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Abstract part of the paper, we present the theoretical extensions, while

the second half is devoted to experimental data and its analy-
We introduce a tractable family of Bayesian generalization sjs using these extensions.
functions. The family extends the basic model proposed by
Tenenbaum and Griffiths (2001), allowing richer variation in : : -
sampling assumptions and prior beliefs.” We derive analytic Modelling Generalization

expressions for these generalization functions, and provide an Thjs section extends the Bayesian theory of generalization
explicit model for experimental data. We then present an ex-

periment that tests the basic model predictions within the core |n_four ways, by (1) eXpa”‘?'”f‘g the range Of. all_qwa_ble Sam-
domain of the theory, namely tasks that require people to make Pling assumptions, (2) explicitly allowing variability in prior
inductive judgments about whether some property holds for beliefs, (3) providing analytic expressions for the resulting
novel items. Analysis of the results illustrates the importance generalization gradients, and (4) including task-specific sta-

of describing variations in people’s prior beliefs and assump- & ; ; ;
tions about how items are sampled and of having an explicit tistical models for calibration, contaminants and errors.

model for the entire task. Sampling Assumptions
Keywords: generalization, induction, Bayesian models Bayesian generalization models assume that if some property
holds for previously observed item%¥ = (z1,...,z,) then

The ability to recognize that a novel item shares unobservethey may all be taken to belong to some latent regtaver
characteristics with items previously encountered is an exwhich the property holds. As a result, the inductive problem
tremely useful inductive capacity, so it is not surprising thatwhen presented with new itegis to inferp(y € r| X, X €
psychologists devoted some effort to understanding how peor), the probability that the new item also belongs to the re-
ple make these generalizations. The most well-known acgion. Note that this induction uses two pieces of knowledge:
count of simple generalizations is Shepard’s (1987) exponerthat (a) the items belong to the region (i.&. € r), and (b)
tial law, derived from a Bayesian analysis and experimentathe items have really been observed (i€.exists). The first
work dating back to the 1950s (e.g., Shepard, 1957). Accordfact implies an obvious constraint on the region boundaries,
ing to Shepard’s analysis, the learner assumes that there eliut the second is more subtle. In Shepard’s original proposal
ists some unknownonsequential regiomwithin an appropri-  (weak sampling), the generative process is assumed to be in-
ate psychological space, and that generalization probabilitiedependent of, so the probability of sampling an itemsuch
result from the learner integrating over his or her uncertaintythatz € r is a constantp(z, x € r|r) « p(z) x 1if = € r,
about the boundaries of the region. and 0 otherwise. In contrast, Tenenbaum and Griffiths’ strong

