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Abstract Number-knower levels are a series of stages of
number concept development in early childhood. A child’s
number-knower level is typically assessed using the give-N
task. Although the task procedure has been highly refined,
the standard ways of analyzing give-N data remain
somewhat crude. Lee and Sarnecka (Cogn Sci 34:51–67,
2010, in press) have developed a Bayesian model of
children’s performance on the give-N task that allows
knower level to be inferred in a more principled way.
However, this model requires considerable expertise and
computational effort to implement and apply to data. Here,
we present an approximation to the model’s inference that
can be computed with Microsoft Excel. We demonstrate the
accuracy of the approximation and provide instructions for
its use. This makes the powerful inferential capabilities of
the Bayesian model accessible to developmental researchers
interested in estimating knower levels from give-N data.
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Children learn very early (often as young as 2 years old) to
recite the number-word list in order (Fuson, 1988). But at
the beginning, the words are merely placeholders—children
recite the list without knowing what the individual number
words mean. Over time, children fill in the words with
meaning, one at a time and in order (Carey, 2009; Sarnecka
& Lee, 2009). The child’s progress on this front is called

their number-knower level, or just knower level. A child
who does not yet know any number word meanings is
called a pre-number-knower or 0-knower. A child who only
knows the meaning of “one” is a 1-knower; knowing “one”
and “two” makes her a 2-knower; and so forth. After
reaching the 3-knower or 4-knower level, children become
cardinality-principle-knowers (or CP-knowers, for short).
That transition happens when they figure out the cardinality
principle of counting, which allows them to infer the
meanings of all higher number words through counting.

Number-knower level has been a useful construct in
several lines of research. For example, Ansari et al. (2003)
used it to examine deficits caused by Williams Syndrome;
Le Corre and Carey (2007) used it to investigate when and
how the approximate-number system becomes linked to
integer concepts; Sarnecka, Kamenskaya, Yamana, Ogura
and Yudovina (2007) used it to examine cross-linguistic
variation in number development; Carey (2009) used
knower levels as a window into the general process of
conceptual change.

The task most commonly used to assess knower level is
the give-N task. In this task, children are given a large bowl
of small items and told that they are going to play a game
with a puppet. The experimenter asks the child to give a
certain number of items to the puppet—for instance, “Can
you give Mr. Bunny TWO bananas?” The numbers
requested generally include “one” through “six” (a few
studies include higher numbers), with about three trials per
number word.

In the past, researchers typically inferred the knower
levels of individual children either by ad hoc heuristics
(e.g., Sarnecka & Gelman, 2004; Wynn, 1992) or by
looking for convergence in a titrating method (e.g., Barner,
Chow & Yang, 2009). In both of these paradigms, children
are given credit for knowing a certain number word when
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some cutoff in performance is reached (often 2/3 correct);
however, the cutoffs are not motivated by any particular
theoretical principles.

As an alternative to relying on heuristics to analyze
give-N behavior, Lee and Sarnecka (2010, in press)
developed a formal Bayesian model of how children with
different levels of number knowledge behave on the task.
Their model provides a principled basis for knower-level
inference. However, implementing the model would
require most developmental researchers to learn a host of
new technical skills; since the model does not provide a
simple formula for the estimate of a child’s knower level, a
computational approach is required to put the model to
use. Here we present a reasonable approximation of the
Lee and Sarnecka (2010, in press) model that only
requires the user to interact with Microsoft Excel, thus
taking away much of the technical burden.

In this article, we first describe the model itself in
detail, and then describe how it is approximated in the
Excel sheet. After that, we describe the two give-N data
sets used to (1) create the point estimates that are needed
for the approximation and (2) test the quality of the
approximation. We then describe the results of applying
the model to the calibration data set. After that, we
compare the model’s inference to the Excel sheet’s
inference, as well as to inferences by a popular ad hoc
method. The results suggest that the Excel sheet provides
estimation of knower levels comparable to that obtained
with the full Bayesian model, and that it provides several
advantages over ad hoc methods. Finally, we provide
instructions for using the sheet itself.

