
The Wisdom of Crowds in Rank Ordering Problems 
 

Brent Miller (brentm@uci.edu) 
Pernille Hemmer (phemmer@uci.edu) 

Mark Steyvers (mark.steyvers@uci.edu) 
Michael D. Lee (mdlee@uci.edu) 

 
Department of Cognitive Sciences 

3151 Social Science Plaza 
Irvine, CA 92697-5100 

 
 

Abstract 
When averaging the estimates of individuals, the aggregate 
can often come surprisingly close to the true answer. We are 
interested in extending this “wisdom of crowds” phenomenon 
to more complex situations where a simple strategy like 
taking the mode or mean of responses is inappropriate, or 
might lead to bad predictions. We report the performance of 
individuals in a series of ordering tasks, where the goal is to 
reconstruct from memory the order of time-based events, or 
the magnitude of physical properties. We introduce a 
Bayesian version of a Thurstonian model that aggregates 
orderings across individuals, and compare it to heuristic 
aggregation techniques inspired by existing models of social 
choice and voting theory. The Bayesian model performs as 
well as the heuristics in reconstructing the true ordering, and 
has the advantage of being well calibrated, in the sense that it 
gives more confident responses the closer it is to the truth. 

Keywords: Bayesian Modeling; Rank Ordering; Consensus; 
Wisdom of Crowds; Rank aggregation. 

Introduction 
When Galton first surveyed English fair-goers in 1906, it 
was a novel curiosity that their estimates of the dressed 
weight of an ox, when averaged, closely approximated the 
true weight (Galton, 1907). Subsequently, many 
demonstrations have shown that aggregating the judgments 
of a number of individuals often results in an estimate that is 
close to the true answer. This phenomenon has come to be 
known as the “wisdom of crowds” (Surowiecki, 2004). The 
wisdom of crowds idea is currently used in several real-
world applications, such as prediction markets (Dani et al., 
2006), spam filtering, and the prediction of consumer 
preferences through collaborative filtering.  

Many wisdom of crowds demonstrations have involved 
situations where a single numerical quantity needs to be 
estimated. In these cases, a robust estimate of the central 
tendency of individual estimates can be  an effective 
aggregation method (Yaniv, 1997). Other situations have 
involved recovering the answers to multiple choice 
questions. For example, on the game show "Who Wants to 
be A Millionaire", contestants are given the opportunity to 
ask all members of the audience to answer a multiple choice 
question. In this case, an aggregation method based on the 
modal response can be quite effective. Over several seasons 
of the show, the modal response of the audience 

corresponded to the correct answer 91% of the time. More 
sophisticated approaches have been developed, such as 
Cultural Consensus Theory (e.g., Romney, Batchelder, 
Weller, 1987), that additionally take differences across 
individuals and items into account when aggregating 
multiple choice answers. 

In this paper, we extend the wisdom of crowds idea to the 
more complex problem of rank ordering. Is it possible to 
recover the correct order of events or physical properties 
from a large number of independent individual responses? 
How confident can we be that these aggregations represent 
the ground truth? 

Aggregating rank order data is not a new problem. In 
social choice theory, a number of systems have been 
developed for aggregating rank order preferences for groups 
(Marden, 1995). Preferential voting systems, where voters 
explicitly rank order their candidate preferences, are 
designed to pick one or several candidates out of a field of 
many. These systems, such as the Borda count, perform well 
in aggregating the individuals' rank order data, but with an 
inherent bias towards determining the top members of the 
list.1 However, as voting is a means for expressing 
individual preferences, there is no ground truth. The goal for 
these systems is to determine an aggregate of preferences 
that is in some sense “fair” to all members of the group.  

Relatively little research has been done on the rank order 
aggregation problem with the goal of approximating a 
known ground truth. In follow-ups to Galton's work, Gordon 
(1924) and Bruce (1935) tested a large number of 
individuals in psychophysical ordering tasks. They found 
that the group estimate approximates the ground truth better 
as the size of the group increases. Interestingly, these 
authors used the Borda count voting method (without 
making this connection to voting theory explicit in their 
work) to aggregate the rank orderings of individuals. 
Romney et al. (1987) also developed an informal 
aggregation model for rank order data based on Cultural 
Consensus Theory, using factor analysis of the covariance 
structure of rank order judgments. With this, they were able 
to partially recover the correct order of 34 causes of death in 

                                                           
1 This is necessary to satisfy the Condorcet Criterion, which 

requires that a top ranked candidate selected by a voting system 
should be a candidate who has more votes when compared to every 
other voter on the ballot (Shepsle & Bonchek, 1997) 



the US on the basis of the individual orderings of 36 
subjects. 

