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Abstract

A central idea in many successful models of category
learning—including the Generalized Context Model
(GCM)—is that people selectively attend to those
dimensions of stimuli that are relevant for dividing
them into categories. We use the GCM to re-examine
some previously analyzed category learning data, but
extend the modeling to allow for individual differences.
Our modeling suggests a very different psychological
interpretation of the data from the standard account.
Rather than concluding that people attend to both di-
mensions, because they are both relevant to the category
structure, we conclude that it is possible there are two
groups of people, both of whom attend to only one of the
dimensions. We discuss the need to allow for individual
differences in models of category learning, and argue for
hierarchical mixture models as a way of achieving this
flexibility in accounting for people’s cognition.
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Introduction
Selective attention is one of the most compelling the-
oretical ideas in the study of human category learning.
The basic idea is that, to learn a category structure, peo-
ple selectively attend those dimensions of the stimuli that
are relevant to distinguishing the categories. Nosofsky’s
(1984) landmark paper showed that, for stimuli repre-
sented in terms of underlying continuous dimensions, se-
lective attention could help explain previously puzzling
empirical regularities in the ease with which people learn
different category structures (Shepard, Hovland, & Jenk-
ins, 1961).

The Generalized Context Model (GCM: Nosofsky,
1984, 1986) incorporates an attention process that has
proven enormously helpful in accounting for human cat-
egory learning behavior. Kruschke (1992) developed a
natural extension of the GCM that was able to learn se-
lective attention weightings on a trial-by-trial basis for
dimensional stimuli, and Lee and Navarro (2002) showed
that the same approach worked equally well for stimuli
represented in terms of discrete features rather than con-
tinuous dimensions.

In this paper, we raise the possibility that different
people might apply selective attention differently when
learning the same category structure. We re-analyze
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Figure 1: Condensation category structure “B” from Kr-
uschke (1993).

human performance on a single task conducted by Kr-
uschke (1993), using the GCM, but allowing for individ-
ual differences. We find evidence that one group of peo-
ple attended primarily to one dimension of the stimuli,
while a second group of people attended primarily to the
other dimension. This finding runs counter to a standard
analysis that does not allow for individual differences,
and shows a distribution of attention across both dimen-
sions.

Category Learning Data
The data we use in our re-analysis comes from Kruschke
(1993), who studied the ability of ALCOVE to account
for human learning across four category structures. Each
structure involved the same eight stimuli—consisting of
line drawings of boxes with different heights, with an in-
terior line in different positions—but divided them into
two groups of four stimuli in different ways. The cate-
gory structure we use is the so-called “Condensation B”
structure, which is shown in Figure 1. The eight stimuli
are arranged by their heights and positions, and the four
above and to the left of the dividing line belong to Cate-
gory A. The stimuli are numbered 1–8 in the figure, for
ease of reference later when we present modeling results.



Kruschke (1993) collected data from a total of 160
participants, with 40 attempting to learn each category
structure. The task for each participant was, over eight
consecutive blocks within which each stimulus was pre-
sented once in a random order, to learn the correct cat-
egory assignment for each stimulus, based on correc-
tive feedback provided for every trial. With the aim of
analyzing human performance using the GCM—which
means trial-by-trial learning is not being modeled—the
data can be represented bydik, the number of times the
ith stimulus was categorized as belonging to Category A
by the kth participant, out of thet = 8 trials on which
it was presented. In an analysis that does not consider
individual differences, the behavioral data can be further
summarized asdi = ∑k dik, the total number of times all
participants classified theith stimulus into Category A,
out of t = 40×8 total presentations.

Generalized Context Model Analysis
In this section, we present a standard version of the
GCM, show how it can be formulated as a graphical
model to enable fully Bayesian statistical inference1, and
present its application to the current data.