Model description

Lee and Sarnecka (2010, in press) developed a probabilistic
generative model of children’s behavior on the give-N
task. The model is based on the idea that children’s
answers can be understood as Bayesian reasoning based
on (a) their prior knowledge of number concepts and (b)
the data provided by experimenter instructions on each
trial. Thus, one contribution of the model is that it
specifies a base rate—a distribution of prior probabilities
describing what “chance” responding on the give-N task
looks like.1 This base rate, which is inferred from give-N

data, corresponds roughly to the answers children give
when they have no idea how many objects have been
requested (because they don’t know the meaning of the
number word used in the prompt). This base rate is then
modified, following Bayes’s rule, when the child is asked
for a particular number of items. To be specific, several
things happen when the child is asked for N items:

If the child knows the meaning of the word N (e.g.,
“two”), the likelihood of them giving N (e.g., 2) items
becomes higher than it was in the base rate. The evidence
value, v, represents the size of this change.

All of the other number-word meanings that the child
knows become less likely responses (i.e., less likely than
they were in the base-rate distribution) by the same factor v.
For example, when a 3-knower is asked for “two” items,
the likelihood of giving 2 goes up and the likelihoods of
giving 1 and 3 go down, all by the same factor v.

If the child does not know the meaning of N (e.g., when
a 3-knower is asked for “six”), all known numbers (e.g., 1,
2, and 3) become less likely responses as described above,
and all unknown numbers (e.g., 4, 5, 6, 7, 8, 9, . . .) retain
the relative probabilities that they had in the base rate.
(Their absolute probabilities go up, because the entire
distribution must sum to 1.)

This model provides a principled way to predict patterns
of data coming from the give-N task, sorted by knower
level.2 This makes it possible to infer a child’s knower level
from the data.

Following Lee and Sarnecka (2010, in press), we used a
graphical model as our implementation, as shown in Fig. 1.
Graphical models are a standard language in machine
learning, statistics, and (more recently) cognitive science
(e.g., Griffiths, Kemp & Tenenbaum, 2008; Jordan, 2004;
Koller, Friedman, Getoor & Taskar, 2007; Lee, 2008,
2011; Shiffrin, Lee, Kim & Wagenmakers, 2008). They
specify how unobserved psychological variables generate
the observed data. The model takes the form of a graph,
whose nodes represent the variables and the data. The
links indicate the dependencies between them. Discrete
variables are indicated by square nodes; continuous
variables are indicated by circular nodes. Stochastic variables
are indicated by single-bordered nodes; deterministic

1 It is intuitively easy to understand that, all else being equal, children
are more likely to give some set sizes than others. For example,
children often give all of the objects in the bowl to the puppet; they
rarely give all but one. The base rates are very high for giving 1 item,
2 items, or all 15 items. The curve in the middle (from 3 to 14) is high
for small numbers and decays steadily as it moves to larger ones. For a
visualization, look ahead to Fig. 2.

2 For readers who are curious what the patterns are like: When the
model is applied to data, it turns out that pre-number-knowers just
give the base-rate number of items. 1-knowers almost always give 1
when asked for “one,” but rarely give 1 when asked for anything else.
Of course, 1-knowers sometimes give 2 for “two,” because the overall
probability of giving 2 objects (specified by the base rate) is high.
Likewise, 2-knowers give 2 when asked for “two” and rarely give 2
for anything else, and so forth. CP-knowers have a very good chance
of getting any number correct, because they can use counting to solve
the task. (For children who do not yet understand the cardinality
principle, counting is not available as a strategy.)
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variables (included for conceptual clarity) are indicated
by double-bordered nodes. Shaded nodes are the ob-
served data; unshaded nodes are latent variables. Finally,
encompassing plates are used to denote independent
replications of the graph structure within the model.

In our implementation of the knower-level model
(Fig. 1), the data are the observed qij and gij variables.
They give the number asked for (the “question”) and the
answer (the number “given”), respectively, for the ith child
on his or her jth trial.3 The base-rate probabilities are
represented by the vector π, which is updated to π'
according to the Bayesian updating process described
above. This probability space is visualized in Fig. 2. This
process depends on the knower level zi of the child and an
evidence value v that measures the strength of the updating.
The child’s actual behavior (i.e., the number of items given)
represents a sample from the distribution expressed by π'.
The base-rate and evidence parameters, which are assumed
to be the same for all children, are given uninformative
priors (i.e., initial distributions that assume very little,
allowing for a very large range of possible inferences).
There is a separate knower-level parameter for each child,
with no prior preference for any of the six knower levels.