 We present empirical and theoretical research on the 
wisdom of crowds phenomenon for rank order aggregation. 
We conduct an empirical study where people are asked to 
rank order the occurrence of events (e.g., US presidents by 
term of office2) or the magnitude of some physical property 
(e.g., rivers by length). Most importantly, no 
communication between people is allowed for these tasks, 
and therefore the aggregation method operates on the data 
produced by independent decision-makers.  

Importantly, for all of the problems there is a known 
ground truth. The ground truth might only be partially 
known to the tested individuals. If different individuals have 
knowledge of different parts of the ordering problems, 
aggregation across individuals can yield a group answer that 
comes closer to the ground truth than any of the individuals 
in the group. For example, if some individuals know that the 
Congo is longer than the Parana River, and other individuals 
know that the Parana River is longer than the Mekong 
River, aggregation might lead to the correct overall ordering 
(i.e., Congo > Parana > Mekong). Therefore, for the wisdom 
of crowd phenomenon to work, the errors in semantic 
memory need to have some degree of independence. If all 
individuals have access to the same knowledge, there will 
be no advantage to aggregating their answers.  

 We compare several heuristic computational 
approaches―based on voting theory and existing models of 
social choice―that analyze the individual judgments and 
provide a single answer as output, which can be compared 
to the ground truth. We refer to these synthesized answers as 
the “group” answers because they capture the collective 
wisdom of the group, even though no communication 
between group members occurred.  

We also develop a probabilistic model based on a 
Thurstonian approach that represents items as distributions 
on an interval dimension. We make inferences about the 
parameters of the model using Markov chain Monte Carlo 
(MCMC). The advantage of MCMC estimation procedure is 
that it gives a probability distribution over group orderings, 
and we can therefore assess the likelihood of any particular 
group ordering. We use this likelihood as a confidence 
measure to test whether the model is calibrated, in the sense 
that the group answers with high confidence are close to the 
ground truth. 

Experiment 

Method 
Participants were 78 undergraduate students at the 
University of California, Irvine. The experiment was 
composed of 20 questions (3 were excluded from analysis; 
one because participants misunderstood the question, one 
because of the lack of a proper ground truth, and the last for 

                                                           
2 The ordering of US Presidents has been studied before in the 

context of memory research by Healy, Havas, and Parker (2000).  

consistency as it only included 5 elements for ordering, 
whereas all the others included 10). The remaining 
questions involved general knowledge regarding: population 
statistics (4 questions), geography (3 questions), dates, such 
as release dates for movies and books (7 questions), U.S. 
Presidents, material hardness, the 10 Commandments, and 
the first 10 Amendments of the U.S. Constitution 

All questions had a ground truth obtained from Pocket 
world in figures and various online sources. An interactive 
interface was presented on a computer screen. Participants 
were instructed to order the presented items (e.g., “Order 
these books by their first release date, earliest to most 
recent”), and responded by dragging the individual items on 
the screen using the computer mouse, and “snapping” the 
item into the desired location in the ordering. Once 
participants were satisfied with their response they clicked 
on the submit button. They were prompted to confirm that 
they wished to proceed before being presented with the next 
question. Once their response was submitted it was not 
possible to return to that question. The questions were 
presented in a fixed order. Half the participants received the 
forward ordering of questions, the other half received the 
backwards ordering of questions. The initial ordering of the 
10 items within a question was randomized across all 
questions and all participants. 

Results 
We first evaluated participants' responses based on whether 
or not they reconstructed the correct ordering. Table 1 
shows the proportion of individuals who got the ordering 
exactly right (PC) for each of the ordering task questions. 
On average, about one percent of participants recreated the 
correct rank ordering perfectly. We also analyzed the 
performance of participants with a more fine-grained 
measure, using Kendall’s τ distance. This distance metric is 
used to count the number of pair-wise disagreements 
between the reconstructed and correct ordering. The larger 
the distance, the more dissimilar the two orderings are. 