The Standard GCM
The GCM assumes that stimuli can be represented by
their values along underlying stimulus dimensions, as
points in a multidimensional psychological space. For
the current data, there are only two dimensions, so theith
stimulus is represented by the point(pi1, pi2). The first
dimension has an attention weight,w with 0 ≤ wd ≤ 1,
and the second dimension then has an attention weight
(1−w). These weights act to ‘stretch’ attended dimen-
sions, and ‘shrink’ unattended ones. Formally, the psy-
chological distance between theith and jth stimuli is
d2

i j = w (pi1− p j1)2 +(1−w)(pi2− p j2)2.
The GCM assumes classification decisions are based

on similarity comparisons with the stored exemplars,
with similarity determined as a nonlinearly decreasing
function of distance in the psychological space. We fol-
low Nosofsky (1986) and model the similarity between
the ith and jth stimuli assi j = exp(−c2d2

i j), wherec is
a generalization parameter. The GCM also assumes that
categories are represented by individual exemplars. This
means that, in determining the overall similarity of a pre-
sented stimulusi to Category A, every exemplar in that
category is considered, so that the overall similarity is
siA = ∑ j∈A si j. Final categorization response decisions
are based on the Luce Choice rule, as applied to the over-
all similarities. We assume an unbiased version of the
choice rule, so that the probability that theith stimulus

1Note that this doesnot mean we are proposing a
“Bayesian” or “rational” version of the GCM (cf. Griffiths,
Kemp, & Tenenbaum, 2008). We are simply using Bayesian
statistics, rather than traditional model-fitting methods and fre-
quentist statistical approaches, to make inferences about GCM
parameters from data. That is, we are using Bayesian infer-
ence as statisticians do, and as psychologists should do, to re-
late models to data.
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Figure 2: Graphical model implementation of the GCM.

will be classified as belonging to Category A, rather than
Category B, is modeled asri = siA/ (siA + siB). The ob-
served decision data themselves are then simply modeled
asdi ∼ Binomial(ri, t), meaning that each of thet pre-
sentations of theith stimulus has a probabilityri of being
categorized as belonging to Category A.

Graphical Modeling Implementation
Our analyses are implemented using the formalism pro-
vided by graphical models. A graphical model is a graph
with nodes that represents the probabilistic process by
which unobserved parameters generate observed data.
Details and tutorials aimed at cognitive scientists are pro-
vided by Lee (2008) and Shiffrin, Lee, Kim, and Wa-
genmakers (2008). The practical advantage of graphi-
cal models is that sophisticated and relatively general-
purpose Markov Chain Monte Carlo (MCMC) algo-
rithms exist that can sample from the full joint poste-
rior distribution of the parameters conditional on the ob-
served data. Our analyses rely on WinBUGS (Spiegel-
halter, Thomas, & Best, 2004), which is easy-to-learn
software for implementing and analyzing graphical mod-
els (see Lee & Wagenmakers, 2010).

A graphical model implementation of the GCM is
shown in Figure 2. The known stimulus locationspix, to-



0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Generalization

A
tte

nt
io

n

Figure 3: Joint and marginal posterior distributions over
attentionw and generalizationc parameters of the GCM,
when applied to the condensation data.

gether with the attention parameterw generate the pair-
wise distancesd2

i j. These distances, together with the
generalization parameterc generate the pairwise similar-
ities. These similarities, in turn, lead to response proba-
bilities ri which generate the observed datadi.

Results
Our results are based on 3 chains of 5,000 samples each,
with a burn-in of 1,000 samples, whose convergence was
checked using the standard̂R statistic (Brooks & Gel-
man, 1997).

The key result is shown in Figure 3, which plots the
joint posterior distribution of the generalization and at-
tention parameters (as a scatterplot), as well as their
marginal distributions (as histograms). The marginal
posterior for the attention parameterw—which gives the
weight for the position dimension—lies between about
0.55 and 0.7. This result can be interpreted as showing
that people give significant attention to both dimensions,
although they are probably focusing a little more on the
line position than the rectangle height. In condensation
tasks, both stimulus dimensions are relevant to determin-
ing how stimuli belong to categories, and so the shared
attention result makes sense. In other words, the stan-
dard application of the GCM produces a psychologically
reasonable inference about selective attention, and it is
tempting to view this analysis as the end of the story.