Lee and Sarnecka (2010, in press) used this graphical
model implementation (and associated computational
sampling methods) to demonstrate that the model can
(1) describe children’s behavioral data, (2) make useful
inferences about the knower level of specific children,
and (3) describe the base-rate and evidence-strength
parameters. One of the most obvious and useful
applications of the model is to infer a child’s knower
level from their give-N behavior. The goal of this article is
to provide an approximation of the full model that is
nonetheless accurate in making these estimations and that
can be implemented in Microsoft Excel.

Approximation in the Excel sheet

Next we describe an approximation that provides estimation
of knower levels comparable to that obtained with the full
Bayesian model. To create the approximation, we eliminated
all of the continuous distributions in the full model,
thereby removing the need for Markov chain Monte
Carlo techniques. The node π'—the final probability of
every possible response, given the knower level and the
request—was filled with point estimates; the parameters π
and v were removed entirely. In the full model, π' is
subject to implied distributions (through π, v, and the

updating logic) that need to be integrated out. In the
approximation, π' is just a set of summary point
probabilities—for example, the chance that a 1-knower
will give 1 when asked for “one” is 83.33%. These
probabilities were found by applying the full model to a
calibration data set (described in the next section) and
calculating the posterior predictive.4

The remaining computational machinery is simple
enough to be captured in a single equation. The
probability that the ith child is at a given knower level Z
can be written as

p Z ¼ zijp0; qij; gij
� � ¼

pðZÞQ
j
p0Z ;qij;gij

P6

z¼1
pðzÞQ

j
p0z;qij;gij

" #

Since π' is a set of point probabilities in the approxima-
tion, nothing further is needed for it to work. Following the
usual Bayesian form, the top part of the equation is just the
prior times the (simplified) likelihood function. Since each
trial is assumed to be independent, calculating the likeli-
hood just requires multiplying over the probabilities of all
the observed responses. The bottom part is the normaliza-
tion constant. Since there are a total of six discrete knower
levels, the constant is just the sum of the top part over all
knower levels. This approximation can work in Excel
because no integration is required—with set values for π'
and Z, the right-hand side of the above equation can be
worked just by multiplying, adding, and dividing. Then, by
simply repeating over the six possible values of Z, the full
distribution is calculated.

Data

We based our approximation on empirical data from
experiments reported by Negen and Sarnecka (2010). For
this data set, children were asked to give one, two, three,
four, six, and eight items. Each request was repeated three
times, for a total of 18 trials, which were presented in one
of two pseudorandom orders. The present analysis
includes only sessions in which the child completed at
least 15 of the 18 trials, a total of 423 sessions. (The
original data set included an additional 31 sessions in
which the child failed to complete at least 15 trials. These
sessions were excluded.)

The independent data used to compare the model
inferences and Excel sheet inferences came from Lee and
Sarnecka (in press). This data set includes data from 56

3 Note that the jth trial does not necessarily involve the child being
asked for j items. The value of qij is the number of items the ith child
was asked for on the jth experimental trial completed.

4 For readers who are unfamiliar with this term: the posterior
predictive is the distribution of predicted future data, given the current
observed data and the assumptions in the model.
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children who were asked for one, two, three, four, five,
eight, and ten items. Each number was requested three
times, for a total of 21 trials per child.

Results

We did fully Bayesian inference on the calibration data,
using the same computational sampling method as Lee and
Sarnecka (2010, in press). More specifically, two chains
were run, each with 2,000 burn-in samples and 25,000 data
collection samples, for a total of 50,000 samples. Chain
convergence was good, with the standard R-hat statistic
being very close to 1 for all of the variables sampled.

