could also be considered
‘‘unified’’.
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(84.5%) than either a pure TTB (36%) or RAT (64%) model. This better account of the data was not due

simply to the unified model being more complex; the model was also favored by a minimum description

length (MDL) model selection criterion that took into account the additional complexity of the unified model.

Lee and Cummins (2004) presented their model as an alternative conceptualization of behavior often

interpreted as the selection of different decision making strategies. However, Lee and Cummins only

compared the unified model with models that assumed all participants used either TTB or RAT. They did not

compare the model with a strategy selection approach which assumes that, for each participant as they make

each decision there is some probability of selecting TTB or RAT. Including a comparison with such an

approach is an essential next step because current influential models of strategy selection propose this type of

selection mechanism (e.g., Strategy Selection Learning (SSL) model, Rieskamp, 2006; Rieskamp & Otto,

2006).

COMPARING THE MODELS

Before presenting the experiments we provide descriptions of the four models we consider, and present a

demonstration of our methodology for their comparison, using hypothetical data. The environment used in

our experiments is the same one originally developed by Lee and Cummins (2004), and subsequently used by

Bergert and Nosofsky (2007). It involves a training phase, in which participants learn how the cues relate to

outcomes, and a test phase designed to differentiate different models of human decision-making.

The environment itself is described in detail later, but to introduce the model comparison method three key

features need to be noted: (1) the TTB and RAT strategies make identical choice-predictions in the training

phase of the experiments removing the possibility that feedback will lead to one strategy being favored over

another during training; (2) TTB and RAT make opposite choice-predictions in the test trials allowing

inferences to be drawn about the strategy selected/evidence accumulated on each test trial; (3) Feedback is

provided during training but not at test, preventing further learning from occurring during the test trials.

Using this experimental approach, we consider four different models of human decision-making. The key

to evaluating the models is to specify what decisions they predict on the test trials, after training is finished.

Pure TTB: this model assumes that all participants adopt the TTB strategy for all test items. The TTB

model states that once cue validities have been learned, for a given pair of objects the cue with the highest

validity is consulted. If this cue discriminates between the stimuli (i.e., one object has the cue and the other

does not, or only one object has a positive value of this cue), the favored stimulus is chosen and no further

cues are examined. If the cue does not discriminate, the next cue in the validity order is considered and this

process continues until cues are exhausted. Accordingly, for the test trials, which have by design a TTB-

consistent and a RAT-consistent option, the TTB model simply predicts the TTB-consistent option will

always be chosen.

Pure RAT: this model assumes that all participants adopt the RAT strategy for all test items. The RAT

model states that the log-odds for each alternative are found by summing the evidence provided by each cue.

The alternative with the higher weight of evidence is chosen; if the sums are equal a random choice is made.

Accordingly, the RAT model simply predicts the RAT-consistent option will always be chosen at test.

Sequential sampling model (SEQ): This model considers how the sequential sampling account best

captures the TTB- and RAT-consistent decisions at the individual participant level. Formally, this can be

achieved by allowing the model to assume a different evidence threshold for each participant. This captures

the intuition that different people faced with the same decision (e.g., choosing a restaurant to dine at) might

consider different levels of evidence (e.g., only the name of the restaurant, or the type of food, the cost, the

location, etc.). For the environment we use, with its specific training and test questions and cue validities, it

turns out that the SEQ model answers all the test questions consistent with the RAT approach once the

threshold is above a critical value, but consistent with the TTB approach below that value. This means that the
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SEQ model predicts each participant will either give RAT-consistent or TTB-consistent answers to all of the

test questions, but not a mix of both.

Naı̈ve Strategy Selection (NSS): This model is premised on the notion that people have a repertoire of

cognitive strategies available and that people initially select a strategy based on prior expectation of its

success for a given decision problem (cf. Rieskamp & Otto, 2006). The subjective expectations of the

appropriateness of these strategies then change through reinforcement learning as a function of the strategy’s

success in the environment. A strategy that performs well (i.e., makes correct predictions) is reinforced over

trials in an experiment; a strategy that performs poorly is not reinforced and thus becomes less likely to be

selected (cf., Rieskamp&Otto, 2006). Because TTB and RAT strategies make identical choice-predictions in

the training trials of our experiments, the feedback provided during this stage should not differentially

reinforce either the TTB or RAT decision strategy. This means that, at the beginning of test, the probability

that TTB or RAT will be used is still given by a value close to their prior probabilities at the beginning of

training. Since the test stage provides no feedback to reinforce one strategy over the other, this probability

should remain approximately constant throughout the test stage. Accordingly, our conception of how NSS

applies to the task involves a single parameter for each subject, which gives the probability that the TTB

rather than RAT strategy will be used for each test question by that subject.

It is important to note that our NSS model is naive in comparison to Rieskamp and Otto’s SSL model

because in their model strategies can also be reinforced by a combination of accuracy and effort. Thus in their

model when strategies’ accuracies’ are equated, a strategy which requires less effort will be reinforced. In the

training phases of our experiments all cue information is available without cost. This means that there is little

disincentive for people not to use all the information and thus behave in a RAT-consistent manner.

Alternatively, one could argue that there will be a bias toward TTB because it is simpler in terms of cognitive

effort (Lee & Cummins, 2004). Because we cannot infer strategies from choices in the training phases of

our experiments (both strategies predict identical choices) and because we did not record cue-search and

acquisition data from the training phases we are unable to distinguish these possibilities. Therefore, we

focused on pure accuracy reinforcement in our naive model which in our environment leads both strategies to

be equivalently reinforced during training.

Minimum description length as a model selection criterion
The SEQ model has an evidence threshold parameter, and the NSS model has a strategy-selection parameter.

This makes both models more complicated than the parameter-free TTB and RAT models. In addition, even

though it has the same number of parameters as the NSS model (one per participant) the SEQ model is more

constrained in the patterns of test trial decision-making it can predict. For the SEQ model, there can be inter-

individual differences, but there must be intra-individual consistency (i.e., each participant is predicted to choose

all RAT-consistent or all TTB-consistent options over their test questions). In the language of model selection

theory, these constraints mean that the SEQ model has simpler functional form complexity than the NSS model.

It is important that these differences in both the number of parameters and functional form aspects of

model complexity be taken into account when assessing the fit of the models to data. To achieve this, we used

the MDL model selection criterion, which is sensitive to both goodness-of-fit and model complexity. The

basic idea behind the MDL measure is to compress data by using a model, which identifies regularities in the

data, and so allows a description that uses less information than would be required to list a data set literally.

Formally, anMDL criterion is the length of this encoding of the data using the model, measured in bits, which

are standard units of information in the fields of computer science and information theory. We used a version

of the MDL criterion based on the ‘‘entropification’’ method developed by Grünwald (1999), and previously

applied to evaluating the current decision-making models by Lee and Cummins (2004; see especially Lee,

2004 or the appendix in Lee, 2006 for a technical tutorial and Grünwald, 2007 for an extensive discussion of

the MDL principle and its relationship to Bayesian and other model evaluation methods).
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The chief advantage of the MDL measure in the current setting is that it can naturally be applied to

deterministic models. More familiar model selection methods that balance goodness-of-fit with complexity,

such as Bayes Factors (e.g., Kass & Raftery, 1995) and their approximation by information criteria such as

the AIC and BIC, are only defined for probabilistic models.While most models of decision-making, like most

models of cognition generally, are probabilistic, that is not the case for the simple TTB, RAT, and SEQ

models we are considering. The TTB and RATmodels simply assert that all participants will use one strategy

for every decision they make. The SEQ model allows different participants to use different strategies, but as

explained above predicts that all the test questions in the current experiments will be answered using only one

of these strategies by any individual participant.