Although a considerable body of modelling work relies on sampling proposal states that the observations are explicitly
Shepard’s law to justify the use of exponential functions, fewsampled from the region (with uniform probability density
researchers have sought to apply or extend his analysis on itsr), implying thatp(z, z € r|r) = 1/|r| if € r where|r|
own terms (see, e.g., Navarro, 2006, for a discussion). Thdenotes the size of the region, and is 0 otherwise.
major exception to this is Tenenbaum and Griffiths (2001), In our view, strong and weak sampling are best viewed as
who introduce three innovations: firstly, they note that thetwo end points on a continuum: at one end the training items
basic Bayesian machinery can easily handle multiple trainingire sampled in a way that is completely dependent on the re-
examples, and that it is merely analytic intractability that hasgion itself, whereas at the other end observations are com-
prevented people from doing so previously. Secondly, theypletely independent of the consequence at hand. However, in
note that the approach can be extended to non-spatial repreiany realistic scenarios our observations arrive in a manner
sentations, and in doing so make connections to Tversky'shatis only partially correlated with the phenomenon in which
(1977) featural approach. Thirdly, they note that variation inwe are interested. As a simple example, consider the sam-
prior beliefs, assumptions about how stimuli are sampled, angling process involved when one is trying to guess whether a
the nature of the hypotheses involved (e.g., connected versymatient in a doctor’s office is sick. Not everyone who enters
disconnected regions; Navarro, 2006) induce a number of inthe office is in fact sick, so strong sampling is impossible.
teresting changes to the model. Remarkably, however, thetdowever, people who are seeking treatmart more likely
are few formal results or experimental data that allow thesdo be sick than randomly chosen people, so weak sampling
extensions to be explored as well as one might like: conseseems inappropriate too. In short, a more general approach
guently, our goal in this paper is to provide both. In the first is necessary. Perhaps the simplest scheme that satisfies this
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Figure 1: The effect of varying, for a case involving three training Figure 2: The effect of varying, when the sampling model is weak
items (black dots) varying along a single dimension. In this examplef = 0 for a case involving three training items (black dots). When
the region is known not to extend below 0 or above 1, but in all ¢ = 1 (the black curve), the linear interpolation function for weak
other respects the prior over regions is uniform. Whea 0 (weak  sampling is obtained. Whep < 1, the gradients become convex
sampling), we obtain a linear interpolation model (the uppermostand dip below the linear one, whereas when> 1 the gradients
black curve), whereas wheéh= 1 (strong sampling), we obtain the become concave. An analogous effect exists for all valués of
tightest generalization gradients (the lowest black curve). Varying
0 in increments of 0.1 produces the various intermediate gradients o )
shown with the grey curves. 0, 1] we adopt the one-parameter Bdtap) family, in which
p(u—1) o< (u—1)?"1, foru — 1 € [0, 1]. Importantly, since
S ) ) ) N |r| = w—1, this prior has the same structure as the likelihood,
criterion is amixed samplingapproach; with probability),  ajlowing ¢ to be easily interpreted (e.g., increasingpy one
items are sampled from the region in question, but with prob-hs a similar effect to decreasing the sample size by one).
ability (1 — ¢) they are generated randomly. In reality, thisis  The effect of allowing a range of priors s illustrated in Fig-
probably still too simple (in a doctor’s surgery, for instance, yre 2, in whiche varies from 0 to 5 in increments of 0.5. As
the non-sick people do tend kookssick), butitis nevertheless noted, varying the prior has an effect not dissimilar to varying
considerably more useful than the simple strong-versus-weaje |ikelihood function or adding data. Moreover, it is impor-
dichotomy. This generalized sampling model assumes thagnt to recognize that when there is a prior expectation that the
the probability of sampling iterw such thatr € r is region will be large (i.e.¢p > 1), the generalization gradients
1 can in fact beconcave Accordingly, careful experimental
pz,z €rfr,0) = (1 —0) +0]r[~". (@ design is required to discriminate between the effects of the

Not surprisingly, the generalization functions that arise from tW0 parameters: specifically,singlegeneralization gradient

this class of sampling assumptions interpolate smoothly fronfannot differentiate betweepand¢. To disentangle priors
weak to strong sampling, as shown in Figure 1. from likelihoods, one needs to examine how generalization

functions change as new observations are added.
Prior Beliefs . :
Mathematical Details

In order to produce generalization gradients shown in Fig- . . i . .
ure 1, we made two additional assumptions. Firstly, we asIn this section we briefly demonstrate the manner in which

sumed that the region does not extend beyond a finite rang?nalyt'c expressions may be obtained for the generalization
(helpful for both experimental and analytic purposes), whichfunction. Space constraints require us to present only a sketch
without loss of generality we fix al, 1]. Secondly, we as- ofthe_ derlvat|0_n, but the full version is available in an accom-
sumed that so long as this constraint is met, every region i§anying technical note (Navarro, 2008). We are interested
equally plausible a priori. It is this latter, rather unrealistic I the case where items vary continuously along the finite

restriction that we now relax, and introduce a simple clasg@nge[0; 1], and the learner applies the extended generaliza-
of priors indexed by a single parametér This prior is in- tion model introduced above. Having observed a set of items

tuitively reasonable to the extent that it allows preference forX = (1:- -, x) Such that all items fall inside an unknown

large regions4 > 1), small regionsé < 1), or no preference region_X er,the Iear_ner_ obs_erves that the probability that a
at all (5 = 1), but is nevertheless more restricted than what"0Vel ittmy also falls insider is

people’s “real” beliefs T|ght_encor_npa§s, since does not allow ply €r|X, X €r)
a prior preference for “medium sized” regions, or any more , , , 2)
complicated beliefs (e.g., “big or small, but not medium”). = [rp(y € r)p(r =7'|X, X €r)dr'.