Table 1: Participant performance statistics. 
 

Problem PC 25 50 75 90 100

books 0.000 15 10 8 5 3
city population europe 0.000 19 15 12 10 7

city population us 0.000 20 14 11 8 6
city population world 0.000 23 18 15 12 5

country landmass 0.000 12 9 7 5
country population 0.000 17 15 11 9 4

hardness 0.000 18 15 12 11 7
holidays 0.051 12 8 5 3

movies releasedate 0.013 9

2

0
6 4 2

oscar bestmovies 0.013 14 10 6 4
oscar movies 0.000 1

0
0

6 10 5 2
presidents 0.064 10 7 3 1 0

rivers 0.000 19 15 13 11 3
states westeast 0.026 10 6 3 1 0

superbowl 0.000 24 17 14 11 6
ten ammendments 0.013 19 13 10 4 0
ten commandments 0.000 23 17 11 7 1

AVERAGE 0.011 16.5 12.1 8.8 6.2 2.6

Percentiles of τ

1



Values of τ range from: 0   τ    1 /2, where N is 
the number of items in the order (10 for all of our 
questions). A value of zero means the ordering is exactly 
right, and a value of one means that the ordering is correct 
except for two neighboring items being transposed, and so 
on up to the maximum possible value of 45. 

Table 1 shows the distribution of τ values over the ranked 
population of participants for each of the 17 sorting task 
questions, in terms of values at the 25th, 50th, 75th, 90th 
and 100th percentiles. For six of the questions, one or more 
participants get the ordering exactly right, as indicated by a 
τ of 0 for the 100th percentile. The best individuals on each 
question achieve good performance, and solve the problem 
exactly, or are within a few pair transposes, for most 
questions. As this is a prior knowledge task, it is interesting 
to note the best performance overall was achieved on the 
Presidents, States from west to east, Oscar movies, and 
Movie release dates tasks. These four questions relate to 
educational and cultural knowledge that seems most likely 
to be shared by our undergraduate subjects. 

Modeling 
We evaluated a number of heuristic aggregation models and 
compared the performance of these methods against a 
probabilistic model based on a Thurstonian approach. For 
each model, the set of orderings from individuals is 
analyzed in order to create a single group ordering, which is 
then compared to the ground truth.  

Heuristic Models 
We tested four heuristic aggregation models. The simplest 
heuristic, based on the mode, has been used since the 
earliest rank order experiments (Lorge et al. 1957). For this 
heuristic, the group answer is based on the most frequently 
occurring sequence of all observed sequences. In cases 
where several different sequences correspond to the mode, a 
randomly chosen modal sequence was picked.  

The second method, which we refer to as the “greedy 
count”, counts the number of participants responses for each 
item in each position. The item and the position with the 
largest agreement among participant is selected first. The 
selection of items then proceeds in a greedy algorithm 
fashion, making sure that each item and position is not 
already filled.  

The third method takes the group answer as the 
participant ranking that is “closest”, as determined by a 
distance measurement metric, to the rankings of all 
participants. This is known as the Kemeny-Young method 
(e.g., Marden, 1997). It is implemented here by finding the 
participant ordering that has the smallest distance, measured 
by the sum of Kendall's τ's between strings, to the orderings 
of all other participants. Note that we restrict ourselves to 
finding a ranking from the existing set of participants’ 
responses. This method can be extended to find any 
arbitrary rank order that is closest to the “middle” of 
observed rankings, but that approach suffers from well-
known computational complexity problems. 

The fourth method uses the Borda count method, a widely 
used technique from voting theory. In preferential voting 
systems, voters express their candidate choices in terms of 
an ordering of all ballot candidates. In the Borda count 
method, weighted counts are assigned such that the first 
choice “candidate” receives a count of N (where N is the 
number of candidates), the second choice candidate receives 
a count of N-1, and so on. These counts are summed across 
candidates and the candidate with the highest count is 
considered the “most preferred”. Here, we use the Borda 
count to create an ordering over all items by ordering the 
Borda counts.   