Taken literally, the deterministic nature of these models means they would be falsified automatically by

almost any experimental data. For example, if just one participant on just one trial chooses the TTB

alternative, the RAT model is falsified. Given the inherent noise in decision-making experimentation, this is

an undesirable state of affairs. Our approach to this problem is based on the MDL criterion and preserves the

simple deterministic nature of the heuristics, but treats the data as being inherently ‘‘noisy’’. There is always

variation in data that is not fully explained by any set of cognitive models, and this additional variation is

explicitly modeled by the MDL approach using an error rate parameter for the data. One intuitive way of

understanding the MDL approach in modeling terms is that it effectively augments each of the RAT, TTB,

SEQ, and NSS decision-making models with the same simple but principled error theory, so that they can all

be compared directly to noisy experimental data.

NSS represents a point of calibration for the MDL measure, showing how a saturated model (one that

makes probabilistic predictions, and so could potentially explain a large range of data patterns) fares against

the inherently deterministic (or rule-based) TTB, RAT, and SEQ models. In this sense, we accept that the

MDL measure for NSS is not a perfect representation of the complexity of NSS theory, but does provide a

quantitative point of comparison to help understand the MDL measures for the alternative models being

considered. Furthermore, this MDL approach makes it easy to compare the models over the whole range of

different possible assumptions about the noisiness of the data. In addition, in the repeated-measures designs

we consider, it is possible to estimate the level of noise, or error directly from the behavioral data (by

examining the consistency of choices across repeated pairs of test items), and so inform the MDL analysis

directly. We demonstrate these properties in the hypothetical example following.

A demonstration with hypothetical data
A concrete illustration of our MDL approach to evaluating the four models is provided by considering two

hypothetical data sets. The first data set shown in Table 1A and then modeled in the left panel of Figure 2

shows data characterized by a high-degree of both inter- and intra-individual inconsistency in choices. The

second data set shown in Table 1B and then modeled in the right panel of Figure 2 shows data characterized

by a much higher degree of intra-individual consistency in choices. It is informative to consider how the

models fare in capturing these patterns of consistency in choices within (intra) and across (inter) individuals.

Table 1A shows the raw data for 10 hypothetical participants who have been through a training phase and then

make 10 forced-choice decisions between pairs of objects (e.g., an inference about which of two companies is

more profitable). For each decision, one object is the predicted choice of the TTB strategy (denoted with a T

in the table) and the other is the predicted choice of the RAT strategy (denoted with an R). The data show that

every participant tends to make several R and several T choices (i.e., a high degree of inter- and intra-

individual inconsistency). The left panel of Figure 2 shows the performance of the four models in capturing

these hypothetical data. The figure plots MDL on the y-axis and the error-rate on the x-axis. Error rate is a

measure of the ‘‘noise’’ in the data (e.g., the degree to which a participant makes the same choice when faced

with the same pair of objects). An error rate of 0 indicates perfect, error-free, data and an error-rate of 0.5

indicates random data (i.e., where the measurement is as likely to be correct as it is to be incorrect). Lower
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values of MDL indicate a more likely model, so the figure shows that the NSS model provides the best fit to

these data for all levels of error up to approximately 0.17. After this point the three other models provide

better fits, with the RAT model providing the best fit to the data.

It is worth noting how the assumed error rate relates to the balance between goodness-of-fit and

complexity in comparing the models.When the error rate is zero, the data are considered exact, and so, for the

data in Table 1A, only the NSS model can account for the data. In the left panel of Figure 2, this is clear

because the NSS model has the lowest MDL value (in fact, the other models have infinitely large MDL

values, because they mis-predict at least one decision). As the error rate is assumed to be larger, however,

model complexity is emphasized and goodness-of-fit is de-emphasized by the MDL criterion. At the extreme

error rate of 0.5, where the data are essentially arbitrary (i.e., each datum could equally well be a TTB- or

RAT-consistent decision), the MDL measures just reflect complexity, favoring the simplest RAT and TTB

models, followed by the SEQ and then the NSS models.

Table 1B shows the data from a second set of hypothetical participants given the same task. These data are

characterized by a much higher degree of intra-individual consistency.Although the overall number of R and

T choices is the same as in Table 1A most participants’ choices are dominated by one or other strategy. The

right panel of Figure 2 shows that when the data are virtually error-free NSS is the preferred model, but as

soon as there is some error the SEQ model provides the best fit and remains the preferred model until the data

are almost random.

In addition to the fits of each model one can calculate the proportion of decisions predicted by the models.

The naive NSS model, because it is a saturated model can predict all patterns of decisions with varying levels

Table 1. (A and B) Two hypothetical data sets for 10 participants (P1–10) answering 10 forced-choice test questions
(Q1–10) about objects which discriminate RAT (R) and TTB (T) choices

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

A
P1 R R T R T T R R T T
P2 T R R R T T R T R T
P3 R R T T R T R T R T
P4 R T R R T R R T T T
P5 R T R T R R T R T T
P6 R T R T R T R T R R
P7 T R T R R T T R R R
P8 R T R R T R R R T T
P9 R R T R R T T R R R
P10 R T R R R T R T R R

B
P1 T T T T T T T T T T
P2 T T T T T T T T T T
P3 T T T T T T T T R T
P4 T T R R T R T T T R
P5 R T T T R R T T R R
P6 R R R R T T R T R R
P7 R R R R R R R R R R
P8 R R R R R R R R R R
P9 R R R R R R R R R R
P10 R R R R R R R R R R

The data in Table 1A display high inter- and intra- individual inconsistency in decision behavior. The data in Table 1B display high inter-
individual inconsistency but high intra-individual consistency in decision behavior.
R refers to a choice of the object predicted the rational (RAT) strategy; T refers to a choice of the object predicted by theTake-the-Best
(TTB) strategy.
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of probability. In contrast, the ability of the SEQ model to explain decisions is affected by the regularities

in the data. The data in Table 1A lack regularity both at the inter and intra-individual level and thus SEQ can

only predict 57% of the decisions—equivalent to the performance of RAT, which is in turn simply a reflection

of the higher number of R decisions in the data set (57/100). TTB can predict the remaining 43% of decisions.

However, given the regularities in the data in Table 1B, SEQ benefits from the intra-individual consistency

and is able to predict 87% of the decisions. The 13 predictions it gets incorrect are those which are

inconsistent with the majority of an individual’s decisions (i.e., Q9 of Participant 3; Q3, 4, and 10 of

Participant 4; half of Participant 5’s responses, and Q5, 6, and 8 of Participant 6). The performance of TTB

and RAT remain the same as for the Table 1A data.

Taken together, these demonstrations show that theMDLmeasure can find evidence for each of the models

depending on the regularities in the empirical data. If most decisions are TTB- or RAT-consistent, the

simplicity of those heuristics will be preferred. If there are many TTB- and RAT-consistent decisions over all

participants, but each individual participant tends to use only one approach, the SEQmodel will be preferred.

If this intra-individual consistency is also absent, the NSS model will be preferred. We now turn to the

experiments which provided the test-beds for our model comparisons.