To construct this family, we first make the assumption that

the prior over regions itocation invariant! In a single di- : i —
b 9 9 of the unknown regiomr, and the integration is taken ov&,

mension, a region is defined in terms of an upper bound ; . N )
and lower bound, but may also be described in terms of the the set of all such regions. Noting thaty € ') is a simple

mean(u+1)/2 and the size.—{. Location invariance implies indicator function that equals 1§ Talls insider’ and O if it
thatp(r) o p(u — 1). For a generalization within the interval does not, the application of Bayes’ rule yields the expression:

fR p(X, X € r|r)p(r’) dr’
a pr(X,X e r|rp(r') dr'”

In this expression;’ denotes one possibility as to the identity

!Note that a uniform prior over region locatiomes notim-
ply symmetric or location-invariant generalization gradients, sincea P
shift in location alters the information provided by the edge points.

(yer|X,X er) 3)



Letting z;, = min(zy,...,z,) andz, = max(x1,...,z,) (e.g., Baranski & Petrusic, 1998, Weber & Brewer, 2004).
denote the most extreme of the observed data points, itis cleakccordingly, while we might hope calibration to be fairly
that the denominator of Eq. 3 integrates over regions withgood in simple inductive tasks, it would be sensible to adopt
upper bound: and lower boundsuch that < z; andz, < u. the assumption that

The numerator is more stringent, requiring also thafall

inside the region, so the domain consists of regions satisfying Dy =01+ (Gu—d)p(y €er|X, X €1) @)

I < min(z;,y) andmax(z,,y) < u.

Under weak sampling, the likelihood function is a simple where the function is parameterized by unknown calibration
indicator function that assigns constant probability to any Ob-parameters’u andj;, the upper and lower bounds on values
servationsX that fall within region:’. With strong sampling, that the participant is willing to report when making proba-
the probability is scaled by size, with the likelihood being bility judgments.
given by|r’|~* = (u—1)~! for each observation. With mixed
sampling, either of these two possibilities could hold for any
particular data point. As a result, the number of “strongly”
sampled items in the training set follows a Binoniiiln)
distribution, which gives rise to the more general likelihoo

Errorsand outliers.  Once the linear calibration function is
incorporated, we have a reasonably plausible model for the
most likely response. Nevertheless, since data are noisy, an
d: explicit error model is required. Note that since responses
" vary continuously between 0 and 1, the standard homoscedas-
p(X, X € rlr,0) _tic_Gaussian mod_el (used when m_inim_izing squared error)
= S0 () (1 = 0)kerF(y— 1)~ (k) (4) is inappropriate, since the boundaries introduce skewed er-
k=0 \k rors. A more plausible approach is to assume that errors
are Beta-distributed such that the most likely response is

We then substitute this likelihood function and the prior € X ) )
p(r) x (u— 1)* ' into Eq. 3. By cancelling constant Pv- Accordingly, we specify a skewed error model using the

terms and rearranging, it is easy to show that the exact twoBet&(1+p7, 1+ (1 —p)r) distributior?, inwhich is a preci-

parameter generalization function is sion parameter, and the distribution becomes more skewed as
p moves toward either 0 or 1. However, this error model does
plyer|X, X er0,0) not account for genuineontaminant processesometimes

(5) people give arbitrary responses due to inattention, acciden-
tal responding, or any of a range of possibilities. The result

is that in such cases the response is entirely independent of
the model, and very likely to produce genuine outlier data

that can distort the parameter estimates. Accordingly, we as-
sume that with some unknown (but presumably small) prob-
a 1 ability ¢, the response is sampled from a uniform distribution

fwar)= [ [@-nawa. @ onl1]

07 Model evaluation. Our overall approach to model evalua-
for0 < a < b < 1. Since the integrand in Eq. 6 is polynomial tion is pragmatic. We adopt a simple Bayesian approach for
inuw andl, it is trivial to solve analytically, but the expressions parameter estimation, setting priors over the parameters and
are lengthy (see Navarro 2008). In short, the generalizatioithen selecting the posterior mode as the best-fitting parame-
probabilities may be computed exactly as the ratio of the twader set. For model checking, however, we rely on orthodox
sums in Eq. 5, though for largefurther simplifications (e.g., methods (primarily Kolmogorov-Smirnov tests of distribu-

. Z::r) b(n,k,0) f(n—k—¢+1,min(y,z1),max(y,z))
N Do b(n,k0) f(n—k—+1,21,20) :

whereb(n, k,0) = () (1 — 0)*9"~* is the probability that
exactlyk of then observed items were sampled weakly, and