The model inferred that among the children tested, 9
were 0-knowers, 48 were 1-knowers, 50 were 2-knowers,
53 were 3-knowers, 67 were 4-knowers, and 196 were CP-
knowers. The inferred posterior predictions are shown in
Fig. 3, broken down by knower level. The full numeric
breakdown is Sheet 2 of the Excel sheet itself. The model
inferred an evidence value v of 16.94 (SD=0.69), which is
slightly lower than values estimated from other data sets by
Lee and Sarnecka (2010, in press)—a drop from about 29
and 23, respectively.5 In other words, if the experimenter
makes a request with a number word that the child knows,
the correct response becomes about 17 times more likely
than it was in the base-rate distribution, and other number-
word meanings the child knows become 17 times less
likely. For 0-knowers, the inferred base rate is the same as
the posterior predictions.

Comparison with heuristic and fully Bayesian methods To
see how the inferences made by the Excel sheet compare
with a typical heuristic inference or a fully Bayesian
inference, we looked at a different data set of 56 children,
first reported in Lee and Sarnecka (in press). According to
the heuristic, a child gets credit for knowing a number
if her correct answers outnumber her errors by at least
2:1. The child’s inferred knower level is the highest
number that she knows. The data were run though (a)
this heuristic, (b) the Excel sheet, and (c) a fully
Bayesian method, after being appended to the calibra-
tion data set.

Figure 4 shows all of the posterior distributions for
every child from each inference method. For the
purposes of comparing the Excel sheet with the
heuristic, we used the most likely posterior knower
level as a point estimate. There are 38 cases in which
this estimate matches the knower level inferred by the
heuristic. Of the remaining 18 cases, in only 1 case is
the estimate from the Excel sheet a lower knower level
than the estimate from the heuristic. This primarily
occurred because the heuristic requires the same
proportion of correct answers for every knower level,
whereas the model is more “lenient” on larger sets
(except for CP-knowers, who are expected to count with
good accuracy for any set size). Intuitively, it makes
sense that larger sets should be more difficult to
generate; for example, 3-knowers should not be required
to maintain the same level of accuracy as 1-knowers.
Children at higher knower levels also have more
opportunities to demonstrate knowledge, and thus more
opportunities to make performance errors.

All three inference methods will lower the chances
that the child is a 2-knower if the child gives 2 items
in response to a different number word. However, the
Excel sheet and the fully Bayesian method also
consider how many trials have passed without the child
erroneously giving a certain number. So, for instance,
every time a child makes an error when asked for
“four” and that error is not giving 2, the posterior odds

5 This means that the Excel sheet expects behavior to be slightly less
differentiated by knower level, which results in the inference being
conservative—that is, the resulting posteriors will be more diffuse
(appear less certain) than would happen if a higher evidence value
were used. It is interesting that this difference in evidence value does
not lead to large problems for the approximation when generalizing
between these two sets (as shown in the next section). This may
suggest that the method is robust to small changes in the evidence
parameter.

Fig. 1 A graphical representation
of the model
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of being a 2-knower receive a small upward push relative
to the odds of being a 0-knower or 1-knower. This is
because the chance of a 0-knower or 1-knower errone-
ously giving 2 items is much higher than the chance of a
2-knower committing the same error. This allows indirect
counterevidence to accumulate against a child’s errors
when asked for a number word.

The Excel sheet’s inference is very close to the
inference generated by fully Bayesian inference. In
terms of maxima, there are no discrepancies. The mean

absolute difference between the model’s posterior over
knower levels and the Excel sheet’s approximate
posterior is 0.2%, with a standard deviation of 0.68%.
The largest absolute difference is 4.8% (for Child 50
being a 4-knower), where both inferences have the
same basic shape, but the Excel sheet is slightly more
peaked at the mode. More diffuse posteriors tend to be
approximated less accurately; the user can be especially
confident of the approximation when the posterior has a
very strong mode.
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Fig. 2 The probability of
responses, organized by items
requested and knower level. The
six graphs separate out each
knower level. In each graph, the
x-axis indicates how many items
are being requested. The y-axis
indicates how many items the
child gives. Large blue squares
indicate that the particular
request–response pair is very
likely for that knower level in
the model; smaller blue squares
indicate lower probability. Red
squares show how often those
pairs actually occurred in the
data, separated into the six
graphs by the modal posterior
knower level of each child (only
available for requests of one,
two, three, four, six, and eight
items). There are large
overlapping blue and red
squares where children know the
number word in the request
(e.g., at the bottom left corner of
the 1-knowers graph); the child
is very likely to correctly answer
when she knows the relevant
number word, both in the model
and the data. Following in both
vertical and horizontal “stripes”
from each large square, there are
many very small squares—there
is little chance of either
responding incorrectly to that
word or giving a set of that size
for any other word
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How to use the Excel sheet