EXPERIMENT 1: A COMPARISON OF THE FOUR MODELS IN ENVIRONMENTS WITH TEXT

AND GRAPHICAL CUE FORMATS

The main aim of Experiment 1 was to compare the performance of the SEQ, RAT, TTB, and NSS models. To

achieve this aim we used a multiple-cue inference task that had the same statistical properties as that used

previously by Lee and Cummins (2004 see also Bergert & Nosofsky, 2007). An additional aim of Experiment

1 was to examine the effect of different cue format instantiations. The two previous studies that have used the

cue environment we adopted have displayed cue values in graphical or picture formats (Bergert & Nosofsky,

2007; Lee & Cummins, 2004). In contrast, the majority of multiple cue-inference tasks present stimulus

information to participants as text lists (i.e., word descriptions of the values of cues). Some research suggests

that the format in which cue information is presented (text or image) affects the adoption of different types of
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Figure 2. Minimum Description Length (MDL) results for the demonstration with hypothetical data. The curves show
the MDL criteria for each of the four decision-making models, as a function of the assumed error rate of the experimental
data shown from Table 1A (left panel) and Table 1B (right panel). Lower values of MDL indicate a more likely model
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decision strategies (Bröder & Gaissmaier, 2007; Bröder & Schiffer, 2003, 2006). Given that previous studies

with the current experimental environment have only used image-based cues, it is of interest to see if format

impacts on the ability of the models to account for the data. For example, might presenting discrete text-based

cues promote the single discriminating cue stopping-rule of TTB? (e.g., as in Bröder & Schiffer, 2003). Thus

cue information was presented either in text or image format (between-subjects) in training and at test items

were presented separately in text and image formats (within-subjects).

METHOD

Participants
Forty-eight undergraduate students (23 male, 25 female; mean age¼ 18 years) from the University of New

South Wales participated in the experiment in return for course credit. There was an error storing the data for

one participant, giving a final total of 47 participants.

Stimuli
The statistical structure of the stimulus environment used in the experiments was developed by Lee and

Cummins (2004) and adapted from a real-world environment examined by Czerlinski, Gigerenzer, and

Goldstein (1999); Lee and Cummins (2004) give a full account of its construction (see also Bergert &

Nosofsky, 2007). The environment comprises 16 objects described by six binary cues. Table 2 displays this

environment showing the cue patterns for each stimulus, the associated decision variable for each pattern (see

Procedure section for explanation of what the decision variable refers to), and the validity of each cue where

cue validity is defined using a Bayesian measure in which the validity of cue i (vi) is defined as

vi ¼ number of correct decisionsmade by the ith cueþ 1

number of decisionsmade by the ith cueþ 2
(1)

The evidence value of each cue is the log-odds of the Bayesian cue validity. For example, Cue 1 makes 59

correct decisions out of the 60 decisions in which it discriminates (i.e., predicts a unique choice); by Equation

1 this leads to a Bayesian validity of 60/62 or .968, which has a log-odds value of 3.40 (ln(.968/(1� .968). In

the training phase, participants received 119 training trials, which constitute all but one possible pairings of

the 16 objects in Table 2. The exception, as with Lee and Cummins (2004), is the pairing of the second and

seventh stimuli. This pairing was omitted because the TTB and RAT models make opposing predictions. For

all remaining 119 pairings, the TTB and RAT models make the same prediction. The test items are displayed

in the lower section of Table 2. In contrast to the training pairs, these items are designed specifically to

distinguish between choices that accord to the predictions of the RATand TTBmodel. For each pair, the TTB

model selects the stimulus on the left because it has a positive value for the most predictive cue. The RAT

model makes the opposite prediction because the stimulus on the right always has more evidence favoring it

once all the cues are assessed (i.e., the sum of the log-odds is higher).

To enable a cover-story to be used (see procedure section) the cue environment was instantiated as six

pieces of clothing—baseball cap, t-shirt, handbag, skirt, stockings, and shoes—each of which could be one

of two colors. The stimuli were either text descriptions of these clothing items, or schematic images of a

woman wearing these items. The assignment of cue validities to clothing items was random and differed for

each participant (e.g., for one participant a value of 1 indicated ‘‘green shoes’’ and 0 indicated ‘‘yellow

shoes’’ for another it would be reversed).
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Training phase procedure

Participants were told that they were an undercover agent in a fictional country and had to learn about the

clothing characteristics of members of a secret society. On each of the 119 trials in the training phase the two

paired stimuli were presented on screen, and participants selected the woman they thought more likely to be a

secret society member. Twenty-four participants were trained using the text descriptions, and the remaining

23 participants were trained using the schematic image representation (randomly assigned). In both formats

of presentation, the correct answer was determined by the stimulus with the higher decision variable

(referring to the higher likelihood of being a secret society member), and feedback was given on each trial by

indicating the correct choice.

Test phase

Following training, participants completed a test phase, involving two blocks of 20 trials. Both blocks

comprised four repetitions of the five test questions displayed in Table 2 presented in a random order for each

participant. The repetitions were included to gain a more stable estimate of the decisions participants made

(Bergert & Nosofsky, 2007), and also facilitated the estimation of the level of noise in the data required for

Table 2. The training and test environments used in Experiments 1and 2, showing cue patterns, cue validities, decision
variable values and assignment of cues to the TTB-and RAT-consistent stimuli in the test environment

Object
number Cue 1 (.97) Cue 2 (.90) Cue 3 (.82) Cue 4 (.64) Cue 5 (.56) Cue 6 (.55)

Decision
variable

Training environment
1 0 0 0 1 0 0 16
2 0 1 0 0 1 0 18
3 0 0 1 0 0 1 21
4 0 0 0 1 1 0 25
5 0 0 0 0 1 0 31
6 1 0 0 0 1 1 40
7 0 0 1 1 1 1 44
8 1 1 0 1 0 0 51
9 1 1 1 0 0 1 62
10 1 1 0 0 1 0 70
11 1 1 0 1 1 1 97
12 1 1 1 1 0 0 104
13 1 1 1 1 1 1 280
14 1 1 1 1 0 1 285
15 1 1 1 0 1 0 347
16 1 1 1 1 1 0 444

Test Pair No. TTB object RAT object

Test environment
1 1 0 0 0 0 1 0 1 1 0 0 0
2 1 0 0 0 1 0 0 1 1 0 0 0
3 1 0 0 0 1 1 0 1 1 1 0 0
4 1 0 0 1 1 0 0 1 1 1 0 0
5 1 0 0 1 1 1 0 1 1 1 1 0

In the experiments the values 1 and 0 indicate one of two colors for each item of clothing. The value of the decision variable was
determined by the original raw data set from which these stimuli were drawn (see Lee & Cummins, 2004). For the test environment cues
are arranged in validity order (left to right).
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the MDL analysis. One of these blocks of 20 trials was presented using the text format, while the other was

presented using the image format. The order of the formats was counterbalanced across participants. No

feedback was given during the test phase. A ‘‘time-out’’ trial was recorded if participants did not respond

within 15 seconds.

RESULTS

Training trials
There was a clear increase in accuracy across learning trials for both groups indicating that participants were

able to learn from the feedback (average accuracy across the last 19 trials Text group: .79, Image group: .80).

There was a significant linear trend across learning trials, F(1,45)¼ 48.80, p< .001, no effect of group, and

no interaction between the two variables Fs< 1.

Test decisions
The raw data for the test decisions from the Image and Text test phases are shown in Table 3. The data are the

number of choices of the TTB-predicted object on each of the four repetitions of the 5 test questions. Thus a

participant who always chose the TTB object would have a 4 in each column (e.g., Participant 5 in the Image

condition data) and one who always chose the RAT object would have 0 (e.g., Participant 43 in the Image

condition data). The data are arranged in order with TTB-consistent participants at the top of the columns and

RAT-consistent at the bottom. Comparison of the two sets of columns suggests that the format manipulation

had little effect on the distribution of TTB- and RAT- consistent participants but highlight the intra-

participant consistency and inter-participant differences in decision behavior predicted by the sequential

sampling model. There was some evidence of participants switching strategies between formats (e.g.,

participants 5 and 42); but it was not systematic (i.e., similar numbers switched in both directions—TTB-

Text to RAT-Image and vice-versa).