Gaussian approximation to the binomial) may be useful. tional equivalence) to ascertain whether the posterior mode
) provides a sufficiently good account of the data. The ap-
Completing the M odel proach to choosing priors uses a mix of objectivist and sub-

To complete the model, we need to address several topics thactivist Bayesian methods, though space constraints preclude
though somewnhat ancillary to the underlying theory of gen-a detailed exposition (see Navarro 2008). Briefly, we adopt a
eralization, are essential for the proper representation of exniform prior over the sampling modelg(¢) = 1 and set
perimental data. With this in mind, we briefly outline our p(¢) o< ¢ exp(—¢) to ensure that the prior mode involves no

approach to (a) response biases, (b) errors and outliers, (pyeference for region size (i.e2, = 1). The prior on the cal-
model evaluation, and (d) individual differences. ibration function has a weak bias towards an assumption of

. I o . perfect calibration, in whiclp(j., j;) o« j.(1 — j;) subject to
Biased probability judgments. The first issue to note is e constraint thaf, < j,, to set the prior over the calibration
that the generalization function describetatent subjective function. The prior on the precisiop() « (7 + 3)~%/2 is
probability, and people may not always report this value ingnsen g9 as to assume an approximately uniform prior over
a stralg_h'gforward fashion. In the contexf[_of_the Bayesiany, o standard deviation of the errors. Finally, we use a very
model, it is helpful to note that the probability in question is . . ~1/2 . ' S

tight prior p(e) x € over the contaminant probability so

essentially a subjectiveonfidencehat some rule holds. With as not to encourage the model to “throw away” too manv ob-
this in mind, it makes sense to assume that the function re- 9 Yy Y

lating the true probability(y € r|X, X € r) to the value servations as outliers.

Dy that one might expect to see reported is much the same °That said, though it seems to improve on the Gaussian model,

as a “confidence calibration” curve measured in the decisione Beta still has problems very near to the edge points, so in practice
making literature, which appear to be approximately linearthe data are truncated to fall §:01, .99].
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Figure 3: The experimental design. Each panel corresponds to one of the three scenarios, and shows the three different sets of stimuli known
to possess the property (circles, squares and triangles). The tick marks are located at each of the test points.

Individual differences. In general, we have no strong rea- 20
son to assume homogeneity among participants or across d
ferent situations, but we do wish to assume that paramettz 1
values do not vary with sample size. Although more sophisti- 5 10
cated methods are possible (e.g., Navarro, Griffiths, Steyver &
& Lee, 2006), for the present purposes we estimate a sepatr:
set of parameter®, ¢, j;, ju, 7, €) for each scenario and each

y . . . 0 0.5 ] 0 2 4 6
person, but require the parameters to remain invariant as tt Sampiing (6) Prior (¢)
number of observations changes.

Frequency

Figure 4: Marginal distributions oveé and ¢ for the 36 model-
Quialitativeremarkson model complexity. Given the nat- consistent cases. The two distributions are weakly correlated.
ural concerns one might have regarding model complexity

(e.g., Myung, 2000), it is worth commenting briefly on what

characteristics the model can and cannot produce. In par- If the experiment found that the bacteria was alive in food
ticular, the following qualitative constraints appear to be the that was kept at the temperatures shown as black dots
most important: gradients must be unimodal, may not be- bﬁlo"‘." vaha(; Iks tr{e ﬂﬁb?b”'ty thf:t It WO”'df'g%b‘ith””g
come shallower as more observations arrive, and must remain gl:\éest'ignor?]arke?p atthe lemperalure specilied by the re

flat across the region spanned by the observations.

. Responses were obtained by allowing people to position a
Experiment slider bar using the mouse. In this bacterial scenario, three
M ethod known observations were initially given, and to elicit the full

Twenty-two undergraduate participants (16 female, 6 male8eneralization gradients the question was repeated 24 times,

were asked to evaluate three different generalization scena n each occasion asking about a different temperature (in a

ios and given a $10 book voucher for their participation. Therandomlzed orden). Once this was complete, two new data

three scenarios involved different problems in a biologicalpOintS were added and the process repeated. Finally, a further

domain: in one case the problem involved the temperaturegve data points were added, and a third generalization gradi-
at which bacterium can survive, in another the range of so(F.nt elicited. This sequence is illustrated in the top panel of
acidity that produces a particular colored flower, and the thir igure 3. A s_lmllar process applied to _th_e soﬂ_and foraglr!g
related to the times at which a nocturnal animal might for-Scenarios, with the Iocatl_ons of the training points s_hown n
age. Observations were presented on a computer screen the lower two panels of Figure 3. Note that the relative posi-