Table 2 reports the performance of all of the aggregation 
models. For each, we checked whether the inferred group 
order is correct (C) and measured Kendall's τ. We also 
report in the Rank column the percentage of participants 
who perform worse or the same as the group answer, as 

Table 2: Performance of the four heuristic models and the Thurstonian model 
 

 

Problem C τ Rank C τ Rank C τ Rank C τ Rank C τ Rank
books 0 4 96 0 6 88 0 7 82 0 7 82 0 12 40

city population europe 0 11 81 0 11 81 0 11 81 0 13 69 0 17 4
city population us 0 10 87 0 11 79 0 12 67 0 9 90 0 1

2
6 45

city population world 0 18 59 0 16 73 0 15 77 0 16 73 0 19 4
country landmass 0 7 7

4
6 0 5 95 0 5 95 0 5 95 0 7 76

country population 0 11 82 0 11 82 0 11 82 0 13 67 0 15 53
hardness 0 11 91 0 11 91 0 11 91 0 18 31 0 15 46
holidays 0 5 77 0 4 78 0 4 78 0 4 78 1 0 100

movies releasedate 0 2 95 0 2 95 0 2 95 0 2 95 0 2 95
oscar bestmovies 0 3 97 0 4 90 0 3 97 0 5 90 0 3 97

oscar movies 0 2 96 0 1 100 0 2 96 0 3 88 0 2 96
presidents 0 1 94 0 2 87 0 3 79 0 1 94 1 0 100

rivers 0 11 91 0 12 86 0 11 91 0 13 77 0 16 4
states westeast 0 1 97 0 2 88 0 3 7

2
8 0 1 97 0 1 9

superbowl 0 10 96 0 12 88 0 10 96 0 15 71 0 19 40
ten ammendments 0 2 97 0 4 95 0 5 90 0

7

4 95 0 4 95
ten commandments 0 11 82 0 11 82 0 12 74 0 12 74 0 17 5

AVERAGE 0.00 7.03 87.9 0.00 7.35 87.0 0.00 7.47 85.3 0.00 8.29 80.3 0.12 9.67 68.2

Thurstonian Model Borda  Counts ModeKemeny‐Young Greedy Count

1



measured by τ. With the Rank statistic, we can verify the 
wisdom of crowds effect. In an ideal model, the group 
heuristic should perform as well as or better than all of the 
individuals in the group. Table 2 shows the results 
separately for each problem, and averaged across all the 
problems.  

These results show that the mode heuristic leads to the 
worst performance overall in rank. On average, the mode is 
as good or better of an estimate than 68% of participants. 
This means that 32% of participants came up with better 
solutions individually. This is not surprising, since, with an 
ordering of 10 items, it is easily possible that only a few 
participants will agree on the ordering of items. The 
difficulty in inferring the mode makes it an unreliable 
method for constructing a group answer. This problem will 
be exacerbated for orderings involving more than 10 items, 
as the number of possible orderings grows combinatorially. 
The greedy count heuristic performs better than the mode 
overall, but it does not lead to the correct answer for any 
individual problem.  

The Borda count and Kemeny-Young methods perform 
relatively well in terms of  Kendall's τ and overall rank 
performance. On average, these methods perform with ranks 
of 85% and 88% respectively, indicating that the group 
answers from these methods score amongst the best 
individuals, although 10% of individuals still perform 
better.  

A Thurstonian Model 
Despite comparable statistical performances, the heuristic 
aggregation models create no explicit representation of each 
individual's working knowledge. Therefore, even though the 
methods can aggregate the individual pieces of knowledge 
across individuals, they cannot explain why individuals rank 
the items in a particular way, or how much confidence 
should be placed in the overall group ranking. To address 
this potential weakness, we develop a simple probabilistic 
model based on the seminal Thurstonian approach. 
Although the Thurstonian approach has often been used to 
analyze preference rankings (see Marden, 1997 for an 
overview), it has not been applied, as far as we are aware, to 
ordering problems where there is a ground truth.  