Model comparisons
Figure 3 displays the model comparisons for the data from the Image condition (Left Panel) and the Text

condition (Right Panel). Because participants made repeated decisions (4 for each test-pair) we can estimate

the amount of error in the data. The 95% confidence interval around this estimate is depicted by the gray

shaded column in the figure. The point at which the lines intersect this shaded area is the region of interest for

our model comparison. Both figures show similar qualitative patterns with a clear advantage in terms of MDL

for the SEQ model in both conditions. The NSS model can account for or fit all the decisions in both

conditions (because there is always some probability a participant will use either the TTB or the RAT strategy

for any decision), but as the figures show the model is punished (in terms of MDL value) for its additional

complexity. In contrast, the more constrained SEQ model predicted 86% and 88% of decisions in the Image

and Text conditions, respectively, compared to 52 and 54% for TTB and 48 and 46% for RAT.

DISCUSSION

Consistent with previous studies, Experiment 1 provides considerable evidence for inter-individual

differences but intra-individual consistency in a multi-attribute inference task. The sequential sampling

model (SEQ) that allowed for TTB and RAT-users provided the best fit to the data. Importantly, under the

MDL framework we adopted, this model provided a better fit than a naive strategy selection model (NSS) at
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Table 3. Raw data from the Image (upper section) and Text (lower section) Test Phases of Experiment 1 showing the
number of choices of the Take the Best (TTB)-predicted object for each participant for the four repeats of the five test
questions (see Table 2 for test questions)

Q1 Q2 Q3 Q4 Q5

Image test phase

P5 4 4 4 4 4
P12 4 4 4 4 4
P19 4 4 4 4 4
P23 4 4 4 4 4
P24 4 4 4 4 4
P27 4 4 4 4 4
P30 4 4 4 4 4
P31 4 4 4 4 4
P38 4 4 4 4 4
P39 4 4 4 4 4
P45 4 4 4 4 4
P16 4 4 3 4 4
P41 4 4 4 3 4
P15 4 4 4 4 2
P36 4 4 3 3 4
P37 4 3 4 3 4
P9 4 4 3 3 3
P10 4 3 4 2 4
P20 3 2 3 4 4
P40 4 3 4 4 1
P8 2 3 2 2 3
P47 1 3 2 4 2
P2 0 2 3 2 4
P3 2 1 2 2 3
P6 1 3 3 0 3
P46 1 2 0 3 3
P13 1 3 2 0 2
P26 2 3 2 0 1
P29 2 1 2 1 1
P14 1 3 1 0 1
P33 0 0 1 4 0
P7 2 0 0 0 2
P35 3 0 1 0 0
P21 1 0 2 0 0
P11 0 0 0 0 1
P25 0 0 0 0 1
P32 0 1 0 0 0
P34 0 1 0 0 0
P44 0 1 0 0 0
P1 0 0 0 0 0
P4 0 0 0 0 0
P17 0 0 0 0 0
P18 0 0 0 0 0
P22 0 0 0 0 0
P28 0 0 0 0 0
P42 0 0 0 0 0
P43 0 0 0 0 0

(Continues)
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Table 3. (Continued)

Q1 Q2 Q3 Q4 Q5

Text test phase

P4 4 4 4 4 4
P6 4 4 4 4 4
P9 4 4 4 4 4
P12 4 4 4 4 4
P15 4 4 4 4 4
P16 4 4 4 4 4
P23 4 4 4 4 4
P24 4 4 4 4 4
P27 4 4 4 4 4
P30 4 4 4 4 4
P37 4 4 4 4 4
P38 4 4 4 4 4
P39 4 4 4 4 4
P41 4 4 4 4 4
P22 4 3 3 4 4
P26 3 4 4 3 4
P42 4 2 4 4 4
P7 3 4 4 4 2
P28 4 4 4 2 2
P36 4 4 3 4 1
P40 2 3 3 2 4
P13 1 4 2 2 4
P46 3 1 3 3 3
P2 3 2 2 3 1
P19 1 3 2 3 2
P31 3 1 1 2 4
P34 3 0 0 4 4
P29 2 3 2 1 2
P3 3 1 3 0 2
P21 1 2 3 0 1
P10 1 0 0 2 1
P20 1 2 1 0 0
P14 0 1 1 0 0
P25 2 0 0 0 0
P33 0 1 0 1 0
P35 0 0 0 2 0
P32 1 0 0 0 0
P1 0 0 0 0 0
P5 0 0 0 0 0
P8 0 0 0 0 0
P11 0 0 0 0 0
P17 0 0 0 0 0
P18 0 0 0 0 0
P43 0 0 0 0 0
P44 0 0 0 0 0
P45 0 0 0 0 0
P47 0 0 0 0 0

The shaded regions include all participants classified as TTB-consistent (top half of the tables) or rational RAT-consistent (bottom half of
the tables) according to an 80% consistency rule (at least 16/20 decisions as predicted by the model�).
The underlined numbers correspond to participant-question pairs where only three (not the planned four) repeated answers were
obtained, because the participant ‘‘timed out’’ on one trial.
�Binomial probability of 16/20 responses in favor of one model is 0.998.
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the estimated level of noise for the data and, indeed, for the whole range of plausible assumptions about the

variability in the data.

Format had very little systematic effect on performance, suggesting that the effects found previously

with this cue environment were not dependent on using image-based cues. One key difference between this

study and those which have observed format effects is that the latter involve retrieval of cue information

from memory rather than having the information available on the screen (e.g., Bröder & Schiffer, 2003,

2006). A potential follow up to Experiment 1 would be to convert the task we used to an ‘‘inference-from-

memory’’ task and examine the capability of the SEQ model to account for decisions under those

conditions. While this might be an interesting approach to take we decided not to because in our second

experiment we wanted to incorporate process-level measures of behavior in order to test some of the

underlying assumptions of the models. The process-level measures we were interested in, such as the order

in which cues are searched and the number acquired are very difficult to implement in inferences from

memory tasks (though see Bröder & Gaissmaier, 2007).

EXPERIMENT 2: A COMPARISON OF THE FOUR MODELS IN ENVIRONMENTS WITH

DIFFERENT INFORMATION COSTS

The principal aim of Experiment 2 was to again compare the performance of the four models TTB, RAT,

SEQ, and NSS in an experimental environment in which a factor known to affect decision behavior was

varied. The factor was the cost of cue information (high cost vs. low cost). This factor served our purposes for

two reasons. First, forcing participants to search explicitly for and acquire cues enabled examination of the

order in which cues were acquired, the number of cues acquired, and the amount of evidence accumulated at

the point of terminating search. These measures can reveal whether a participant classified on the basis of

their choices as consistent with one or other model, also follows the search and stopping rules of that model

(cf. Bergert &Nosofsky, 2007; Newell & Shanks, 2003). Second, although the manipulation of cue cost per se
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Figure 3. Minimum Description Length (MDL) results for the Text versus Image format comparison of Experiment 1.
The curves show the MDL criteria for each of the four decision-making models, as a function of the assumed error rate of
the experimental data for the image presentation decisions (left panel) and the text presentation decisions (right panel).
Lower values of MDL indicate a more likely model. In each panel, the shaded box spans the 95% confidence interval for
the error rate, estimated from the repeated-measures in the decision data. Naive Strategy Selection Model (NSS);

Sequential Sampling Model (SEQ); Take-The-Best (TTB); Rational (RAT)
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may not be particularly interesting, examining how the models cope with the variation in behavior induced by

the cost manipulation is worthy of investigation. For example, is it the case that when information is

expensive the appeal of the frugal TTB model is such that it provides the best account of the data? Thus, in

Experiment 2 we used the same stimulus structure as in the text-based condition of Experiment 1 but placed

an explicit cost on obtaining cue information during the critical test trials. The cue costs were only

implemented in the test trials in order to allow participants the opportunity to learn the validities of the cues

during training, without incurring costs.