Individual Differences Analysis
The standard analysis assumes, however, that all people
used exactly the same parameterization of the GCM to
guide their category learning. But an examination of the
individual learning curves in the current data suggests
a large degree of variation between subjects, and raises
the possibility that there are psychologically meaningful
individual differences.

Types of Individual Differences

Figure 4 gives a schematic picture of four different
assumptions about individual differences. Each panel
shows a data space, containing the possible outcomes of
an experiment. In the No Differences panel, there is a
single true point, represented by the circular marker, cor-
responding to one parameterization of a cognitive pro-
cess. The gray circles show the variety of behavioral data
that might actually be produced in an experiment. The
assumption of no individual differences means the goal
of inference would be to find the circular marker from
the gray points, and corresponds to the standard analysis
of the GCM we have presented.

In the Continuous Differences panel there are many
true points, again shown by circular markers. Each of
these points could correspond to an individual subject’s
data from an experiment. The individuals are not iden-
tical (i.e., there is no longer a single point), but nor are
they unrelated (i.e., their points are not spread across the
entire data space). This sort of individual differences can
be accommodated by hierarchical or multi-level models,
in which there is a single hierarchical group distribution
over the parameters of the individuals (e.g., Rouder &
Lu, 2005).

In the Discrete Differences panel there are two true
points, shown by a circular and a square marker. Each
of these points could correspond to the data from differ-
ent individuals, or from different subgroups, each with
multiple individuals, in an experiment. The two points
correspond to fundamentally different parameterizations
of a cognitive process, or even to fundamentally different
cognitive processes, and so the overall data is a mixture
of two different cognitive processes. Mixture models are
typically used to accommodate this sort of individual dif-
ferences (e.g., Lee & Webb, 2005).

No Differences
Continuous
Differences

Discrete
Differences

Continuous and
Discrete Differences

Figure 4: Four different assumptions about individual
differences.
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Figure 5: Graphical model for the GCM with individual
differences.

The obvious strategy for a more complete account of
individual differences is to combine both Continuousand
Discrete differences, as in the bottom-right panel on Fig-
ure 4. Here, there are two types of true points—indicated
by circular and square makers—and constrained indi-
vidual variation within each type. A combination of
both hierarchical and mixture modeling naturally deals
with these patterns of differences. The mixture compo-
nent identifies the fundamentally different cognitive pro-
cesses, and the hierarchical component captures the vari-
ation within each process. We are not aware of cognitive
modeling that has adopted this approach, but it seems the
most general and natural way to extend the GCM analy-
sis.

Graphical Model Implementation
Figure 5 shows the graphical model that extends the
GCM to allow for continuous and discrete individual
differences. There is now a plate for the participants,
so that thekth participant has attentionwk and gener-
alizationck parameters. These are drawn hierarchically

from one of a set of Gaussian distributions depending
on their group membershipzk. Formally, this means
wk ∼ Gaussian(µw

zk
,σw

zk
) andck ∼ Gaussian(µc

zk
,σc

zk
).

Statistically, this is a hierarchical (or “random-effect”)
mixture model. Psychologically, people belong to differ-
ent qualitative groups, given byzk, and their attention and
generalization parameters are sampled from a continuous
Gaussian distribution corresponding to their group.

We put standard vague priors on the group means and
standard deviations, and on the latent assignment indica-
tor variables. We then applied this extended GCM model
to the current condensation data, assuming there were
two groups of participants.

Results
Once again, our results are based on 3 chains of 5,000
samples each, with a burn-in of 1,000 samples, whose
convergence was checked. Our key findings are laid out
in Figure 6. The top-most bar graph shows the inferred
allocation of the 40 participants into the two groups, as
measured by the posterior expectation of thezk variable.
There are unambiguous assignments for 36 participants,
with 24 belonging to Group 1 and 12 belonging to Group
2. This lack of uncertainty in mixture model latent as-
signment is usually an indication that there are multiple
groups.