In the Thurstonian approach, the overall item knowledge 
for the group is represented explicitly as a set of coordinates 
on an interval dimension. The interval representation is 
justifiable given that all the problems in our study involve 
one-dimensional concepts (e.g., the relative timing of 
events, or the lengths of items). Specifically, each item is 
represented as a value  along this dimension, where 
    1, … , . Each individual is assumed to have access to 

the group-level information. We assume, however, that 
individuals do not have precise knowledge about the exact 
location of each item. We model each individual's location 
of the item by a single sample from a distribution, centered 
on the item’s group location. We represent the uncertainty 
associated with this value, , with a Normal distribution, 
N , . In a fully specified Thurstonian model, once an 

individual draws samples for each item, the ordering for that 
individual is based on the ordering of the samples. Figure 1 
shows an example of the group-level information for six 
items, A to G. A particular individual might sample values 
from these distributions such that some items are ranked 
correctly, but other items are transposed. In Figure 1, there 
is a larger degree of uncertainty for item C, making it likely 
that item C is placed incorrectly in the ordering.  

 

 
Figure 1. Example of group-level information for six items.  

 
We apply Bayesian estimation techniques to infer the 

group representation from the individual orderings. 
Bayesian methods have been applied to Thurstonian models 
before (Yao, & Böckenholt, 1999), but here we present a 
simplified version of the Thurstonian model that facilitates 
more efficient Bayesian inference. 

In the simplified model, we do not attempt to explain the 
particular orderings for each individual, but rather the 
pairwise orderings across all individuals. The data for this 
model consist of a N x N count matrix R, where R ,  
contains the number of participants who ordered item i later 
than item j. For example, Figure 2 shows the matrix for the 
Presidents question with the Presidents in the correct order. 
Note that nearly all of the 78 participants correctly place 
George Washington earlier than any of the other Presidents, 
but that Dwight D. Eisenhower, who should be ranked last, 
is often placed earlier than other Presidents. The pairwise 
data therefore indicate some uncertainty about the ranking 
of Eisenhower relative to other Presidents.  

In our model, when determining the relative order of two 
items i and j, a person samples a value from item i, 
 ~ N , , and also a value from item j,  ~ N , . 

These values are then compared to each other and item i is 
ranked above j whenever . Let  represent the 
probability of the outcome . This probability can be 
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Figure 2. Count matrix R for the 'Presidents' question. 

A B C D E F G H I J
 George Washington  A 0 0 2 1 1 1 2 1 1 2

 John Adams  B 78 0 29 10 14 7 6 5 4 5
 Thomas Jefferson  C 76 49 0 10 10 1 6 2 3 2

 James Monroe  D 77 68 68 0 45 15 18 14 13 15
 Andrew Jackson  E 77 64 68 33 0 11 9 10 9 11

 Theodore Roosevelt  F 77 71 77 63 67 0 37 18 24 23
 Woodrow Wilson  G 76 72 72 60 69 41 0 22 29 27

 Franklin D. Roosevelt  H 77 73 76 64 68 60 56 0 40 34
 Harry S. Truman  I 77 74 75 65 69 54 49 38 0 38

 Dwight D. Eisenhower J 76 73 76 63 67 55 51 44 40 0



determ edin  exactly: 

Φ ,      (1) 

where Φ is the cumulative normal distribution. This 
sampling process is repeated for each individual and all item 
pairs. Therefore, the number of times that item i is ranked 
before item j, across a l i  based on the binomial 
distribution: 

l ndividuals, is

R ~ B , , (2) 
 

where K is the number of individ ls. ua
In this probabilistic model  and  are the latent 

variables that can be estimated on the basis of the observed 
data R.3 We applied MCMC techniques to estimate the 
latent parameters using a sequence of Metropolis Hasting 
steps. In order to prevent a drift in the items during 
estimation (as there is no natural zero point), we fixed the 
minimum of  to 0 and the maximum of  to 1. We ran 20 
chains with a burn-in of 200 iterations. From each chain, we 
drew 20 samples with an interval of 10 iterations. In total, 
we collected 400 samples. To construct a single group 
answer, we analyzed the ordering of the items according to 

, separately for each sample, and then picked the mode of 
this distribution. This corresponds to the most likely order in 
the distribution over orders inferred by the model. 

The result of this Thurstonian model is shown in Table 2. 
The model performs approximately as well as the Borda 
count method, but not quite as well as the Kemeny-Young 
method. The model does not recover the exact answer for 
any of the 17 problems, based on the knowledge provided 
by the current 78 participants. It is possible that a larger 
sample size is needed in order to achieve perfect 
reconstructions of the ground truth.  
 