METHOD

Participants
Forty-eight undergraduate students (10 male, 38 female; mean age¼ 20 years) from the University of New

South Wales participated in the experiment in return for course credit. Participants were assigned randomly

to either High Relative Cost (HRC) condition or the Low Relative Cost (LRC) condition resulting in

24 participants in each condition. (See the Procedure for an explanation of the relative costs.)

Stimuli
Experiment 2 used the same cue environment as Experiment 1 (see Table 2) but all participants were shown

the text description labels. The assignment of cue validities to clothing items was random and differed for

each participant.

Procedure
The procedure during the 119 training trials was identical to that used in the text training condition of

Experiment 1(i.e., all cue values appeared simultaneously on the screen) with the addition that participants

earned points for every correct answer. In the HRC condition participants earned 35 points for each correct

choice and in the LRC condition they earned 70 points. There were no penalties for incorrect choices.

Participants were told that at the end of the experiment all points earned would be converted to actual money

at a rate of 100 points¼ 10 Australian cents. The number of points earned was displayed on the screen

throughout the training phase.

The 20 test trials consisted of the five critical comparisons shown in Table 2 repeated 4 times (in a random

order). Cue information was no longer freely available but had to be purchased by clicking on a ‘‘buy’’ button

adjacent to each pair of cues. In both conditions information cost five points representing a HRC—14% of the

35 point payoff for a correct answer—in the HRC condition; and a LRC—7% of the 70 point payoff for a

correct answer—in the LRC condition. Clicking on the buy button revealed the value of that cue for each of

the two stimuli. The order of cue purchase and the number of cues purchased was left to the participant, with

the exception that at least one cue had to be purchased on every trial before making a choice. There was no

time limit for decisions.

Participants were told that the amount received for correct answers given at test remained the same as it

had been in training, but their current points balance was no longer displayed on the screen and no feedback

was given in order not to reinforce a particular strategy. Participants were told that the computer was keeping

track of their points spent and their earnings and that they would be paid accordingly at the end of the

experiment. In order to emphasize the cost of information the number of points spent on cues on the current

trial was displayed. On completion of the test trials participants were debriefed and paid their earnings from

the experiment.
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Alternative cost manipulation
We chose to manipulate information cost in a relative sense in Experiment 2 in order to be consistent with

previous research in this area. For example, Bröder (2003) argued that keeping the nominal cost of

information constant (and manipulating its relative impact on gains and losses) is preferable to a direct

manipulation of cost. This is because direct impositions of high costs might simply lead to cost aversion

(Bröder, 2003; see also Rieskamp & Otto, 2006). Nonetheless given the potential for ambiguity in

interpreting the relative costs, we also ran a replication of Experiment 2 in which the directly expressed costs

were manipulated but the pay-off for each decision remained constant. The results of this experiment

accorded largely with those of Experiment 2 so we do not report them in full. We do present the results of the

model comparison to reassure readers that our conclusions do not rest on a particular method for

manipulating cost2.

RESULTS

Training phase
The HRC group achieved .69 correct inferences by the last block of training and the LRC group .73.Therewas

a significant linear trend across training trials, F(1,46)¼ 21.59, p< .001 indicating learning; there was no

effect of group, and no interaction between the two variables Fs< 1. The absence of a group effect indicates

that the two reward schemes (35 or 70 points) were equally motivating; note that information was free in the

training phase.

Test phase: cue purchase
At test, participants in the HRC condition purchased an average of 2.32 cues per trial compared to an average

of 2.84 cues per trial in the LRC condition—amarginally significant difference, F (1, 47)¼ 3.30, p< .077. A

similar marginal effect was found on the mean number of discriminating cues purchased (HRC¼ 1.83,

LRC¼ 2.23), F (1, 47)¼ 3.57, p< .066.

In addition to the number of cues purchased we examined the level of evidence (i.e., the sum of the log

odds of the cues acquired) at which search was terminated. We identified all the participants who were either

RAT- or TTB-consistent for both the High and Low Relative Cost environments (see Table 4) and then used

their observed cue searching behavior on all 20 individual decisions to calculate the level of evidence at

which they chose to terminate search. This means, for example, that from the seven TTB-consistent

participants in the HRC condition, we found 7� 20¼ 140 terminating evidence values. An ANOVA

conducted on the pooled levels of terminating evidence found that participants in the HRC condition had

lower values of terminating evidence than those in the LRC condition (HRC¼ 1.86, LRC¼ 2.11) F

(1,640)¼ 3.44, p< .07; and that RAT-users had higher terminating levels of evidence than TTB-users

(RAT¼ 2.75, TTB¼ 1.22) F (1,640)¼ 128.19, p< .001.

The preceding analyses show that the cost manipulation had a modest but predicted effect on cue

acquisition and evidence accumulation (more cues, and more evidence was accumulated under lower costs).

However, comparison of the upper and lower sections of Table 4 shows that, although there was a high degree

2The additional experiment (N¼ 24) used the same stimulus environment and had a training phase in which all participants earned 100
points for each correct decision; these points were not converted into money. At test information cost 1cent per cue in the low cost
condition and 12 cents per cue in the high cost condition; the pay-off for a correct decision was 80 cents in both conditions. Any money
earned in this phase was given to the participants at the end of the experiment. Consistent with Experiment 2, the cost manipulation had
little overall effect on the proportion of TTB-consistent decisions, or the allocation of participants as TTB or RAT-users, but had the
predicted impact on the number of cues purchased per trial (total and discriminating) with participants in the High Cost condition
purchasing approximately 18% fewer cues than those in the Low Cost condition.

Copyright # 2010 John Wiley & Sons, Ltd. Journal of Behavioral Decision Making, 24, 456–481 (2011)

DOI: 10.1002/bdm

B. R. Newell and M. D. Lee Evidence Accumulation in Decision Making 471



Table 4. Raw data from the High Relative Cost (upper section) and Low Relative Cost (lower section) conditions of
Experiment 2 showing the number of choices of the Take-The-Best (TTB)-predicted object for each participant for the
four repeats of the five test questions (see Table 2 for test questions)

Q1 Q2 Q3 Q4 Q5

High relative cost condition

P2 4 4 4 4 4
P15 4 4 4 4 4
P19 4 4 4 4 4
P6 3 4 3 4 4
P11 4 2 4 4 4
P23 3 3 3 4 4
P9 3 3 3 4 3
P22 3 4 2 4 3
P16 1 2 2 2 3
P21 0 2 2 4 2
P7 0 2 3 1 3
P1 3 1 1 1 2
P10 0 1 3 1 3
P5 2 0 2 1 2
P13 1 1 0 1 2
P14 0 2 0 0 2
P17 3 0 1 0 0
P3 0 2 1 0 0
P8 0 1 1 0 1
P12 0 0 3 0 0
P18 0 0 2 0 0
P20 0 1 0 0 0
P4 0 0 0 0 0
P24 0 0 0 0 0