The attention and generalization properties of the two
groups, in the form of the joint and marginal posterior
distributions ofµw

g andµc
g, are shown in the next two pan-

els. Group 1 on the left has an attention weight above 0.8,
while Group 2 on the right has an attention weight close
to 0. The natural interpretation is that the first group of
participants is primary attending to the position dimen-
sion, while the second group is almost exclusively at-
tending to the height dimension.

Below the posterior distribution for the groups, a pos-
terior predictive check of fit to the behavioral data is
shown. For each of the 8 stimuli the posterior predictive
distribution over the number of times it is classified as
belonging to Category A is shown by the squares, with
the area of each square being proportional to posterior
predictive mass. The single thick line shows the average
observed categorization behavior for those participants
assigned to the group. The many thin lines show the in-
dividual participant behavior for the group. It is clear that
Group 1 and Group 2 have participants showing qualita-
tively different patterns of categorizing the stimuli, and
these differences are captured by the posterior predictive
distributions.

The bottom-most panels in Figure 6 interpret the dif-
ferent category learning of the groups. The original stim-
ulus space and category structure is shown, with bars
showing the average number of times each stimulus was
placed in Category A and Category B by members of the
group. To understand Group 1, note that stimuli 4 and
5 are the ones least clearly categorized correctly. This is
consistent with a focus on the position dimension, which
would assign these two stimuli incorrectly. Similarly, for
Group 2, stimuli 2 and 7 are categorized very poorly.
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Figure 6: Results from GCM analysis assuming two groups of participants, showing the allocation of participants to
groups, posterior and posterior predictive distributions for the groups, and the interpretation of the different groups in
terms of the stimuli and category structure itself. See text for details.



This is consistent with a focus on the height dimension.
Finally, we compared a one-group to a two-group

model, calculating the Bayes Factor using the Savage-
Dickey method described by Wetzels, Grasman, and Wa-
genmakers (2010). This came out about 2.3 in favor the
two-group model, meaning that the data are more than
twice as likely to have come from two groups of partici-
pants than a single group. While this is far from conclu-
sive evidence, it does suggest that the possibility there
are two different groups of participants deserves serious
consideration.

Discussion
Our extended analysis of Kruschke’s (1993) condensa-
tion data, using a GCM with the ability to detect con-
tinuous and discrete individual differences, tells an in-
teresting story. It suggests that there are two groups of
participants, each of whom focus most of their attention
on just one stimulus dimension while learning the cate-
gory structure. The standard result of attention being dis-
tributed roughly evenly across both dimensions seems to
be an artefact of failing to consider individual differences
in modeling.

We realize that applying the GCM to the condensa-
tion data is non-standard, because the GCM is usually
applied to category learning experiments with a training
and a testing phase, rather than a single category learn-
ing sequence. Ideally, our modeling would be applied
to transfer data collected after categories were learned to
criterion, and it is possible the dynamics of learning pro-
vide a partial explanation for the individual differences
we observe, although we do not think they can provide
a full explanation. We also realize that there are many
possible variations of the GCM that could be tried.

Accordingly, we certainly do not claim our single
re-analysis automatically undermines the existing large
and coherent body of work examining selective attention
mechanisms in category learning. Systematic investiga-
tion of category learning across many tasks, looking for
the presence of discrete and continuous individual dif-
ferences, is needed to gauge the generality of our cur-
rent results. We think this would be a worthwhile exer-
cise, given the theoretical influence of selective attention
mechanisms in the category learning literature.

We also think our analyses underscore a more gen-
eral point, which is that it is important to consider and
model individual differences in all of cognition. Finally,
we think the ease with which very general assumptions
about individual differences could be implemented to ex-
tend the standard GCM analysis shows the advantage of
using Bayesian statistics to relate cognitive models to
data.
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