The Excel sheet is available at www.cogsci.uci.edu/cogdev/
Negen/Knower-LevelEstimater.xls. Figure 5 is a screen shot
of the Excel sheet. The user enters data in the rows near the
top labeled “question” and “response.” Both of these must
be in the range of 1 to 15. The Excel sheet is designed to
handle all of the data from a single child at a time. In the
question row, the user can enter the numbers requested from
left to right, with the child’s responses beneath. Trials do
not have to be in order, as long as each response is entered
below the corresponding question. The sheet will automati-
cally calculate the likelihood of each question/response pair
conditional on each knower level, in rows 6 to 11. Questions
without responses do not affect the posterior distribution, so
they can be omitted.

Prior probability is the place to enter prior weights for
different knower levels. If used properly, priors are the best
way to draw on all of the information available about a
child. Imagine, for example, that the user knows something
about the population from which a child was recruited: At
least 50% of them are CP-knowers. Then, the prior
probability of being a CP-knower should be set to 50% in
the sheet. If the data don’t strongly adjudicate between two
knower levels, then the prior can help push the inference in
the more likely direction. If the user doesn’t have this kind
of prior information, all of the prior probabilities can just be
set to the same value.

The end result, after entering the data and setting the
prior, is a set of probabilities for the six knower levels
(along with a graph to visualize them). This allows the user
to see what knower level is preferred and how strongly.
Provided also is the log-likelihood and the scaled log-
likelihood of the data, since they may be more familiar
to some researchers. In the example in Fig. 4, the child
was asked for “one,” “two,” “three,” “four,” and “five.”
She gave 1, 2, 3, 3, and 6, respectively. These are entered
in rows 3 and 4. The prior probability of each knower

level is the same (cells B36 to B41). This leads to a
confidence of about 60% that this child is a 2-knower
(seen in the graph and under “Posterior Probability” in
cells J36 to J41).

Model limitations The formal expression of the approxima-
tion assumes that the child (1) was never asked for more than
15 items and (2) had a total of 15 items available to give. This
has two implications: (1) If the child was asked for more than
15 items, some other method of analysis must be used.
However, it is rare for given-N tasks to involve asking for
more than 10 items. (2) If the child had more or fewer than 15
items to give, there might be some problems in how the
estimation works—specifically, the base rate might change.
For example, children probably like to give 15 items because
it is a maximal response, not because of anything special
about the number 15. It is plausible that some mapping could
be created to line up the base rates (maximal requests/
responses mapped to 15, 15+ mapped to 10 or so), but this is
an empirical question that we do not currently have the data
to answer. As it stands, the sheet is only appropriate for
experiments in which the child had exactly 15 items to give—
though the method of the approximation could, of course, be
applied to other numbers of items.

There are two other properties of the model that are
worth discussing.6 First, the model predicts very high-
accuracy performance from CP-knowers. Children who
respond accurately when asked for 1–4 items, but frequent-
ly miscount larger requests—even just by an item or two—
are often judged to be 4-knowers by the model (e.g., try
entering the following question–response pairs: 1–1, 2–2,
3–3, 4–4, 5–5, 6–5, 7–7, 8–7). This classification comes
from a theoretical question, beyond the scope of this study:
Are such children CP-knowers, since they are attempting to
use counting to construct the sets, or are they 4-knowers,
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the child might give if no
number word is used) and the
evidence strength (the v in the
model description; a parameter
controlling how much the
probability of different
responses gets modified by the
child’s knowledge of number
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6 We thank an anonymous reviewer for drawing our attention to these
issues.
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since they do not yet understand the counting principles
well enough to apply them consistently? Future iterations of
the model may have a separate way of treating responses
that are likely to be counting errors. Examining Fig. 4, it
appears that such a model could make reasonable gains in
fitting the data better.