black dots, and participants were asked to solve an inductioﬂgnmseoifntg\eléfsg?no':Escg'see" :Egureﬁ '?huees';lgsner:tzrt:(osr)w \(’)Vredrsrtgﬁ_
problem such as the following: y sing ) g p

i ] ] fered each time. The three scenarios varied slightly in terms
E;(;I(I)Izisnge'rrehl;sslsna?: tgr?:isofsebnasﬁi?/relatot?s:nggtj;;i?em;:é of the extent to which the edge-points were made explicit
exposure to very high temperatures (>70°C) or ver’y low (e.g., the_temperatu_re range explicitly states 87 @vhereas
temperatures (<5°C) will quickly kill the bacteria. In an the foraging scenario marked 6am-6pm on screen, but only

experiment, food was contaminated with Bacillus cereus explicitly referred to “night time” as the relevant range) and
and then either heated or chilled to a given temperature. were presented in a random order.
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Figure 5: Averagefl and ¢ across scenarios, for the 36 model-
consistent cases. Error bars are 95% confidence intervals.

Results
Calibration and error.  With 22 participants and 3 scenar- Figure 6: A comparison between partipants 13 (top) and 15 (bottom)

. X L . n scenario 1 (temperature), as the sample size is increased (from
ios, 66 independent parameter optimizations were requweqoeft to right). The solid black lines are the theoretical generalization

each requiring 6 unknowns to be estimated from 72 datgyragients, with 80% confidence bands for a single judgment shown
points. Although the parameters of interest drand¢$, we  jn grey. White circles denote the actual responses given, and the
begin with the various precisionrf and contaminatione  black circles show the observations given to the participants. Note
parameters. Overall, the data appear largely uncontaminatethat both participants are well calibrated, with lower bourids, =

with 45 of the 66¢ values less than .001. The precision was.01 andj;,15 = .07 and upper boundg,,13 = .99 andjy,15 = .93,
reasonable, with the distribution oversuch that the average and use a prior slightly favouring large regions,{¢= 1.15, ¢15 =
standard deviation of the error distributions was 0.11. As exélllggillg pzzritritéfpggﬁ?tléga?j%gtlgsaﬁ migﬁizﬂ?gnfpggzgq: -04176
pected, calibration was generally good but not perfect. At th he comparison also hiahliahts the different roles ola eTir. d

top of the SC"?"e' iny 5 cases '.nVOIV%j.< 9. Atthe Ipwer . e data inghe top panels%regprecbs& 68 with a few (?on¥amitr?gnts
end some miscalibration is evident, with 24 cases involving, _ o5 '\hereas the data below are uncontaminatedo but less

Ji > .1 (interquartile range ran from .01 to .28). However, preciser = 19.

much of this variation may represent model misspecification,

in the sense that if people do not believe that generalization

probability is zero at the edge points, wider gradients are obSmirnov test (i.e., thé6 — 30 = 36 cases not rejected), Fig-
served; an effect that can be mimicked by raising ures 4 and 5 provide an illustration of the basic pattern of

variation. As shown in Figure 4, the estimateséofended

to be low (mean = .25, std = .33), suggesting a fairly weak

degree of correlation between the sampling process and the
inderlying region. However, the distribution is somewhat bi-

Model checking. Before proceeding to a discussion of the
estimates ob and ¢, it is important to check that the model

provides a good enough description of the data that these e
timates are likely to be useful. Given that the model is SUChmodaI, with a small peak a — 1. For ¢, the distribution

that the error distribution is different for every data point, this is unimodal and slightly skewed (skew = 1.24), with moder-

is not entirely simple. However, since it is straightforward ate variance (std = 1.03). With a medianjat- 1.17 (mean
to compute the inverse cumulative distribution functions for _ 4 42), the general t.end.ency is towards flat p'riors but with
the Beta-error model, we can obtain the theoretical percentllgnough' variation to matter for small samples (reca,ll that al-

rank for each datum. If the model performance is accurate,_ . P - :