Low relative cost condition

P5 4 4 4 4 4
P6 4 4 4 4 4
P13 4 4 4 4 4
P23 4 4 4 4 4
P24 4 4 4 4 4
P4 3 4 4 4 4
P10 4 4 4 3 4
P19 4 4 3 4 4
P18 3 4 4 4 3
P22 4 4 4 4 1
P16 4 2 4 3 3
P1 4 2 3 4 1
P20 2 3 3 3 3
P3 2 3 4 1 3
P2 3 3 3 3 0
P17 2 3 1 2 2
P7 3 1 0 0 3
P8 1 1 2 0 2
P9 0 2 1 1 1
P14 2 0 2 1 0
P11 0 2 0 1 1
P15 1 1 2 0 0
P12 0 1 1 0 0
P21 0 0 0 0 0

The shaded regions include all participants classified as TTB-consistent (top half of the table) or rational (RAT)-consistent (bottom half of
the table) according to an 80% consistency rule (at least 16/20 decisions as predicted by the model�).
Note: �Binomial probability of 16/20 responses in favor of one model is 0.998.
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of intra-participant consistency and inter-participant differences, the cost manipulation had little systematic

effect on the distribution of TTB- and RAT-consistent participants in the two cost conditions. Contrary to

prediction there were four more TTB-consistent participants in the condition in which information was

cheaper (LRC) than in the higher cost condition. Similarly there were fewer RAT-consistent users in the LRC

than in the HRC condition. This unexpected distribution does not invalidate the cost manipulation—

participants did purchase fewer cues and search for less evidence when it was costly—but it does raise

questions about the classification of participants as TTB and RAT-consistent. This issue is considered further

in the section on process data.

Model comparison
Figure 4 displays the model comparisons for the data from the HRC condition (Left Panel) and the LRC

condition (Right Panel). The region of interest for our comparison is the gray shaded column which indicates

the 95% confidence interval around the estimate of error in our data. Both figures show similar qualitative

patterns (to each other and to those from Experiment 1) with an advantage in terms of MDL for the SEQ

model. The slightly better performance of the RAT model over the TTB model in the HRC condition, and the

reversal of this pattern in the LRC condition, reflects the higher number of TTB-consistent participants in the

LRC condition. The SEQ model predicted 81% and 83% of decisions in the HRC and LRC conditions,

respectively, compared to 46 and 63% for TTB and 54 and 36% for RAT.

Figure 5 displays the data from the alternative cost manipulation version of Experiment 2 (see Footnote 2).

The smaller sample in this experiment (N¼ 24) led to somewhat noisier data (indicated by the wider shaded

area) but again the dominance of the sequential sampling model can be seen in both the High Cost (left panel)

and Low Cost (right panel) conditions. In this experiment pure TTB performs slightly better than pure RAT in

both conditions reflecting an over-all tendency to adopt more frugal decision making in both conditions. The

SEQ model predicted 85% and 80% of decisions in the High Cost and Low Cost conditions, respectively,

compared to 54 and 58% for TTB and 46 and 41% for RAT.
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Figure 4. Minimum Description Length (MDL) results for the cost manipulation comparison of Experiment 2. The
curves show the MDL criteria for each of the four decision-making models, as a function of the assumed error rate of the
experimental data for the high relative cost decisions (left panel) and the low relative cost decisions (right panel). Lower
values of MDL indicate a more likely model. In each panel, the shaded box spans the 95% confidence interval for the error
rate, estimated from the repeated-measures in the decision data. Naive Strategy Selection Model (NSS); Sequential

Sampling Model (SEQ); Take-The-Best (TTB); Rational (RAT)
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Process data: testing the underlying assumptions of the models
Table 5 displays the values for several dependent measures for each individual in Experiment 2 (excluding

those in the alternative cost manipulation version). To examine search behavior a rank cue purchase order was

calculated by giving a cue purchased first a rank of 1, second a rank of 2, third 3 etc., and then summing each

rank and dividing by the number of occasions on which that cue was purchased. For example, a person who

examined cue 1 (objectively most valid) first, on every trial would have a summed rank of 20 for cue 1 and a

mean rank of 1. The mean ranks for cues 1 to 6 respectively were 1.77, 2.28, 2.31, 2.51, 2.40, and 2.99. This

means that on average higher validity cues were purchased before lower validity cues. (This pattern held for

the majority of participants (see rightmost columns). We also examined the percentage of times out of the 20

opportunities (20 test trials) each cue was picked first. This analysis revealed that on average the highest

validity cue was picked first on 42 per cent of occasions and that this was significantly higher than the average

for any of the remaining cues (smallest t(47)¼ 2.80, p¼ .007). The percentages for cues 2 to 6 were, 15, 18, 9,

9, and 6 per cent, respectively. Both of these analyses lend some support for the modeling assumption that

participants examine cues in the order of descending validity.

The assumption that TTB-consistent participants bought fewer cues (overall and discriminating) than

RAT-consistent participants was validated in both the HRC (2.17 vs. 2.61 cues, TTB and RAT, respectively)

and the LRC conditions (2.67 vs. 3.01cues, for TTB and RAT, respectively—see columns 4 and 5 of Table 5).

Individual consistency
The process data provides some validation for the classification method and the assumptions underlying the

models considered, however, Table 5 clearly shows that with the exception of four individuals (participants

19HRC, 24HRC, 5 LRC, 24LRC; highlighted in bold) no one used a strategy which was completely

consistent with both the process and outcomes predicted by either the RAT or the TTB model. Note that

participant 24 HRC adopted a ‘‘take the second best’’ model by only ever looking at the second best cue and

then choosing the option to which that cue pointed (the RAT option). This person is thus ‘‘misclassified’’ as
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Figure 5. Minimum Description Length (MDL) results for the alternative cost manipulation comparison (see Footnote 2
and text). The curves show the MDL criteria for each of the four decision-making models, as a function of the assumed
error rate of the experimental data for the high relative cost decisions (left panel) and the low relative cost decisions (right
panel). Lower values of MDL indicate a more likely model. In each panel, the shaded box spans the 95% confidence
interval for the error rate, estimated from the repeated-measures in the decision data. Naive Strategy Selection Model

(NSS); Sequential Sampling Model (SEQ); Take-The-Best (TTB); Rational (RAT).
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Table 5. Individual participant data for dependent measures collected in Experiment 2