Some readers may also find something counterintuitive
in how little or how much certain errors inform the end
estimation. For example, consider the following question–
response pairs: 1–1, 2–2, 3–3, 4–4, 5–5, 5–5, 6–5. The
knower-level posterior now shows nearly equal probabilities
for both 4-knower and CP-knower, with all other knower
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Fig. 4 Inferred knower levels of
the 56 children from Lee and
Sarnecka (in press). The blue
bars come from normal
Bayesian inference using
Markov chain Monte Carlo
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from the Excel sheet. The red
bars come from the ad hoc
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levels being far less likely. Now try adding in 8–1. It is unusual
for a CP-knower to make this error, estimated to happen only
2.7% of the time. This might cause the reader to expect the bar
for CP-knowers to shrink. However, it is also an unlikely error
for most other knower levels, too, so the impact is actually very
small. (Remember, the sheet is always comparing knower

levels against each other; evidence for/against all of the
knower levels just washes out.) On the other hand, an error
like 8–5 leads to different changes. This behavior does not
obviously indicate knowledge of the words “one” through
“four,” but it pushes up the 4-knower bar dramatically. This
happens because this is an error that a 4-knower—but not any
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other knower level—is likely to make; lower knower levels are
much more likely to give fewer items, and CP-knowers are
much more likely to count out eight items correctly.

Point estimates and interpreting the posterior The end
result of the Excel sheet is a posterior distribution over
knower levels. We conclude this article by providing some
brief guidance on what this distribution means and how it
can be interpreted. In the example in Fig. 5, the
hypothetical child has roughly a 61% posterior probability
of being a 2-knower. This posterior probability has a
very direct interpretation: It is the probability that a child
is at a specific knower level, given the data and the
assumptions in the model. This is actually somewhat
simpler than the results of many other forms of statistical
inference; it is not the probability of an observed statistic
under a null, but is actually the straightforward proba-
bility that the child is a 2-knower.

However, for many researchers, posterior probabilities
will not be familiar; point estimates are the outcome of
most classical estimation methods. Point estimates are also
needed for methods like regression analyses or ANOVAs.
(For most cases, this is not a problem, because for many
children, the posterior is so peaked that any reasonable
summary will suggest the same knower level.)

If the user does not feel comfortable interpreting the
posterior directly, then the choice of the point estimate
should depend on the purpose of the analysis. For most
cases, the mode is a sensible choice, but there could be
exceptions. For example, suppose a researcher wants to
argue something in the following form: “Even before they
learn the cardinality principle, children already know X”
(e.g., Sarnecka & Gelman, 2004). In this case, mistakenly
classifying a CP-knower as being at some lower knower
level would be problematic; it could undermine the
validity of the whole argument. On the other hand,

Fig. 5 A screen shot of the
actual Excel sheet, with some
example data filled in. There is
more room for data entry off to
the right

Behav Res (2012) 44:57–66 65



misclassifying a less knowledgeable child as a CP-knower
would not undermine the argument; it would only remove a
small amount of data. In such a case, a sensible estimate
would be the highest knower level with posterior probability
that exceeds the prior probability. This method would tend to
sort children into higher knower levels where the data were
ambiguous, and thus would be unlikely to misclassify a CP-
knower. Researchers with very particular needs could even
explicitly define a utility function—though a full discussion of
that topic is outside the scope of this article.

Summary

Knower levels are one of the most useful landmarks of
number-concept development in young children. Data from
the standard give-N task can be analyzed using a generative
model of the task, thereby drawing inferences in a more
principled way than heuristic methods. The model’s
estimates also provide information about how certain we
can be of the knower-level classification for each child, and
they empower the researcher to decide ambiguous cases in
the way that is most appropriate for the problem at hand.
The software presented in this article computes a close
approximation to the model’s inference while remaining
quick and easy to use. It is available at www.cogsci.uci.edu/
cogdev/Negen/Knower-LevelEstimater.xls.
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