Visualization of Group Knowledge One advantage of the 
Thurstonian approach is that it allows a visualization of 
group knowledge not only in terms of the order of items, but 
also in terms of the uncertainty associated with each item on 
the interval scale. Figure 3 shows the inferred distributions 
for four problems where the model performed relatively 
well. The crosses correspond to the mean of  across all 
samples, and the error bars represent the standard 
deviations   based on a geometric average across all 
samples.  

These visualizations are intuitive, and show how some 
items are confused with others in the group population.  For 
instance, nearly all participants were able to identify George 
Washington as the first President of the U.S., but many 
confused later Presidents whose terms occurred close to 
each other.  Likewise, there was a large agreement on the 
proper placement of the right to bear arms in the 
amendments question ― this amendment is often popularly 
referred to as “the second amendment”.   
 

                                                           
3 Because of the simplified nature of the model, there is no need 

to explicitly estimate the particular draws x. These have been 
integrated out of the model by virtue of Equation (1) 

Model Calibration Since the probabilistic model is 
estimated with MCMC techniques, we derive a posterior 
distribution over all group orderings, from which we select 
the mode as the best group answer. Because of this, we can 
also assess the posterior probability of this group answer. 
This probability has a natural interpretation as the model's 
measure of confidence. If the distribution over orders is very 
peaked, most posterior probability is concentrated on the 
modal answer, indicating a high confidence. If, on the other 
hand, the model is uncertain about any of the orderings, a 
low posterior probability, and therefore a low confidence,  is 
given to the modal answer. We can then use this confidence 
measure to assess to what extent the model is calibrated. 
That is, we can ask: do confident answers come close to the 
ground truth? 

Figure 3. Sample Thurstonian inferred distributions. 
The actual order is the ground truth ordering, while 
the numbers in parentheses show the group answer.  

Figure 4 shows an ordering of the problems according to 
their confidence values (i.e., the posterior probability of the 
modal answer). The right panel shows the Kendall 
τ distance between the group answer and the true answer. 
The correlation between confidence and Kendall τ is -.63, 



showing the expected relationship: high confidence 
responses are associated with orderings that are closest to 
the correct ordering. Calibration is important because, in 
practical situations, the ground truth is not available and a 
decision maker need to know how confident to be in the 
aggregated group answer.  

Conclusion 
We have presented four heuristic aggregation approaches, as 
well as a Thurstonian approach, for the problem of 
aggregating rank orders to uncover a ground truth. The 
model comparison showed that the mode is not a reliable 
approach for extracting the ground truth, because few 
individuals agree on the same ordering. We expect that in 
larger ordering tasks, involving more than 10 items, there 
might be no individuals that agree with any other on the 
item ordering. The other heuristic methods, such as the 
greedy count and the Borda count, analyze the orderings 
locally by  counting the number of times items each occur at 
each position. This strategy seems to overcome some of the 
problems with using the mode. The Kemeny-Young method 
extracted a group answer by finding an existing answer in 
the data that had the smallest combined  distance to all other 
answers, as measured by Kendall’s τ. This result suggests 
that the idea of finding “prototypical” orderings can lead to 
effective group answers. 

We also presented a Bayesian model based on the classic 
Thurstonian approach. While this model did not outperform 
the heuristic models, it did perform well, and has some 
advantages over the heuristic models. The Bayesian model 
not only extracts a group ordering, but also a representation 
of the uncertainty associated with the ordering. This can be 
visualized to gain insight into mental representations and 
processes. The MCMC estimation procedure used for the 
Bayesian model leads naturally to a distribution over 
orderings. This distribution can be used to measure the 
confidence in any particular group answer. We found that 

this confidence relates to how close the group answer is to 
the true answer. Additionally, although not explored here, 
the Bayesian approach potentially offers advantages over 
heuristic approaches because the probabilistic model can be 
easily expanded with additional sources of knowledge, such 
as confidence judgments from participants and background 
knowledge about the items.  

 
Figure 4. The relation between the confidence in the 
group answer and the Kendall τ distance of the group 
answer to the true answer. 
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