Participant# Condition
Propn

TTB

Mean
cues

per trial

Mean
discriminating
cues per trial

Rank cue purchase order

C1 C2 C3 C4 C5 C6

1 HRC 0.4 1.70 1.15 1.7 1.7 1.4 1.3 1.6 1
2 HRC 1 1.75 1.20 1.1 1.3 1.7 1.6 1.6 2.2
3 HRC 0.15 2.25 2.05 2 1 2.1 2.4
4 HRC 0 3.70 3.20 2.1 1 3.1 4.4 4.2 4.2
5 HRC 0.35 1.05 1.05 1 2 1
6 HRC 0.9 2.20 1.95 1.5 2.7 1.8 2.5 2.7 2.5
7 HRC 0.45 3.20 2.20 1.5 2.7 2.2 2.6 2.1 2.4
8 HRC 0.15 3.85 3.10 1 2 4.3 4.6 3.3 5.1
9 HRC 0.8 2.15 1.40 1.6 1 2 1
10 HRC 0.4 2.60 2.45 1.6 1.5 2 3 2.3 2.3
11 HRC 0.9 3.40 2.95 1.8 2.2 2.4 1.3 3.4 2.7
12 HRC 0.15 2.80 1.80 2.8 1 2 3.3 3.5
13 HRC 0.25 2.10 1.45 1.3 1.7 2.2 1.7 1.6 1.3
14 HRC 0.2 2.35 1.95 2.6 1.8 1 2.3 3 2.5
15 HRC 1 3.15 2.30 1.5 6 2.2 3.1 4 2.2
16 HRC 0.5 2.65 1.70 3.5 2 2 2.5 1.2 2.7
17 HRC 0.2 3.60 2.40 2.5 2.5 3.2 1.1 2.5 3.7
18 HRC 0.1 2.45 2.20 2 2.4 1.6 1.5 1.6 2.5
19 HRC 1 1.00 1.00 1
20 HRC 0.05 1.50 1.25 2.7 1.5 1.2 3 2.5 5
21 HRC 0.5 1.60 1.10 1.2 1 1.7 1.8 1.6 1.8
22 HRC 0.8 1.90 1.55 1.9 1 1 2 2 1.1
23 HRC 0.85 1.80 1.55 1.2 1.8 2.5 2 1.6 2
24 HRC 0 1.00 1.00 1
1 LRC 0.7 2.00 1.40 1.2 1 1.8 1.9 2
2 LRC 0.6 3.00 2.25 5 3 2.8 3 1.9 1.1
3 LRC 0.65 2.95 2.15 1.7 2.7 2 2.7 3.2 3
4 LRC 0.95 2.95 2.15 1 3 4 2.6 2.5 2.4
5 LRC 1 1.05 1.00 1.1 1
6 LRC 1 4.45 3.25 1.1 4 4.1 4.2 2.2 3.5
7 LRC 0.35 4.35 3.35 1.1 3.1 3.6 2.9 3.9 5.4
8 LRC 0.3 2.90 2.15 1.1 2.5 2.4 2
9 LRC 0.25 4.60 3.10 2.8 3.7 3.6 1 2.2 4.5
10 LRC 0.95 4.75 3.55 1 4.5 2.6 2.7 4 6
11 LRC 0.2 3.35 2.40 2.4 2.5 3.7 2.7 1.8 3.2
12 LRC 0.1 3.50 2.65 2.1 2.3 3.1 1.5 3.9
13 LRC 1 1.40 1.30 1.1 2 3 1.5 3
14 LRC 0.25 3.40 2.85 2.9 2.3 1.1 4.5 3.9 4
15 LRC 0.2 2.40 1.90 2.5 1.1 2.6 3 2.5 2.8
16 LRC 0.8 1.85 1.65 1.6 1.3 2 2
17 LRC 0.5 1.35 1.20 1.1 1.2 3 2
18 LRC 0.9 3.15 2.70 1.2 2.2 2 2.8 3
19 LRC 0.95 3.85 3.00 2.8 2.5 3.7 2.8 1 3.3
20 LRC 0.7 2.35 2.20 2.3 2 1.1 2.5 1
21 LRC 0 2.80 1.90 2.5 5.3 1.1 2.2 3 4.2
22 LRC 0.85 3.50 3.05 1 2 4 4 3
23 LRC 1 1.40 1.30 1 2 3 3.5
24 LRC 1 1.00 1.00 1

HRC; High Relative Cost, LRC; Low Relative Cost.

Copyright # 2010 John Wiley & Sons, Ltd. Journal of Behavioral Decision Making, 24, 456–481 (2011)

DOI: 10.1002/bdm

B. R. Newell and M. D. Lee Evidence Accumulation in Decision Making 475



RATuser because his/her cue acquisition is clearly frugal. It is these kinds of misclassifications that may have

led to the unexpected distribution of RAT and TTB-consistent participants across the two cost conditions3.

DISCUSSION

Experiment 2 compared the four models in an environment with explicit monetary search costs. Increasing

the cost of information had the predictable effect of curtailing cue search and acquisition. However, this

tendency to be frugal in cue acquisition did not lead to the dominance of a ‘‘pure’’ TTB model. Rather,

consistent with Experiment 1, the results provided support for the SEQ model in this experiment and in a

replication using a slightly different cost manipulation. In both cases the SEQ model provided the best fit to

the data, according to the MDL analysis which accounts for goodness-of-fit, model complexity, and the

estimated level of noise for the empirical data. The process tracing measures highlighted that classifying

participants purely on the basis of choices (outcome) results in some misclassifications (cf. Bergert &

Nosofsky, 2007). However, these inconsistencies do not undermine the central claim of the model—that

individuals acquire cues, sequentially, up to a particular threshold of evidence before making a decision. This

conclusion received support from the level of terminating evidence measure which showed greater levels of

evidence for RAT than TTB users and greater levels for the lower than the higher cost environment. We

acknowledge, however, that these results are necessary though not sufficient evidence for the sequential

sampling model.

GENERAL DISCUSSION

The sequential sampling and accumulation of evidence to a threshold provides an intuitive and simple way to

think about how decision makers choose between options. We tested a model (SEQ) premised on this

intuition in two experiments usingmultiple-cue inference tasks. In both experiments evidencewas found for a

sequential sampling model over models which assumed (a) all participants used a frugal model (TTB), (b) all

participants used a compensatory, ‘‘rational’’ model (RAT), and (c) each participant selected a frugal or

compensatory model for each decision with some probability (NSS). We do not claim that these experiments

provide conclusive evidence of the general superiority of evidence accumulation over strategy selection

models. Rather, we conclude that for our specific experimental environment and using the MDL framework

for model comparisons, the SEQ model provides the best account of the data.

We acknowledged that theMDL frameworkmay not be optimal for a saturatedmodel like NSS (i.e., onewhich

makes probabilistic predictions). The NSS model fares poorly in the competition because it is too complex not

because it cannot account for the data. The complexity lies in the ability of themodel to account for a large range of

data patterns, some with a higher probability than others, and this flexibility is punished byMDL. One alternative

approach would be to make all the models probabilistic by adding an additional parameter which specified the

probability with which a person would choose an alternative that was inconsistent with the model prediction

(i.e., an application error parameter). A further alternative would be to make the NSS model deterministic and

assume that one of the two strategies—TTB or RAT—was always selected with probability 1.0. Model

3The predictions of a TTBmodel in which Cue 1 and Cue 2 (or Cue 1 and Cue 3) are reversed are identical to that of the RATmodel given
the particular test items used in Experiments 1 and 2 (see Table 2). This limitation can lead to the kinds of misclassifications identified in
the text. These test items were chosen because they are the only ones that distinguish TTB and RAT under correct cue ordering for this
stimulus and cue structure (e.g., Bergert & Nosofsky, 2007; Lee &Cummins, 2004), but clearly their use entails limitations which qualify
our conclusions. The idea of imperfect cue ordering over subjects, or over trials, or both, is a theoretically important one, which we
address to some extent with the process-tracing measures, but more work along the lines of that outlined in the general discussion is
necessary.
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comparisons using these methods might lead to a less clear-cut advantage for SEQ. Nonetheless, in this ‘‘first-

pass’’ comparison, in our experimental environment and using the MDL framework the SEQ model fares best.