. L ; ering ¢ by 1 has a similar effect to raising the sample size
these should be unlform_ly distributed, which may be checke y 1)g. qli/lo}r/eover the two distributions are v%eakly corrr)elated
via the Kolmogorov-Smirnov test. We conducted these testyith 0= .33 (p % 9.8 x 1075): stronger sampling is weakly '
at three different levels of granularity. At the lowest level, we associated with prior preference to larger regions. Finally,
checked each of the 38x3= 198 gradients separately: ata as shown in Figure 5, the different scenarios did appear to

significance level oty = .05, 66 of the 198 theoretical gra- su ; ; ;
: X . ggest different sampling models to peoplagsts are sig-
dients were rejected. A stricter test would treat each of th ificant atp < .05 in all cases), but did not influence the prior

66 parameter estimates separately, and require all three gen-: : :
eralization gradients to pass (at the adjusted leyglwhere “Beliefs about regiong(> .9 in all cases).
1 — ap = (1 — a)* to hold the error rate fixed at). This  Dijscussion

analysis suggests that 30 of the parameter estimates may e analyses presented make clear that people differ in their
unreliable, since at least one generalization gradient was ng Y P peop

successfully accounted for. At the most stringent level, Wea§sumpt|0ns abo_ut how olpservanons are gener_atepl, and have
different prior beliefs that influence the generalization func-

treated each participant separately, requiring all 9 generalizg:_ " )
tion gradients to produced by the participant to be correctly?t'on' but that, nevertheless, the extended Bayesian approach

described. In this case, the model passed only for 7 of the 225:;:;2? t\</vv %”;5 -L%i?calé?)r;hlsarrigggi Cogﬁée]fﬁ'st't irlrl]uasxf[rgfelg fﬁ
participants: however, since “failure” here refers to the inabil- P P X !

ity to fully describe the joint distribution over 216 dependent F19ure 6. m_volver;s pdﬁ.‘;r“c'p@“ts 1I3 and 15 ar}drfhe temﬁJ_era-
variables (one per response), a 32% success rate is actuali e scenario, who diter primarily in terms of the sampling
quite good. assumptions (see_ Figure caption for the specifics). When
only three data points are available (left panels), the two pro-
Samplers, priors and stories. Restricting the discussion duce very similar gradients. For participant 13, for whom

to those 36 parameter estimates that pass the Kolmogoro¥-= .016, the generalization gradients do not narrow as the



pants gave sensible answers that are simply outside the scope
of the model. Two of these are shown in Figure 8. On the left,
the data do not appear to be a “generalization” function at all;
rather, they look much more like a probability density func-
tion or a typicality gradient, suggesting that this participant
has interpreted the task in a manner more akin to a catego-
rization problem (Ashby & Alfonso-Reese, 1995). That is,
items that are clearly members of the concept, but likely to
be on the fringes are in fact assigned low probability. In the
right panel, the flat-topped region extends a long way to the
right. Noting that thedataare on the left side of the region,

it would appear that this participants’ priorimt location in-

Figure 7: Comparing participants 10 (top) and 4 (bottom) on theva“ant‘ This 1S e’?aC“y the patt_ern one expects 'f. one ha_s a
foraging scenario. This scenario tended to produce Highlues, ~ VerY strong prior bias for the region to be centered in the mid-
with @ = 1 for both participants shown. Both participants are well- dle of the acceptable range.

calibrated, withj;, j.] equal to].01,.99] and[.07, .93] respectively. .

Both are moderately clean data sets, witaqual t010.9 and11.8 Final Remarks

respectively, and = 0 in both cases. However, while = 1.8 for  Even in very simple inductive tasks it is clear that people vary
participant 104 = 3.3 for participant 4. considerably in their prior beliefs and in their assumptions
about how data are generated. When these effects are incor-
porated into Tenenbaum and Griffiths’ (2001) generalization
model, a number of counterintuitive effects can arise (e.g.,
concave curves). Nevertheless, we note that some character-
istics of the model remain invariant (e.g., gradients may not
become shallower with data), allowing quite stringent experi-
mental tests of the theory. We present the first such test of the
model, and show that it performs well in 36 of 66 cases, but
cannot capture the full range of behaviors observed even in
Figure 8: Two cases that cannot be captured by the model. Moddhis simple task. While a number of post hoc extensions are
predictions are shown as dashed lines, while the solid lines show thpossible, they are somewhat beyond the scope of this paper.
data. The left panel corresponds to participant 15, foraging scenari
case 3; and the right panel is participant 10, soil story, case 2.
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