Whether more sophisticated selection models, such as the SSL model, that can be reinforced by accuracy

and/or effort (see Rieskamp & Otto, 2006) could provide equally good accounts of these kinds of data

remains open to future investigation. The NSS model relied only on accuracy for reinforcement but still fared

better than either the pure TTB or pure RAT models in all of our comparisons for the estimated level of error

in our data (see Figures 3–5). Thus it is reasonable to assume that augmenting the model with an effort

reinforcement mechanism, like SSL, would improve its performance. Designing environments in which

selection models and evidence accumulation models make different predictions (unlike the current

environment) is clearly an important next step in this research program (cf., Newell & Lee, 2009).

Effects of the experimental manipulations
In Experiment 1 the format in which cue information was presented (text or image) had no systematic effect

on the evidence threshold adopted, suggesting that such format effects are restricted to memory-based tasks

(e.g., Bröder & Schiffer, 2003); a result corroborated by earlier findings (e.g., Bergert & Nosofsky, 2007;

Juslin, Olsson, & Olsson, 2003). In Experiment 2 increasing the cost of cue information had the predictable

effect of reducing cue purchase (Bröder, 2003; Newell & Shanks, 2003), but also demonstrated that the point

at which participants made a decision—their terminating level of evidence (as measured by the log-odds of

the cues)—decreased with increasing information cost. The cost effects were marginal, suggesting over-all

reluctance on the part of our (inevitably impecunious) student participants to spend money; but the general

pattern was consistent with the central evidence-accumulation notion of the SEQ model. However, other

process tracing measures, such as cue-search revealed limitations of relying solely on choices as a basis for

classifying and modeling behavior (cf. Bergert & Nosofsky, 2007).

Limitations of the model: cue search
An important aspect of claiming support for the SEQmodel is verifying that cue information is searched in cue-

validity order (e.g., Figure 1).On the average cue search in Experiment 2 showed sensitivity to cue-validity: for

most individuals there was an increase in purchase-order rank as validity decreased, and on average

the most valid cue was picked first significantly more often than any of the other cues. Nonetheless, the

analyses of the search data revealed inconsistencies that suggest caution in drawing strong conclusions

(see Footnote 3).

Many researchers have acknowledged and demonstrated the difficulty that participants exhibit in learning

cue-validities (Bergert & Nosofsky, 2007; Dieckmann & Rieskamp, 2007; Newell & Shanks, 2003; Newell,

Rakow, Weston, & Shanks, 2004; Rakow, Newell, Fayers, & Hersby, 2005; Todd & Dieckmann, 2005) and

have dealt with it in different ways. In experiments the problem is often surmounted by simply providing

validities to participants (e.g., Dieckmann & Rieskamp, 2007; Rieskamp & Otto, 2006); while this might be

expedient it rather detracts from the goal of the modeling and experimental work (especially when the

provided validities are not veridical—see Rieskamp & Otto, 2006, Study 1). An alternative way to deal with

deviation from deterministic search orders is to convert the models under consideration into probabilistic

ones, by adding cognitive processes and free parameters to accommodate idiosyncratic cue-weightings. This

is a standard and reasonable approach, and is similar to the one taken by Bergert and Nosofsky (2007) in their

examination of RAT and TTB-consistent decision making.

Such an approach lies at the opposite end of the spectrum to ours (in which we preserve the deterministic

nature of the models) and, we suggest, has its own disadvantages. With regard to the cue search issue, the free

parameter approach allows for the possibility that participants learn nothing about cue validities (or indeed

learn a completely reversed order) during training; an assumption which is clearly violated by our search
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order data. To address the problem of how to model the cue-validity learning and search process adequately

would require a systematic exploration of models inhabiting the space between a completely deterministic

and a completely probabilistic model. Unfortunately such an endeavor is beyond the scope of the current

paper.We note however, that our conclusions are not necessarily at odds with those drawn by researchers who

have adopted the heavily parameterized modeling approach. Bergert and Nosofsky (2007) concluded that the

majority of participants in their experiments used a ‘‘generalized’’ form of TTB (formally equivalent to

Tversky’s (1972) Elimination by Aspects model) but they did not attempt to fit a ‘‘unifying’’ sequential

sampling model of the type we advocate. They did however note that ‘‘such a model has promise for a

rigorous joint account’’ (p. 127) of performance in multi-attribute inference tasks. Thus it remains possible

that the behavior of participants in Bergert and Nosofsky’s (2007) studies and that of the participants in the

current experiments is best captured by some version of the sequential sampling model. Future research

should focus on the exact specifications of such a model, with particular emphasis on how cue validities are

learned.

Spanners and toolboxes
A limitation of our experiments is that we only used one statistical environment. It is possible that better

evidence for genuine switches between qualitatively different strategies would be observed in richer choice

environments with multiple options and attributes. Indeed one of the reasons an evidence accumulation

process fares well in capturing our participants’ decisions is because inference patterns in these experiments

are discriminated only by the number of cues people use—few (TTB), many (RAT or WADD).

Payne et al. (1993) in their work on preferences have documented many situations in which strategies

differ not just in the amount of information used but in the order in which information is sought. Perhaps

the clearest example is the difference between an attribute (cue)-wise and an alternative-wise search.

The evidence-accumulation model that we have formulated has an attribute-wise search rule (as shown

in Figure 1, cues for each alternative are consulted consecutively); but there are cases in which people

adopt alternative-wise searches (examining all the cues for one alternative then the other). Evidence

accumulation models like the one we consider currently have no way to accommodate such search

patterns.

It should be noted, however, that although there is a good deal of evidence for the use of different strategies

in different conditions (e.g., Beach &Mitchell, 1978; Payne et al., 1993), the exact nature of the deliberation

process (‘‘deciding how to decide’’) has been neglected—or at least not clearly explained in many of these

frameworks (see Bröder & Newell, 2008, for further discussion of this issue).

One hard problem replaced by another?
A potential criticism of the sequential sampling conception of adaptive decision-making is that it

replaces a hard problem of how people choose which heuristic to apply with an equally hard problem of

how people set the appropriate threshold level of evidence. We agree that the self-regulation of a

threshold is a challenging and important problem, but believe that it is a much simpler and much better-

defined problem, than that of choosing between a set of heuristics. To begin with, for a heuristic

approach one needs to be able to set constraints on how large the set or ‘‘toolbox’’ can be (cf., Dougherty,

Thomas, & Franco-Watkins, 2008; Newell, 2005). In addition to this fundamental issue of constraints,

the over-arching structure of accounts based on sequential sampling means attempts to model self-

regulation are perhaps more likely to see significant progress, in terms of both general theories and

concrete models.

Indeed, the literature on sequential sampling models already has one promising candidate approach to

self-regulation. Vickers (1979; see also Vickers and Lee, 1998) proposed and evaluated a general account
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of how the psychological measure of confidence can act as a regulatory variable to control decision-

making through the adjustment of threshold levels of evidence (see also Hausmann & Läge, 2008 for a

similar conception). For the most part, Vickers’ theory of self-regulating accumulator (SRA) models has

been evaluated on relatively low-level perceptual decision-making problems, where it has been shown to

be able to account for an impressive array of phenomena, including lags in adaptive responding to step-

changes in stimulus environments, and hysteresis effects in tracking non-stationary stimulus

environments. With the exception of Lee and Dry (2006), however, these self-regulating sequential

sampling models have not been applied to the sorts of cognitive decision-making tasks that we have

considered in this paper. The extension seems straight-forward and provides an extremely promising

direction for future research.

Conclusion
Analyses of decision making in multiple-cue inference tasks has been dominated by perspectives

which assume that people select from a repertoire of cognitive strategies. The modeling and

experimental results reported here, demonstrate that an alternative perspective based on sequential

sampling and evidence accumulation might provide a better account of performance than selection

between strategies.
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